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Rapid prototyping and design of cybergenetic
single-cell controllers

Sant Kumar!, Marc Rullan! & Mustafa Khammash 18

The design and implementation of synthetic circuits that operate robustly in the cellular
context is fundamental for the advancement of synthetic biology. However, their practical
implementation presents challenges due to low predictability of synthetic circuit design and
time-intensive troubleshooting. Here, we present the Cyberloop, a testing framework to
accelerate the design process and implementation of biomolecular controllers. Cellular
fluorescence measurements are sent in real-time to a computer simulating candidate sto-
chastic controllers, which in turn compute the control inputs and feed them back to the
controlled cells via light stimulation. Applying this framework to yeast cells engineered with
optogenetic tools, we examine and characterize different biomolecular controllers, test the
impact of non-ideal circuit behaviors such as dilution on their operation, and qualitatively
demonstrate improvements in controller function with certain network modifications. From
this analysis, we derive conditions for desirable biomolecular controller performance, thereby
avoiding pitfalls during its biological implementation.
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ropelled by advancements in DNA synthesis, laboratory

automation, and a growing repository of characterized

biological parts, synthetic biology is starting to bear fruit!~7.
Recent years have seen a surge of synthetic circuits applied to
biotechnology® and medicine’. However, synthetic circuit con-
struction still presents serious challenges due to unanticipated
cross-talk between parts, loading and burden effects, operation in
a cellular environment which is inherently stochastic, and long
design-cycle time periods, among other reasons. Furthermore,
synthetic circuits are usually developed in a context different to
that of their end-application, and the circuit’s transplantation to
new environments comes with complications: changes in culture
conditions or host can significantly degrade circuit
performance!?,

There are different strategies to mitigate the effect of host and
environment context. Circuit reliability can be improved by
means of network architecture!!. A more general approach to
engineer robustness is to control the circuit’s critical components
with feedback regulation, a strategy commonly used in endo-
genous biological systems!2-14, The properties of feedback reg-
ulation have previously been exploited in synthetic circuits to
increase bioprocess yields!°~17, or circuit robustness!8. However,
it is worth noting that previous implementations of in vivo
feedback regulation were not capable of perfect adaptation, i.e.,
convergence to a constant activity level regardless of external
disturbances. To achieve this feature, integral action is required!®.

Theoretical implementations of integral controllers solely
employing chemical reactions (biomolecular controllers) have
been proposed20-26, but experimental demonstrations remain
challenging, with only a few examples of integral (or quasi-inte-
gral) implementations (in vivo implementations in%7-3% in vitro
implementation in3!). The translation of circuit specifications to
biomolecular realizations is non-trivial and depends on compo-
nent availability, characterization, and cross-talk, among
others!%32. Mathematical modeling is usually employed to iden-
tify and alleviate these issues. However, when the target system to
be controlled is not quantitatively defined, this approach can lead
to large discrepancies between predictions and experimental
outcomes.

An engineering strategy commonly used to develop complex,
real-time embedded controllers is hardware-in-the-loop (HIL),
where the controller being designed is interfaced with a realistic
simulation of the system it should steer. HIL is widely used in
industries where testing and optimizing the embedded controller
in its final application setting is infeasible or very expensive, such
as in the automotive or aerospace industries. For example, to
ensure an airplane rudder functions suitably over the entire flight
envelope, the full rudder and its controlling hardware are inter-
faced in closed-loop with an aerodynamic computer model of the
rest of the airplane. In this way, the expected impact of the rudder
dynamics on the airplane flight characteristics can be studied
easily for a wide-range of flight conditions. In these cases, HIL
vastly decreases development time and costs by shortening the
design cycle and minimizing the number of test runs with the real
system. To fulfill similar functionalities in a biological setting, we
envisioned the Cyberloop (Fig. 1a), a hybrid framework to test
and optimize synthetic circuits (biomolecular controllers in this
work) under realistic conditions. In the Cyberloop, the targeted
in vivo biological system is interfaced at the single-cell level with
biomolecular controllers implemented in silico, thereby enabling
rapid and cost-effective prototyping. Closing the loop with the
true biological system instead of simply using simulations has
clear advantages in the design process, as no assumptions need to
be made regarding the system’s structure or parameters.

The hybrid in vivo/in silico interaction in Cyberloop is
achieved via fluorescence measurement and optogenetic

activation with light under the microscope®3. Investigating/Mea-
suring cellular behavior via fluorescent proteins (FP) is a well-
known and well-established method in the synthetic biology
research community with thousands of FPs available now343° for
different cell types. Moreover, optogenetics is a well-known bio-
logical technique that uses light to influence biological processes.
Most notably, it facilitates a unique capability of controlling gene
expression with excellent spatial as well as temporal resolution3°.
An interface of fluorescence measurement and optogenetic acti-
vation thus makes this Cyberloop framework applicable to dif-
ferent cell types, and empowers aiming at hundreds of cells
individually in a parallel fashion.

Using the Cyberloop with a genetically engineered strain of
Saccharomyces cerevisiae (Fig. 1b), we first show how the behavior
of a biomolecular controller (Autocatalytic Integral Control
motif?!) designed in a deterministic setting drastically changes
when put into the stochastic cellular context and provide guide-
lines to reduce such effects. Secondly, we study the Antithetic
Integral Control motif??, which received broad attention due to
its robustness and good performance in stochastic settings. One
key assumption required for antithetic controllers to show perfect
adaptation is the lack of degradation or dilution experienced by
the controller molecules, which has been investigated
theoretically?337-3%. We here show that dilution rates relevant to
S. cerevisiae physiology do not significantly degrade the perfor-
mance of this controller for our target biological network. Fur-
ther, we analyze two extensions of this control motif, which have
been proposed and studied mathematically**41. We exhibit their
qualitative effect on the closed-loop performance and stability of
the network. Through these examples, we show how the Cyber-
loop provides actionable insights for the implementation of bio-
molecular controllers in the cellular environment.

Results

The Cyberloop. Previous strategies for in silico regulation of
living cells mostly dealt with population-level feedback, where the
readout from all cells (or only one cell) was processed and
combined before one common input was given to all the
cells*>=48. There are only a handful of studies implementing
single-cell level feedback334%°0. Furthermore, in all of these
approaches the control architectures used were deterministic, and
followed motifs that are well-established in control engineering,
such as proportional control, proportional-integral control, or
Model Predictive Control (MPC). While adequate for computer
control of bioreactors, these approaches are not typically suitable
for bio-molecular control strategies that will be implemented
in vivo in the complex and stochastic environment of single cells.
To address these challenges, we have expanded a previously
published tool for in silico optogenetic control of single cells® to
include biomolecular (stochastic) control motifs. This experi-
mental platform periodically captures microscopy images of cells
placed under the microscope and performs automated image
analysis for cell segmentation, tracking, and quantification. The
quantified readout from each cell is subsequently passed to its
own biomolecular controller, updating the propensities of bio-
molecular reactions dependent on the measured species (Fig. 1a).
The reaction network is then simulated with stochastic setting”!
until the next measurement time-point, when the controller
output is fed back to the cell in the form of an optogenetic input.
In this framework (Supplementary Fig. 4), the controller output
(computed light intensity for cell stimulation) is applied after a
delay of one sampling time interval which was set to be 2 min in
our experiments. For the biological target system (Fig. 1b) used in
our experiments, this small delay has negligible impact on the
controller performance33. The sampling/imaging time period of
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Fig. 1 Experimental framework for stochastic optogenetic control of single cells. a The Cyberloop. Light responsive cells are grown in a monolayer at the
microscope sample plane and imaged periodically. Image analysis is then performed to obtain the coordinates of each cell, track cells across frames, and
quantify cellular readouts of interest. These cellular readouts are used to update the propensities of a stochastic biomolecular controller reaction network
simulation. The controller species abundance of such a network is used to determine the amount of light that each cell will receive at the next imaging
cycle. Light is administered to the individual cells through a custom-designed light-projection hardware33 attached to the microscope. b Optogenetic
induction of gene expression and real-time visualization system in Saccharomyces cerevisiae. Blue light promotes homodimerization of EL222-VP16, which is
then able to bind its target site EL-bs2. Once bound, the optogenetic system promotes gene expression via its activation domain, VP16. Visualization of
nascent RNA counts is achieved by means of the tdPCP-PP7 system>2. EL222-VP16 regulates the expression of an RNA containing 24 stem-loops at its 5'
end. These stem-loops are recognized by the PP7-mRuby3 fusion protein. During transcription, a large number of fluorescent proteins localizes in a
diffraction-limited spot inside the nucleus. The fluorescence intensity of such a spot is proportional to the number of nascent RNAs33.

2 min was chosen based on the computation time required to run
our software routine (executing cell segmentation, tracking,
quantification, and stochastic controller simulation for individual
segmented cells) between consecutive sampling in our experi-
ments (Supplementary Fig. 8). Approximately 75 to 100 cells were
targeted and tracked for the full-duration of each experiment.

We chose a genetically modified strain of S. cerevisiae for our
experiments. The biological target variable, placed under control
throughout this study, was the nascent RNA counts of tdPCP-
PP7 system®2 as shown in Fig. 1b. The real-time visualization/
measurement of nascent RNAs was achieved by using a live-cell
fluorescent reporter (PP7-mRuby3 fusion protein). Gene expres-
sion has been shown to occur in bursts33 displaying a high degree
of variability both among cells and over time. This makes it an
ideal system to test the performance of stochastic biomolecular
controllers. To facilitate optogenetic activation we used a light-
activated transcription factor (Fig. 1b). And we employed the
Digital Micromirror Device (DMD) based custom-built projec-
tion hardware and software (developed in3?) to direct light to
individual cells, placed under the microscope, with high spatio-
temporal precision. The reader is referred to Methods section for
further technical details.

Autocatalytic Integral Controller. We first used the Cyberloop
to characterize the Autocatalytic Integral Controller topology?!,
which belongs to a class of biomolecular control architectures
implementing integral feedback with one sole controller
species?»2>. This minimal integral network topology (Fig. 2a)
guarantees set-point tracking and robust perfect adaptation in
deterministic setting, and it has been shown that its metabolic

load on the host cell can be tuned to a minimal level compared to
all possible controllers. However, its performance in the presence
of stochastic variations remains unexplored to date.

As the first test of this motif's behavior when implemented
through stochastic chemical reactions (Fig. 2a, right), we showed
its effectiveness for set-point tracking when the copy-number of
controller species V is constrained to be strictly positive. Under
this condition, this motif displays the desired set-point tracking
performance (Fig. 2b). However, when no constraints are placed
on the copy-number of V and its time evolution is modeled
stochastically, it will eventually (with probability one) reach an
abundance of zero molecules and not change further. This is
because V=0 is an absorbing state for this system. The only
source of V is a positive feedback mechanism, requiring the
presence of V itself (Fig. 2a). Therefore, the absence of V implies
the impossibility of this autocatalytic reaction to fire, and no more
molecules of V can further be produced. We recapitulated this
behavior in our experiments (Fig. 2c). We also found that by
decreasing the value of gain parameter, k, we could extend the
average time needed for the network to reach the absorbing state
(Fig. 2¢, bottom). At steady-state, for X, to track the set-point a
certain amount of X; will be required. This X is produced in the
actuation reaction (third reaction in Fig. 2a, right) whose
propensity is kV. This implies that decreasing the value of k
would result in higher abundance of V to maintain the
production of the required amount of X;. This can be observed
in Fig. 2c (inset). At time ¢ = 100 min, the experiment with lower
k value exhibits higher V abundance in cells compared to the one
with higher value of k. And this higher abundance of V, in turn,
prolongs the time for the system to reach the absorbing state.
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Fig. 2 Autocatalytic Integral Controller in Cyberloop. a Cyberloop implementation of the Autocatalytic integral biomolecular controller. Left: the cellular
readout, X;, is measured via fluorescence microscopy. Its copy-number, quantified from fluorescence intensity, is used to update the reaction propensities
of the controller network, implemented in a computer. The control action is performed at regular intervals by applying a light input to the controlled cell.
The applied light input intensity is proportional to the controller species (V) copy-number obtained from stochastic simulation in the computer. Right:
Autocatalytic integral controller reactions?!. b Demonstration of set-point tracking by the Autocatalytic Integral Controller motif (under the constraint
V> 0). Left: three Cyberloop runs with different reference values (dashed lines) were performed. Thin lines indicate cumulative time averages of nascent
RNA counts in individual cells, while thick lines represent the population average. Center: distribution of the average nascent RNA count per cell over the
course of the experiment. Right: population average of nascent RNA count across cells as time progresses in these three experiments (Experimental
parameters: k = 0.005min™", & = 0.0Tmin™", initial V =1and u = (7,14, 21); Number of cells: red - 98, blue - 86, green - 102). ¢ Effect of absorbing state
on the Autocatalytic Integral Controller motif. Two set-point tracking experiments with differing values of parameter k show the effect of this parameter on
the average time needed for the controller species abundance to reach zero, the absorbing state of the system. Top: time-course evolution of average
nascent RNA counts for the controller with high and low k values. Inset: distribution of V copy-numbers for all the cells at time t =100 min in the two
experiments. Bottom: shows the fraction of cells in the absorbing state as a function of time. As time progresses in the experiment, more cells fall into the
absorbing state due to stochasticity, thus making the controller ineffective for set-point tracking under stochastic setting (Experimental parameters:

« = 0.01min™", initial V=300 and g = 14; Number of cells: red - 70, blue - 48). d, e Effect of promoter leakiness on Autocatalytic Integral Controller -
addition of a basal production (leakiness) rate of controller species V eliminates absorbing state. d Left: an additional reaction (in red) is added to the
Autocatalytic Controller motif. With this addition, the absorbing state is removed, as the basal production rate enables the system to leave the state V=0
with propensity y. This basal production rate of V affects the tracking properties of the controller under stochastic setting. Right: time-course evolution of
average nascent RNA counts for the controller with two different basal production rates. e Bottom: fraction of cells in the absorbing state as time
progresses in the two experiments. Top: steady-state error (absolute value) distribution of nascent RNA counts for all the cells. Sufficiently small basal
production rate eliminates the absorbing state and makes the controller effective in robust set-point tracking even under the stochastic setting.
(Experimental parameters: k = 0.005min™", & = 0.01min~", initial V =300 and x = 14; Number of cells: red - 76, blue - 96). Source data are provided as
a Source Data file.

In biology, components used to build synthetic networks often
present behaviors not necessarily present in the idealized design.
The Cyberloop allows incorporation of such non-ideal biological
effects in the controller network, as for example promoter
“leakiness” (Fig. 2d). The addition of a basal expression rate of

our controller species, V, modifies the system behavior and
eliminates the robustness and perfect tracking properties of our
network (Fig. 2d, right in red; Supplementary Information
Section 1.1.1). However, experimental results show that it can
also have a positive effect if balanced properly with the rest of the
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system parameters, as it eliminates the absorbing state (Fig. 2d,
left). As can be seen in (Fig. 2d and e, blue), proper tuning of y,
the basal production rate of V, enables long-term set-point
tracking without the need for positivity constraint on V, and with
minimal steady-state error even in a stochastic setting.

Antithetic Integral Controller. The Antithetic Integral Con-
troller was the first biomolecular control motif to take into
account the stochasticity present in chemical reaction networks,
and even draw benefits from it20. This controller is composed of
two species, Z; and Z,, which interact with the controlled system
and with each other to robustly regulate X; abundance (Fig. 3a,
b). In a similar fashion as the Autocatalytic controller, we
implemented the Antithetic controller in the Cyberloop to study
its properties when connected to a real biological system.

One key characteristic of integral controllers is their ability for
perfect set-point tracking. We first observed that indeed this
controller can accurately bring the average nascent RNA count to
different desired reference levels (Fig. 3c). In addition to this, we
also observed that it can track dynamic references or set-points

during the course of the experiment (Supplementary Fig. 6). Next,
we tested its ability to precisely regulate gene expression in the
presence of strong stochastic fluctuations present at the level of
the biomolecular controller, and at the level of the biological
system under control, which represents high intrinsic noise due to
low copy number of the involved molecules. For this, we operated
the controller circuit in parameter regimes where Z; and Z, exist
in single-digit abundances, and observed no change in the
controller’s steady-state tracking performance (Fig. 3f). This
supports the theoretical analysis of the control motif, which had
shown that stochastic noise was not detrimental to its
performance?’, Next, we focused on analyzing the role of the
sequestration reaction (rate #) between Z; and Z, on the closed-
loop dynamics of the system. We observed that higher
sequestration rates led to improved transient dynamics, e.g. faster
settling times. However, we found that values of # of the same
order of magnitude as the production rates of Z; and Z, achieved
reasonable performances, and further increases in # produced
only marginal gains (Fig. 3e). Therefore, Z; and Z, candidate
pairs do not necessarily require an extraordinarily high binding
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Fig. 3 Antithetic Integral Controller in Cyberloop. a, b Cyberloop implementation of the Antithetic Integral Controller motif, and the associated controller
reactions20. The cellular readout, X, is used to update the reaction propensities of the controller network involving species Z; and Z,. The applied light
input (control input) intensity is proportional to the copy-number of controller species Z;, which is obtained from stochastic simulation in the computer. ¢
Demonstration of set-point tracking. Left: three Cyberloop runs with different reference values (dashed lines) were performed. Thin lines indicate
cumulative time averages of nascent RNA counts in individual cells, while thick lines represent the population average. Right: distribution of the average
nascent RNA count per cell over the course of the experiment (Experimental parameters: k = 0.1min"", n=>5 min~', = 0.02min"" and
p=(7,14,21)x Omin~"; Number of cells: red - 94, blue - 76, green - 110). d Single-cell output traces of three randomly chosen cells in the Cyberloop
experiment shown in (c) with ref. = 21. e Effect of annihilation reaction rate on the closed-loop system dynamics. Five independent experiments with
differing annihilation rates n were performed. The plot shows the time-course evolution of average nascent RNA counts in those experiments. Lower values
of # (lighter color) led to longer transients, but did not affect steady-state properties of the system (Experimental parameters: k = 0.1min™", =
0.02min~" and u=14x Omin~": Number of cells: in increasing order of 5 values - 79, 80, 90, 104, 100). f Effect of controller species production rates.
Three independent set-point tracking experiments with a common reference (dashed line), but differing values of 6 and u were performed. Left: time-
course evolution of average nascent RNA counts in those experiments. Higher 6 and y values led to larger overshoot and longer settling times. Right:
steady-state distribution of Z; and Z, copy-numbers over all the cells. Lower 8 and p values resulted in lower copy-numbers of Z; and Z; at steady-state.
The Antithetic Integral Controller operates well, even in very low (<10) copy-number regime of controller species (Experimental parameters: k =
0.01min™", = 5min~", 8 = 2min~" and g = 28 min™"; Number of cells: red - 91, blue - 87, green - 104). g Effect of physiological dilution on the operation

of Antithetic Control motif - addition of degradation reactions (inset) for the controller species of the Antithetic Controller. The degradation rate § was set

as W{glﬁme’ that is, the dilution rate of the intended host cell type (S. cerevisiae). In these Cyberloop experiments, this dilution rate was found to have

negligible impact on the controller performance. Left: shows the averaged population response over time of two experiments with (red) or without (blue)
degradation reactions (Experimental parameters: k = 0.1min™", n=>5 min~!, # = 0.02min"" and x = 14 x ; Number of cells: red - 81, blue - 76). Center:
contains the histogram of average nascent RNA counts per cell at steady-state for the same experiments shown in (Left). Right: contains the distribution of
steady-state errors for three parameter combinations. Inset percentage values are the percentage mean errors from the reference, and the error bars

denote mean + / — standard error. (Experimental parameters: k = 0.1min™"

,7=5min"", # = 1min~" and g4 = 14 min~"; Number of cells: from left to right

in the violin plot - 76, 81, 67, 93, 97, 114). Source data are provided as a Source Data file.

affinity to warrant a good controller performance for the given
biological system.

A key assumption required for the Antithetic controller to
display perfect disturbance rejection and tracking is that the
degradation of controller species Z, and Z, is negligible. This
assumption is challenged in fast-dividing cells, or when Z; and Z,
present a short half-life. The consequences of degrading
controller species are that the integral term, or the memory in
the system, is gradually lost, as explained in3’. A theoretical
treatment of the issue shows that degradation introduces an error
on the steady-state tracking properties of the system (Supple-
mentary Information Section 1.2.1), which is dependent on the
controller’s parameters. To test out the practical implications of
dilution due to cell growth in S. cerevisiae, the organism where
the controllers are supposed to be embedded, we introduced
degradation terms in Z; and Z, (Fig. 3g, inset) of the order of
yeast’s cell cycle period. The cell cycle period or the doubling time
of our engineered yeast strain was found to have a distribution
closely resembling a Poisson distribution with a mean doubling
time of 77 min (Supplementary Fig. 7). During the experiment,
doubling  times (for ~ computing  dilution rates,
0= ng)ﬁme) of individual cells used in their in silico
controller network were randomly sampled from this distribu-
tion. We found that for the given biological system network
(Fig. 1b), dilution does not play a significant role in the steady-
state tracking properties of the controller resulting in negligible
tracking error over a broad range of controller parametrizations
(Fig. 3g, right).

Antithetic Integral Rein Controller. We next implemented the
“Rein” extension“’ of the Antithetic control motif in the Cyberloop
and observed its implications on the closed-loop system behavior. In
addition to all biomolecular reactions in the Antithetic controller
network, this motif includes an extra direct negative feedback from
the controller species Z, to the control target species X; represented
by the reaction highlighted in (Fig. 4a in red). As investigated in0,
considering a classical gene-expression model as the system to be

controlled, this additional repressing feedback from Z, and the
normal actuating influence from Z; have an opposing effect on the
system output which in turn results in improved system dynamics.
In the Cyberloop, we only have two-way communication (output
measurement through fluorescence microscopy and actuation
though light stimulation) channel between the in silico controller
simulation and the real biological system but this extended motif
requires one more channel to implement the additional reaction. To
circumvent this problem we added an in silico molecule Y, the new
symbolic system output to be controlled. This molecule is actuated
by the real biological system output X; (nascent RNA count). Thus,
the target system network to be controlled was a hybrid network
with real biological entities X, ..., X; and in silico species Y (Fig. 4b).
This allowed us to implement and carry out experiments with this
motif in the Cyberloop with Y as our output variable of interest.

In these experiments, we observed that this controller motif
achieves the desired set-point tracking by bringing the output
molecule Y count to different set-points (Fig. 4c). Further, we
found that this Antithetic Integral Rein Controller indeed
improves the system response characteristics, achieving lower
overshoot, faster settling time, and lower variance compared to
the original Antithetic control motif (Fig. 4d, top and bottom).
This observation is in line with the theoretical findings presented
in%0. We also observed that for the given parameter values, the
“rein” extension requires very low abundance of controller species
Z, to achieve set-point tracking when compared to the Antithetic
control motif (Fig. 4d, center). Furthermore, we found that when
the output degradation rate (§ in Fig. 4b) is high enough, this
extended Antithetic motif doesn’t lead to significant qualitative
improvement in controller tracking performance over the original
Antithetic motif (Fig. 4e). This suggests that under such
conditions when the system output has a considerable degrada-
tion rate of its own, the addition of this extra negative “rein”
feedback to the output within an Antithetic motif may not be
warranted. We also briefly studied the favorable performance of
this controller motif in the presence of a basal production
reaction of the output molecule. The results are shown in
Supplementary Fig. 9.
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Fig. 4 Antithetic Integral Rein Controller (AIRC) in Cyberloop. a Addition of an extra reaction to the Antithetic Integral Controller (AIC) motif that
incorporates a direct negative feedback from the controller species Z to the system output X,49. b Modification of the Cyberloop in silico setup to facilitate
extra negative feedback from controller to the output. An extra molecule Y (in silico) is added to the biological system network being controlled, and is
considered as the new output variable of interest. This facilitates addition of an extra negative feedback reaction involving the output variable. ¢
Demonstration of set-point tracking by the Antithetic Integral Rein Controller motif. Left: three Cyberloop runs with different reference values (dashed
lines) were performed. Thin lines indicate cumulative time averages of Y counts in individual cells, while thick lines represent the population average.
Center: distribution of the average Y count per cell over the course of the experiment. Right: population average of Y count across cells as time progresses
in those three experiments (Experimental parameters: k = 0.1min~", n= 5min~', § = 0.02min~" and u=(7,14,21)x Omin~', a = 0.5min"", § =
0.05min~" and p= 5min~"; Number of cells: red - 100, blue - 89, green - 73). d Two experiments, one with AIC (f=0) motif and another with AIRC
(B # 0) motif having same values for the other parameters, were carried out. Top: shows the time-course evolution of average output Y abundance. Center:
shows steady-state (from 180 to 240 min) distribution of Z; and Z, copy-numbers over all the cells. Bottom: shows the output variance as a function of
time in both experiments. In these experiments, AIRC clearly displays better transient dynamics with faster settling time and lower variance compared to
AIC. Furthermore, AIRC requires very low abundance of controller species Z5 to achieve set-point tracking as compared to AIC in these experiments
(Experimental parameters: k = 0.1min™', = 5min~', § = 0.02min™" and y = 14x min~", « = 0.5min™", § = 0.05min~" and B = (0,5) min~";
Number of cells: red - 89, blue - 122). e Two experiments with high degradation rate (§ = 0.5min™") of output Y molecule, one with AIC (8= 0) motif and
another with AIRC (f # 0) motif having same values for the other parameters, were carried out. This plot shows the time-course evolution of average
output Y abundance in the two experiments. Here, AIRC displays no significant improvement in the transient dynamics compared to AIC when there is
large enough output degradation rate & (Experimental parameters: k = 0.01min™", y = 5min™', # = 0.02min""and g = 14x Omin~', a = 0.5min~", § =
0.5min~" and § = (0,0.2) min~"; Number of cells: red - 54, blue - 62). Source data are provided as a Source Data file.
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Fig. 5 Single-cell trajectory investigation of Antithetic Integral Controller (AIC) and Antithetic Proportional-Integral Controller (APIC). a These plots
show results from two separate Cyberloop experiments, one with open-loop and another with closed-loop control (AIC). Left: shows the time-course
evolution of average response (nascent RNA counts) of all the cells in the two experiments (these lines are filtered with five time-point averaging). Right:
shows the average frequency response (amplitude spectrum) of all single-cell trajectories in these two experiments. For the closed-loop control case, a
well defined peak in the average spectrum at a non-zero frequency indicates oscillatory single-cell output response. This is not observed in the open-loop
average amplitude spectrum (Experimental parameters: k = 0.01min™", # = 5min™", § = 0.2min™" and g = 14x @ min~"; Number of cells: red - 70, blue -
77). b Closed-loop control (AIC) experiments with different k values. Top: shows the average frequency response in four separate experiments with the
inset mentioned values of parameter k. Bottom: shows peak values |P(@)|nax (bottom panel) in the amplitude spectrum and the frequency @max (center
panel) corresponding to these peaks in these experiments. For all these closed-loop control experiments, the frequency response and associated attributes
(peak and corresponding frequency) do not differ drastically with different k values (Experimental parameters: # = 5min~', # = 0.2min~' and

pu=14x 6 min~"; Number of cells: increasing value of parameter k - 95, 51, 60, 69, 64, 70). ¢, d Antithetic Proportional-Integral Controller (APIC) in
Cyberloop - addition of a proportional negative feedback action#! to the Antithetic Integral Control motif. e Left: time-course evolution of average nascent
RNA counts (system output) in three experiments with differing proportional gain k, values. Higher values of k, resulted in larger overshoots and longer
settling times. Right: shows the average amplitude spectrum of single-cell trajectories in three experiments (open-loop, with AIC, and with APIC). With a
suitable proportional gain value, the characteristic non-zero frequency response peak, observed in AIC case, is quenched in APIC case. This indicates that
the extra proportional negative feedback action helps in mitigating oscillations in the output response (Experimental parameters: k = 0.01min™", n=
S5min~', = 0.2min~" and u = 14x @min~"; Number of cells: left plot with increasing value of parameter k, - 83, 86, 76, and right plot open loop - 77, AIC
- 70, APIC - 86). Source data are provided as a Source Data file.

Antithetic proportional-integral (PI) controller: single-cell
trajectories. As mentioned previously, the Antithetic Integral
Control motif has been shown to exhibit robust perfect adapta-
tion characteristics in the population (mean) behavior of the
target-controlled network20. Applications requiring well-behaved
single-cell responses prompt a further investigation on the effect
this motif has on single-cell dynamics. A careful stochastic

simulation study with simple gene-expression system model in>3
reveals that in certain parameter regimes single-cell output
responses can follow oscillatory trajectories even when the
population mean output is converging and stable.

To probe the single-cell level effect of this motif over a real
biological system network, we analyzed the single-cell trajectory
data obtained from different Cyberloop experiments. We
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Table 1 Plasmids.

Plasmid Backbone Insert Source

pDB58  pKERG105 ACTIpr-VPEL222-CYClterm 62

pDB96  pDZ306  GLTI-5xELbs-CYC180pr-24xPP7SL 33

pDB97  pRG205  MET25pr-tdPCP-NLS-tdmRuby3- 33
CYClterm

pr promoter, term terminator.

employed spectrum analysis tools>*, which are extensively used in
signal processing field to extract frequency response of a given signal
(single-cell output trajectory in our case). First, we analyzed the
frequency response in open loop and closed loop (Antithetic Integral
Control) experiments (Fig. 5a, left). As seen in the average frequency
response (amplitude spectrum) of all single-cell trajectories (Fig. 5a,
right), a well-defined peak at a non-zero frequency is observed in the
closed-loop spectrum. This suggests that for the given experimental
parameters in the Antithetic control motif, single-cell trajectories
exhibit fluctuations with their amplitude spectrum achieving a
maximum at about 0.2 rad./sample frequency. Further, we observed
that the frequency response characteristics (peak value and the
corresponding frequency) remains relatively unchanged for a range
of controller gain parameter, k, values (Fig. 5b). Please refer to
Methods section for further details about how the average frequency
response of single-cell trajectories was computed in this study.

Next, we investigated the effect of adding a proportional
feedback on the performance of the Antithetic Integral Control
motif. For our experiments, we included a simple proportional
negative feedback (Fig. 5¢, d) with a max function which restricts
the propensity function to non-negative values. This additional
feedback term can represent a local approximation of an
implementable repressing reaction®l. As expected, this Antithetic
Proportional-Integral Control motif shows average output set-
point tracking and maintains robust perfect adaptation property
(Fig. 5e, left). Here, we also observe that a higher proportional
gain, k,, value results in larger overshoot and longer settling times
in the average output response*!. Remarkably, this additional
proportional negative feedback is found to mitigate oscillations
observed in single-cell trajectories when employing the Antithetic
Integral Control with the given parameters (Fig. 5e, right). This
demonstrates a possible strategy to avoid oscillatory single-cell
dynamics, which can be immensely useful in the biological
implementation of integral controllers.

Discussion

In this work we introduced the Cyberloop, an experimental fra-
mework for the rapid testing and optimization of biomolecular
controllers embedded in the cellular environment. Using this tool,
we first studied how a controller designed to be used in deter-
ministic settings, the Autocatalytic Integral Controller, performs
when implemented as a stochastic chemical reaction network.
Through this example, we could observe the large discrepancies
in controller behavior between the deterministic and the sto-
chastic implementations of the system; the deterministic variant
shows perfect tracking and a knob to tune its metabolic load on
the cell?!, whereas its stochastic counterpart quickly becomes
trapped in an absorbing state, ceasing to be effective. Capitalizing
on the rapid design-cycle iterations enabled by implementing the
biomolecular controller network in a computer, we could create a
set of guidelines to overcome the challenges imposed by sto-
chasticity, as well as parameter regimes that show a good per-
formance. Addition of a low basal expression of the controller
species, V, eliminated the absorbing state and led to an improved
performance.

In another example, we analyzed the Antithetic control motif
and how its performance is influenced by its constituting para-
meters. In contrast to the Autocatalytic controller, the Antithetic
motif had previously been shown to benefit from the stochastic
fluctuations and exhibit robust perfect adaptation in stochastic
settings. In our experiments with this motif, we indeed observed
robust set-point tracking and demonstrated various ways of
improving the performance (output settling time, overshoot,
steady-state behavior, and controller species abundance). Most
notably, we investigated a key assumption required for this
controller to achieve perfect tracking: the lack of degradation
reactions on the controller species?$3”. This assumption is hard
to achieve, particularly in fast dividing cells, where dilution will
result in an ‘effective’ degradation of the controller species. In this
regard, we analyzed the effect of dilution rates comparable to
yeast’s growth rate on the controller performance. We observed
that although, according to theoretical analysis, dilution gives rise
to steady-state error (Supplementary Information Section 1.2.1),
it has a fairly negligible impact on the tracking performance for
the target controlled biological process in our experiments, and
hence may not warrant an increased complexity of biomolecular
schemes that seek to minimize dilution-induced tracking
errors?837. Furthermore, as in the case of the Autocatalytic
controller, we extract general guidelines to guide the design
process, such as the need for a moderate to high values of the
sequestration reaction rate, and a good performance of the con-
troller with very low abundances of the controller species. We
could also validate the performance improvement (reduced set-
tling time and variance) with an extension of this controller,
Antithetic Integral Rein Controller motif, which had only been
analyzed theoretically before40.

Investigating the single-cell dynamics with frequency ana-
lysis tools, we demonstrated that for certain parameters, the
Antithetic control motif can induce an oscillatory single-cell
output response3 in our target biological system. We further
demonstrated a possible strategy in suppressing oscillations in
the closed loop single-cell dynamics by adding an extra pro-
portional negative feedback action. Although this additional
proportional feedback action had been analyzed theoretically
and shown to reduce the output variance with improved
controlled performance*!, we have exhibited its potential in
also improving the closed loop single-cell dynamics with
dampened oscillations.

With these diverse examples, we have established that the
Cyberloop can act as an intermediate step between a design
process fully reliant on simulations, and trial-and-error of dif-
ferent biological implementations. We consider this stepping
stone between the two approaches valuable, as it enables one to
transition from the idealization of biomolecular circuits to their
testing in short time-spans. In contrast to fully simulating the
system, the Cyberloop needs to make no assumptions regarding
the structure or parametrization of the controlled network, as it is
embedded in its biological context. However, the required flex-
ibility to specify biomolecular controller architecture and para-
metrization also implies that these choices are made through the
subjective judgement of the experimenter. Because of this,
throughout this study we explored the parameter space for pro-
duction and degradation of controller species in order to gauge
the controller’s sensitivity to these variables. The controller spe-
cies abundance was varied from a few molecules per cell to a few
thousands, consistent with physiological observations of reg-
ulatory molecules in S. cerevisiae. In addition, rates of production
and degradation of these species were kept at biologically
meaningful ranges, going from few reactions taking place per
minute, to a maximum of approximately a hundred reactions
taking place each second.
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Table 2 S. cerevisiae strains.

Strain Genotype Source
BY4741 MATa his3a1 leu2a0 met1540 ura3a0 Euroscarf
BY4742 MATalpha his3A1 leu2A0 lys2A0 ura3a0 Euroscarf
DBY41 BY4741, LEU2:ACTIpr-VPEL222-CYClterm(pDB58) 62

DBY41 BY4741, LEU2:ACTIpr-VPEL222-CYClterm(pDB58) 62
DBY80 DBY41, GLTTpra:HIS3-5xELbs-CYC180pr-24xPP7SL(pDB96) 3

DBY91 BY4742, URA3:MET25pr-tdPCP-NLS-tdmRuby3-CYClterm(pDB97) 33
DBY96 DBY80 mated with DBY91 33

pr promoter, term terminator.

In conclusion, we would like to remark the potential use of the
Cyberloop framework for many wider applications involving
optimization and design of other categories of synthetic circuits,
beyond biomolecular controller circuit design. The Cyberloop
also enables the establishment of virtual cell-to-cell communica-
tion which in turn can be used to exhibit pattern formation>> or
to engineer emerging behaviors®®. It may also prove useful in
carrying out tasks requiring division of labor among several sub-
populations in order to achieve complex goals®7>8,

Methods

Growth conditions. Unless otherwise indicated, Escherichia coli were grown in 14
mL tubes (Greiner) in LB (1% tryptone, 0.5% yeast extract, 1% NaCl) and incu-
bated in an environmental shaker (Excella E24, New Brunswick) at 37 °C with
shaking at 230 rpm. Saccharomyces cerevisiae were grown in 14 mL tubes (Greiner)
in SD dropout medium (2% glucose, low fluorescence yeast nitrogen base (For-
Medium), 5 g/L ammonium sulfate, 8 mg/L methionine, pH 5.8) and incubated in
an environmental shaker (Innova 42R, New Brunswick) at 30 °C with shaking at
230 rpm unless otherwise indicated. Ampicillin (Sigma-Aldrich Chemie GmbH)
was used at a concentration of 100 ug/mL.

Plasmid and yeast strain construction. No new plasmids or new S. cerevisiae
strains were constructed in this study. The yeast strain (Fig. 1b) used in this work
has already been constructed and published in®3. As mentioned in33, S. cerevisiae
strains were derived from BY4741 and BY4742 (Euroscarf, Germany). E. coli
TOP10 cells (Invitrogen) were used for plasmid cloning and propagation. Plasmids
were constructed by restriction-ligation cloning using enzymes from New England
Biolabs (USA). All plasmids, strains and related details are summarized in Tables 1
and 2. Strain DBY96 was used for all the experiments in this study.

Culture media and initialization. Yeast cell cultures were started from a —80 °C
glycerol stock at least 24 hours prior to the experiment, and were grown at 30 °C in
SD dropout medium. They were kept at ODg < 0.2 in an incubator at 30 °C for the
last 12 hour leading to the experiment. For each experiment, ~400 pL of cell culture
was centrifuged at 3000 RCF for 6 min, and then sufficient volume of supernatant
was removed to get a concentrated culture with ODggo ~ 4.

Agarose pad preparation. Around 800 pL of 2% agarose (UltraPureT™Agarose,
Invitrogen) in SD medium solution was poured on a microscope slide set-up. The
set-up consisted of two stacks of microscope slides, each stack having two slides,
placed 15 mm apart parallel to each other on another microscope slide, creating a
U-shaped flat bottom well. A 25 mm x 25 mm square cover slip was then gently
placed on top. It was left at room temperature for one hour. Once the agarose
solution solidified, the microscope slide stacks and cover slip were removed, and
the pad was cut on the sides with a scalpel to get ~15mm x 15 mm flat-top pad.
1 uL of concentrated cell culture (as described above) was pipetted at the center of
the pad. This pad was then carefully turned over, avoiding air-pockets, into a
circular tissue culture dish with cover glass bottom (35 mm FluoroDishTM, World
Precision Instruments) lined inside with a strip of damp paper towel to maintain
humidity during the experiment. The dish was closed, sealed with a strip of par-
afilm, then immediately placed onto a custom built sample holder inside the
microscope’s environmental box (Life Imaging Services, Switzerland). Cells were
allowed to settle for one hour before starting experiments. As cells proliferated in
mono-layer under the agarose pad only up to 5-6 hours and our light projection
hardware33 can only target cells proliferating in 2D layer, the experiment duration
was set to four hours.

Imaging and light delivery system. All images were taken under a Nikon Ti-
Eclipse inverted microscope (Nikon Instruments), equipped with a 40X oil-
immersion objective (MRHO01401, Nikon AG, Egg, Switzerland) and CMOS camera

ORCA-Flash4.0 (Hamamatsu Photonic, Solothurn, Switzerland). Following ima-
ging set-ups were used in the microscope:

®  Brightfield imaging - LED 100 (Mirzhauser Wetzlar GmbH ¢ Co. KG)
with diffuser and green interference filter placed in the light path

®  Fluorescence (mRuby3) imaging - Spectra X Light Engine fluorescence
excitation light source (Lumencor, Beaverton, USA), 550/15 nm LED line
from the light source, 561/4 nm excitation filter, HC-BS573 beam splitter,
605/40 nm emission filter (filters and beam splitter acquired from AHF
Analysetechnik AG, Tubingen, Germany)

In all of the experiments in this study, imaging/sampling was done at an interval of
2 min and the total duration of experiment was four hours. At every sampling time,
two brightfield images above and below the focal plane (+5 a.u. Nikon Perfect Focus
System) were acquired, with an exposure of 100 ms each, for cell segmentation and
tracking. Subsequently, five fluorescence images (Z stacks with step size ~ 0.5 um)
were also captured, with an exposure of 300 ms each, for quantification (nascent RNA
count).

The microscope was placed inside an opaque environmental box (Life Imaging
Services, Switzerland), which maintained the temperature inside at 30 °C and also
shielded the cell sample from external light.

A DMD (Digital Micromirror Device) based custom-built blue light projection
set-up, developed in33, was used for single-cell optogenetic stimulation under the
microscope. A neutral density filter (ND 1.3, 25 mm absorptive filter from
Thorlabs) was placed in the light stimulation pathway to reduce the blue light
intensity reaching the cells. An open-source microscope control software
YouScope®® was used to operate and control the microscope as well as the light
projection system.

Workflow between consecutive sampling. In a Cyberloop experiment, the
workflow between consecutive sampling involved the following automated steps/
processes running on a computer system:

1. Capture brightfield and fluorescence images of the cells placed under the
microscope (using YouScope® microscope control software).

2. Segment individual cells in the brightfield image using CellX®0 cell
segmentation tool.

3. For each segmented cell:

i. Assign the segmented cell to its respective unique tracking index/
identifier33¢! in order to track the cell and acquire time trajectory for
that cell.

ii. Using captured fluorescence images, quantify the cellular readout spot
intensity®3, which is proportional to the nascent RNA count of the
segmented cell.

iii. Based on the cellular readout (nascent RNA count), run an stochastic
simulation®! of the biomolecular controller network for a sampling
duration (two minutes), and compute the input blue light intensity for
the segmented cell.

4. Once the input blue light intensities for all segmented cells have been
computed, generate a corresponding input mask image for the light
projection system33.

5. Correct the generated input mask image for optical aberrations in the
projection optics (using calibration data computed just before the
experiment)3?,

6. Project the corrected input mask image onto the cells placed on the sample
plane of the microscope such that each segmented cell receives its
corresponding blue light intensity computed by its own independent
controller simulation in Step 3.iii.

Respective software routines for the above mentioned steps were developed and
run in MATLAB (MathWorks) environment.

Stochastic simulation of biomolecular controllers. All in silico simulations of
biomolecular contollers were run in MATLAB (MathWorks) environment.
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Gillespie’s Stochastic Simulation Algorithm (SSA,>!) was used to simulate a given
biomolecular controller reaction network for every cell individually. At every
sampling time f;, once the cellular readouts (nascent RNA counts) are quantified
from acquired fluorescence images, these computational steps were followed for
each tracked cell:

1. The quantified cellular readout (nascent RNA count) was used to compute
and update propensities of the biomolecular controller reaction network.

2. Gillespie’s SSA was applied for the image sampling time interval (two
minutes) to obtain the controller species abundance.

3. This abundance value was then used to determine the blue light intensity
I(t;) the corresponding cell should receive in the next cycle.

In this way, the controller output (blue light intensity I(t)) was updated once a
new measurement (microscopy images) became available, and was held constant
between measurement times. Due to an upper power limit on the light intensity
output from the DMD projector, the applied light intensity at time f; was
min(I(#), 1), where one corresponds to the maximum (scaled) light intensity that
DMD projector can provide®3.

Mean and Steady-state calculations. When selecting a biological system for our
study, we sought to use a highly stochastic system that will allow us to explore the
impact of our controller in highly noisy environments. Therefore our target bio-
logical system network (Fig. 1b) was centered around transcription which occurs in
highly random bursts3. As a result the controlled biological molecule “nascent
RNA” also displays significant bursting behavior and highly stochastic dynamics
(Supplementary Fig. 5) as desired. For such systems it is the expected value of the
signal that is guaranteed to track the reference under antithetic integral feedback
control?’. There are two ways one can check this: by looking at sample averages of
multiple traces or (for an ergodic system) by looking at time averages. We chose
the former, and that is why we use average attributes in our experimental results.
Although we are plotting trace averages, we are still performing control at the
single-cell level, which gives dramatically better performance than an alternative
scheme that uses the population average for feedback control.

All experiments in this study are 4 hours long, and with a sampling/imaging
period of 2 min we get 121 sample-points throughout the duration of the
experiment. All time-course mean/average attributes, for example, average nascent
RNA count (average output), etc., are computed taking average over all the cells
(which were tracked/targeted during the full experimental duration) for each
sample-points. Let us consider that a total of N individual cells were tracked/
targeted in an experiment. Given the output time trajectory for cell n as
{$uio k=1,2, ..., 121}, the average/mean trajectory is given by:

N
Mean output trajectory, M = {@,k =12,... ,121}‘ 1

We further filter this mean trajectory with five time-point averaging filter. This
filtered trajectory has been used to display mean attributes in all the figures, where
applicable, presented in this study.

Based on the experimental data, we consider all samples from sample-point 30
(60 min) to sample-point 101 (202 min), if not mentioned otherwise, for the
calculation of steady-state attributes such as mean steady-state error. We use the
following steady-state calculations in our analysis:

i
2 Suk

Mean steady-state output value for n'" cell, m, = - 1 )
j—i
Zl::l m,
Mean steady-state output value for all cells, M = - (3)
Mean steady-state output error, E, = M — ref, (4)

Y 100, (5)
ref
where (i, /) = (30, 101) defines the steady-state time points, and ref represents the
set-point reference value.

For the steady-state distribution of controller species abundance (for example,
Fig. 3f, right), we first compute the mean controller species count for each cell at
steady state sample-points, and then we use these respective mean counts for all the
tracked/targeted cells to get the required distribution.

Percentage mean steady-state output error, E, % =

Frequency response computation (MATLAB). Given, single-cell output (nascent
RNA count) trajectories {S,,n =1, ... , N} at steady-state corresponding to N cells
in an experiment

Sy = lswk =123, ®)

where s, is the measured nascent RNA count of nth cell at time #.
For n=1, ..., N, the corresponding Discrete Fourier Transform (DFT) of each
trajectory can be computed as

DFT, = fft(S,), (7)

where fft(- ) is an inbuilt MATLAB function which computes the DFT of a given
signal. This DFT,, is the frequency response corresponding to nth cell output
trajectory.

Next, the average frequency response of all single-cell trajectories in an
experiment can be computed by simply taking the mean of the individual DFT's of
all tracked cells.

Average frequency spectrum = mean(DFT,,n =1, ... ,N) 8)

Results - analysis and formatting. All the results/data in this study were analyzed
and plotted using MATLAB R2018a (academic use) platform. These MATLAB
generated plots/graphs were finally structured and formatted together as different
figures of this article using Inkscape (v0.92, open source).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Raw data (MATLAB .mat files) for all results/figures presented in this article, including
Supplementary figures, are available in the Source Data file. Any additional data are
available upon request. Source data are provided with this paper.

Code availability

The custom code used in this study is run on an integrated experimental set-up and
hardware33, and can not be executed without the full associated hardware-software suite.
Code and hardware configuration files are available upon request.
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