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Abstract: Mantle cell lymphoma (MCL) is a subtype of mature B-cell non-Hodgkin lymphoma
characterized by a poor prognosis. First, we analyzed a series of 123 cases (GSE93291). An algorithm
using multilayer perceptron artificial neural network, radial basis function, gene set enrichment
analysis (GSEA), and conventional statistics, correlated 20,862 genes with 28 MCL prognostic genes
for dimensionality reduction, to predict the patients’ overall survival and highlight new markers.
As a result, 58 genes predicted survival with high accuracy (area under the curve = 0.9). Further
reduction identified 10 genes: KIF18A, YBX3, PEMT, GCNA, and POGLUT3 that associated with a
poor survival; and SELENOP, AMOTL2, IGFBP7, KCTD12, and ADGRG2 with a favorable survival.
Correlation with the proliferation index (Ki67) was also made. Interestingly, these genes, which
were related to cell cycle, apoptosis, and metabolism, also predicted the survival of diffuse large
B-cell lymphoma (GSE10846, n = 414), and a pan-cancer series of The Cancer Genome Atlas (TCGA,
n = 7289), which included the most relevant cancers (lung, breast, colorectal, prostate, stomach,
liver, etcetera). Secondly, survival was predicted using 10 oncology panels (transcriptome, cancer
progression and pathways, metabolic pathways, immuno-oncology, and host response), and TYMS
was highlighted. Finally, using machine learning, C5 tree and Bayesian network had the highest
accuracy for prediction and correlation with the LLMPP MCL35 proliferation assay and RGS1 was
made. In conclusion, artificial intelligence analysis predicted the overall survival of MCL with high
accuracy, and highlighted genes that predicted the survival of a large pan-cancer series.

Keywords: mantle cell lymphoma; gene expression; MCL35 assay; artificial intelligence; machine
learning; deep learning; artificial neural network; multilayer perceptron; immuno-oncology;
overall survival

1. Introduction

Mantle cell lymphoma (MCL) is a hematological neoplasia derived from B-lymphocytes,
and a subtype of non-Hodgkin lymphomas (NHL) [1]. MCL represents around 7% of adult
NHL, and has an incidence of four to eight cases per million people per year [2–6]. MCL
affects white men, with a median age at diagnosis of 65 years. The disease frequency
increases with age [7], and the incidence of this disease is on the rise in Western and
developed countries [7].

MCL is a B-cell lymphoma of small and irregular cells (centrocytes) [8]. The im-
munophenotype of the classic variant is characterized by the expression of B-cell markers
(CD19, CD20), CD5, SOX11, and cyclin D1 due to the characteristics translocation t(11; 14)
(q13; q32) between CCND1 and IGH locus [9–11]. MCL expresses high levels of IgM and
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IgD, with a lambda light chain restriction in 80% of the cases [8,12]. At diagnosis, most of
the patients present with an advanced disease, and lymphadenopathy. Primary extranodal
disease is found in 20% of cases, and the gastrointestinal site in the form of lymphomatous
polyposis is a characteristic location [13–15].

MCL has traditionally been considered a very aggressive and incurable lymphoma.
MCL is associated with a median survival of 3–5 years, with most patients not being cured
even with the newer therapeutic modalities [1,8,16]. The “leukemic” variant, which is
SOX11-negative, is clinically indolent [17]. Several studies have focused on the identifica-
tion of prognostic markers to identify patients with a higher probability of an aggressive
disease [18–27]. Among them, the International Prognostic Index (IPI), MCL International
Prognostic Index (MIPI), and proliferation index (Ki67) are extensively used [18,22]. The
pathobiology of MCL comprises several pathways, mechanisms, and target genes that
contribute to not only in the pathogenesis but also to aggressiveness and clinical evolution.
The major oncogenic driver is CCND1 gene of the cell cycle pathway. Other relevant genes
are involved in cell cycle (CCND2, CCND3, MYC), response to DNA damage (ATM, TP53),
chromatin modification (WHSC1, MLL2, MEF2B), apoptosis (BCL2, BIRC3, TLR2), and
NOTCH signaling (NOTCH1 and NOTCH2), NF-kB and PI3K/AKT signaling pathways,
among others [8,28–31].

Neural networks are a favored analytical method for numerous predictive data
mining applications because of their power, adaptability, and ease of usage. Predictive
neural networks are specially valuable in applications where the underlying process is
complex [32–43], such as biological systems [44]. Both the multilayer perceptron (MLP)
and radial basis function (RBF) network have a feedforward architecture, because the
connections in the network flow forward the input layer (predictors) to the output layer
(responses). The hidden layer contains unobservable nodes or units. The value of each
hidden unit is some function of the predictors. Both are supervised learning networks that
perform prediction and classification. Your choice of strategy will depend on the sort of
data and the level of complexity you look for to reveal; while the MLP strategy can discover
more complex connections, the RBF method is faster [32,33]. We have recently shown
that neural networks can predict the prognosis of diffuse large B-cell lymphoma (DLBCL)
and follicular lymphoma (FL) [35,37,45], and also can predict the different subtypes of
non-Hodgkin lymphomas with high accuracy [46]. In this research we focused on MCL and
the workflow algorithm was improved to handle this type of lymphoma more efficiently:
the neural networks not only predicted the overall survival outcome and identified the
most relevant genes, but the results were modulated by the inclusion of known prognostic
genes and immune oncology pathways.

The main aim of the work was to use artificial neural networks (ANN) analyses and
other machine learning techniques to analyze the gene expression of MCL and identify
relevant prognostic markers. The principal conclusion was that ANN provided a novel
analysis technique that not only confirmed known prognostic markers but also highlighted
new potential pathological mechanisms.

2. Materials and Methods
2.1. Hardware

All the analyses were performed on a desktop workstation using an AMD Ryzen 7,
3700X, 8-core, processor at 2.59 GHz, 16.0 GB RAM, and a Nvidia GeForce GTX 1650 Turing
architecture, 4 GB, GPU.

2.2. Software

Several software were used for data processing, preanalysis, full-analysis, and valida-
tion including EditPad Lite, Microsoft Excel, R, R Studio, IBM SPSS Statistic and Modeler,
GSEA, and JMP.

The details of the software were as follows:
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• EditPad Lite 8 (Just Great Software Co. Ltd., Rawai Phuket 83130, Thailand; page URL:
http://www.just-great-software.com/aboutjg.html (accessed on 29 August 2021));

• Microsoft Excel 2016 [(16.0.5173.1000) MSO (16.0.5173.1000) 64-bit, Microsoft K.K.,
Shinagawa, Tokyo, Japan; page URL: https://www.microsoft.com/ja-jp/microsoft-36
5/excel (accessed on 29 August 2021)];

• R 3.6.3 (page URL: https://www.r-project.org/ (accessed on 29 August 2021) [47]);
• R Studio 1.3.959 (R Studio, Boston, MA 02210, USA; page URL: https://www.rstudio.

com/products/rstudio/#rstudio-desktop (accessed on 29 August 2021));
• IBM SPSS Statistics 26 and Modeler 18 (IBM Japan Ltd., Tokyo 103-8510, Japan; page

URL: https://www.ibm.com/jp-ja/analytics/spss-statistics-software (accessed on 29
August 2021));

• Gene Set Enrichment Analysis (GSEA) 4.1.0 (UC San Diego, Broad Institute, Cam-
bridge, MA 02142, USA; page URL: http://www.gsea-msigdb.org/gsea/index.jsp (ac-
cessed on 29 August 2021) [48,49]); https://github.com/GSEA-MSigDB/gsea-desktop
(accessed on 8 December 2021);

• JMP Pro 14 Statistical Discovery (SAS Institute Inc., Cary, NC 27513-2414, USA; page
URL: https://www.jmp.com/ja_jp/home.html (accessed on 29 August 2021));

• Morpheus matrix visualization and analysis software (Broad Institute, Cambridge,
MA 02142, USA), https://software.broadinstitute.org/morpheus) (accessed on 29
November 2021);

• String (version 11, String consortium 2020) [19]; https://string-db.org/ (accessed on
29 November 2021).

2.3. Predictive Genes and Artificial Neural Network Analysis
2.3.1. Gene Expression Series of Mantle Cell Lymphoma

The gene expression data of the MCL series GSE93291 were downloaded from the
gene expression omnibus (GEO) database [50], which is located at the National Center for
Biotechnology Information (NCBI) repository [page URL: https://www.ncbi.nlm.nih.gov/
(accessed on 29 August 2021)]. This database was last updated on 25 March 2019 (contact
name: Professor Louis M. Staudt, National Cancer Institute, Lymphoid Malignancies
Branch laboratory, Bethesda, MD 20892, USA).

The study involved retrospective gene expression profiling of samples from patients
with MCL, confirmed by expert pathology consensus review. This series was created by
the Lymphoma/Leukemia Molecular Profiling Project (LLMPP) [50]. These biopsies, with
tumor content ≥ 60%, were obtained from untreated patients, with no history of previous
lymphoma, who subsequently received a broad range of treatment regimens. The biopsies
contributing to the set included 80 biopsies described in Rosenwald et al. [51] (classified
based on established morphologic and immunophenotypic criteria, with overexpression
of cyclin D1 (CCND1) mRNA (in most cases, immunohistochemistry demonstrated over-
expression of cyclin D1 also on the protein level), 3.8 male/female ratio, median age of
62 years (range 38 to 93), multiagent treatment, and median survival 2.8 years) [51], along
with additional biopsies gathered from the clinical sites of the LLMPP. The treatments of the
patients was multiagent chemotherapy (R-CHOP, R-CHOP-like), six received no treatment,
and no information on treatment was available for two patients.

The gene expression array used in this series was the HG-U133 plus 2 platform
(GPL570, Affymetrix, Santa Clara, CA, USA). The GeneChip™ Human Genome U133
Plus 2.0 Array (#900466, ThermoFisher Scientific, Affymetrix Japan K.K., Tokyo, Japan),
which is the first and most comprehensive whole human genome array. It has a complete
coverage of the Human Genome U133 Set, plus 6500 additional genes for analysis of over
47,000 transcripts. The design and performance of the chip can be accessed at the following
webpage: https://www.thermofisher.com/order/catalog/product/900466 (accessed on 29
December 2021).

Total RNA from MCL specimens of frozen samples from 123 patients had been ex-
tracted using the FastTrack kit from Invitrogen (Thermo Fisher Scientific Corp., Waltham,
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MA 02451, USA), and biotinylated cRNA had been prepared according to the standard
Affymetrix protocol from 1 microg mRNA (Expression Analysis Technical Manual, 2001,
Affymetrix). The Affymetrix hybridization protocol was used: following fragmentation,
15 micrograms of cRNA were hybridized for 16 h at 45 ◦C on arrays from Affymetrix.
Arrays were washed and stained in the Affymetrix Fluidics Station 400. The Affymetrix
scanning protocol was used and the scanning had been performed by the Affymetrix
3000 scanner. The data had been analyzed with Microarray Suite version 5.0 (MA S 5.0)
using Affymetrix default analysis settings and global scaling as normalization method.
The trimmed mean target intensity of each array was arbitrarily set to 500. The data was
normalized and log2 transformed. The original series matrix files [50] provided by the
LLMPP were used for the artificial neural network analysis. The gene expression values
were collapsed to symbols applying the max probe values, using the GSEA software and
the gene cluster text file (*.gct) [52,53].

2.3.2. Identification of Prognostic Genes for Overall Survival

Eighty-six prognostic and pathogenic genes specific for mantle cell lymphoma (MCL)
were selected from previous publications [1,8,17,22,28–31,50].

Among these 86 genes, 28 genes with prognostic value for overall survival in this
GSE93291 series were selected. The selection depended on the presence of a significant
p value in the Kaplan–Meier with log-rank test, after finding adequate cut-off for the
stratification into low vs. high groups (Table 1).

Table 1. Prognostic and pathogenic genes of mantle cell lymphoma.

Genes (n = 86)

ADAMDEC1, ADGRG2, AKT1, AKT3, AMOTL2, ARID2, ATM, BCL2, BCL2L11, BCL6, BCOR,
BIRC3, BMI1, BORCS8_MEF2B, BTK, CARD11, CASP8, CCND1, CCND2, CCND3, CD5, CD79A,

CDK4, CDKN1B, CDKN2A, CDKN2C, CFLAR, CHEK1, CHEK2, CUL4A, CXCL12, CXCR4,
DAZAP1, GCNA, HNRNPH1, IGFBP7, ING1, KCTD12, KIF18A, KMT2C, KMT2D, LYN, MDM2,
MIR17HG, MKI67, MTOR, MYC, MYCN, NFKB1, NFKBIE, NOTCH1, NOTCH2, NSD2, PALLD,

PAX5, PDGFA, PEMT, PIK3CA, PIK3CD, POGLUT3, PTEN, PTK2, RAB13, RB1, RGS1, RPGRIP1L,
RRAS, SAMHD1, SELENOP, SMARCA2, SMARCA4, SMARCB1, SOX11, SYK, SYNE1, TAMM41,

TERT, TET2, TMEM176B, TNFAIP3, TP53, TRAF2, UBR5, XIAP, YBX3, and ZCCHC4
Eighty-six genes with predictive and pathogenic role in MCL were selected from the literature. These genes
were later tested for overall survival in the GSE93291 series. Only significant ones were chosen for the neural
network analysis.

The cut-offs were found using SPSS software on the collapsed to symbols gene ex-
pression values dataset (i.e., each gene had only one expression value). The visual binning
function created new variables based on grouping contiguous values into a limited number
of distinct categories. The cutpoints were created using equal percentiles, three cutpoints
and a width of 25%. After visualization of the overall survival plots with the Kaplan–Meier
and log-rank test, the most adequate cut-off value was identified. Then, the Cox regression
calculated the hazard-risk (contrast: indicator; reference category: first). Based on the p val-
ues (Table 2), the most relevant predictors for overall survival were MKI67 (p = 6.6 × 10−9,
hazard risk = 4.4), CDK4 (p = 3.2 × 10−8; HR = 4.0), CHEK1 (p = 0.2 × 10−5, HR = 3.0),
CCND1 (p = 0.4 × 10−5, HR = 3.1), and CDKN2C (p = 0.8 × 10−5, HR = 2.8). These genes
belonged to the cell cycle and apoptosis pathways.
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Table 2. Pathogenic genes of mantle cell lymphoma (GSE93291 series) (Method 1).

Gene Keyword Function

Correlation with the Overall
Survival of MCL

beta p HR

BCL2L11 Apoptosis B-cell apoptotic process 1.0 <0.01 2.7

BMI1 Regulation of gene
expression

Component of the Polycomb group (PcG) multiprotein PRC1-like
complex, negative regulation of gene expression, epigenetic −0.5 0.042 0.6

BORCS8_MEF2B Lysosomes BORC complex, role in lysosomes movement and localization at the cell
periphery −1.0 <0.01 0.4

CCND1 Cell cycle Positive regulation of G1/S transition of the mitotic cell cycle 1.1 <0.01 3.1

CCND2 Cell cycle, apoptosis Positive regulation of G1/S transition of the mitotic cell cycle, negative
regulation of apoptosis −0.7 0.018 0.5

CDK4 Cell cycle, apoptosis Negative regulation of G1/S transition of the mitotic cell cycle, positive
regulation of apoptotic process 1.4 <0.01 4.0

CDKN2A Cell cycle, NF-kB, apoptosis Negative regulation of G1/S transition of the mitotic cell cycle, negative
regulation of NF-kB, positive regulation of apoptotic process 1.0 <0.01 2.7

CDKN2C Cell cycle Negative regulation of G1/S transition of the mitotic cell cycle 1.0 <0.01 2.8

CHEK1 Cell cycle, DNA repair,
apoptosis

Positive regulation of cell cycle, DNA damage checkpoint and repair,
apoptosis 1.1 <0.01 3.0

CHEK2 Cell cycle, DNA repair,
apoptosis

Positive regulation of cell cycle, DNA damage checkpoint and repair,
apoptosis 0.8 <0.01 2.1

CXCL12 Chemotaxis, apoptosis Cell chemotaxis, defense response, negative regulation of apoptotic
process, DNA damage −0.6 0.014 0.5

DAZAP1 Cell differentiation and
proliferation

Cell differentiation, cell proliferation, positive regulation of mRNA
splicing 0.8 0.016 2.3

ING1 Cell cycle Negative regulation of cell growth, cooperates with TP53 −1.1 <0.01 0.3

MKI67 Cell proliferation rRNA transcription 1.5 <0.01 4.4

MYC Cell proliferation
Transcription factor that binds DNA and activates transcription of

growth-related genes (positive regulation of gene expression), negative
regulation of apoptotic process

0.9 <0.01 2.5

MYCN Gene expression Regulation of gene expression, DNA-binding −0.5 0.052 0.6

NOTCH1 Multiple negative
regulations

Affects the implementation of differentiation, proliferation, angiogenesis,
and apoptotic programs. Multiple negative regulations −0.8 <0.01 0.5

NOTCH2 Multiple regulations Affects the implementation of differentiation, proliferation and apoptotic
programs 0.6 0.020 1.8

NSD2 B-cell development
Histone methyltransferase, B-cell development (B1), and B2 activation,

humoral immune response, isotype class switch recombination, germinal
center formation

1.0 <0.01 2.7

PAX5 B-cell development The commitment of lymphoid progenitors to B-lymphocyte lineage,
promotes development of the mature B-cell stage. −0.7 0.010 0.5

PIK3CA ERBB2 signaling, apoptosis Cell migration, ERBB2 signaling pathway, negative regulation of
apoptosis, 0.5 0.042 1.7

PIK3CD B-cell development and
function

Mediates immune responses. Contributes to B-cell development,
proliferation, migration, and function. Required for B-cell receptor (BCR)

signaling
0.5 0.025 1.7

PTEN Cell cycle, tumor suppressor
gene Negative regulation of G1/S transition of the mitotic cell cycle −0.8 0.012 0.5

PTK2 Multiple regulations
Regulation of cell migration, adhesion, cell cycle progression, cell
proliferation, apoptosis, MAPK/ERK1 pathway, MDM2 and TP53

recruitment
0.5 0.035 1.7

RB1 Cell cycle, tumor suppressor
gene

Tumor suppressor that is a key regulator of the G1/S transition of the
cell cycle −0.5 0.043 0.6

SYNE1 Cytoskeleton Cytoskeleton-nuclear membrane anchor activity, maintaining of
subcellular spatial organization −0.6 <0.01 0.5

TERT Telomerase, multiple
functions

Telomerase, negative regulation apoptosis, positive regulation G1/S
transition of the mitotic cell cycle, negative regulation of gene expression 0.7 <0.01 2.0

XIAP
Multiple functions,

regulation of caspases and
apoptosis

Multi-functional protein that regulates not only caspases and apoptosis,
but also modulates inflammatory signaling and immunity, copper

homeostasis, mitogenic kinase signaling, cell proliferation, as well as cell
invasion and metastasis

−0.8 <0.01 0.5

From an initial set of 86 genes with known pathogenic role in MCL, a final set of 28 genes were selected because
their predictive value for overall survival using a Kaplan–Meier and log-rank test in the GSE93291: P, p value; HR,
hazard risk. The gene information is based on UniProt [54], and Genecards [55].
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2.3.3. Description of the Basic Neural Network Architecture

The multilayer perceptron (MLP) analysis was performed as previously
described [35–37,45,56,57]. The architectures are shown in Figures 1–3, and the analy-
sis outline in Figure 4. The MLP procedure produces a predictive model for one or more
dependent (target) variables based on the values of the predictor variables. The MLP is
a feedforward architecture, the input layer contains the predictors (our gene expression
data), the hidden layer contains unobservable nodes or units, and the output layer contains
the target variables. The target variables were the overall survival outcome as dead vs.
alive, and the gene expression of each prognostic and pathogenic gene as a categorical
variable (high vs. low expression). Figure 5, on the top right side, shows the basic neural
network architecture. Of note, the basic architecture of the radial basis function (RBF) is
like the MLP, but only one hidden layer characterizes it. This research used a simple type of
artificial neural network, but solid enough to provide a “basic analysis unit” that conforms
a more complex analysis algorithm as shown in Figure 5. A thorough description is shown
in our recent publication of artificial analysis of gene expression data of diffuse large b-cell
lymphoma (DLBCL) and non-Hodgkin lymphomas [46,58].

2.3.4. Parameters of the Neural Network

A thorough description of the artificial neural network procedure is described in our
recent publication [58]. The predictors (covariates) were the 20,862 genes of the array.
The covariates were rescaled by default to improve network training. All rescaling was
performed based on the training data, even if a testing or holdout sample is defined.
The method for rescaling was the standardized (subtract the mean and divide by the
standard deviation (x-mean/s)). Other available methods for rescaling were the normalized
((x − min)/(max − min)), adjusted normalized ([2 × (x − min)/(max − min)] − 1), or none.
The cases were randomly assigned to the training set, testing set, and holdout according
to the relative number of cases, being 70%, 30%, and 0%, respectively. To avoid bias, each
individual neural network underwent a random assignation of the samples into the training
and testing sets.

The “best” architecture design for the analysis was searched and finally selected [58,59].
The architecture can be selected automatically (with a minimum number of units in the
hidden layer of 1 and a maximum of 50) or can be a custom architecture. A custom
architecture selection provides control over the hidden and output layers and can be most
useful when you know in advance what architecture you want or when you need to tweak
the results of the automatic architecture selection.

In a custom architecture, the number of hidden layers could be one or two. The
number of units of the hidden layer could be automatically computed or custom. The
activation function of the hidden layers was the hyperbolic tangent (γ(c) = tanh(c) = (ec −
e−c)/(ec + e−c)), or sigmoid (γ(c) = 1/(1 + e−c)).

The activation function of the output layer was the identity (γ(c) = c), softmax (γ(ck) =
exp(ck)/Σjexp(cj)), hyperbolic tangent, or sigmoid. Of note, the activation function chosen
for the output layer determined which rescaling methods were available. The rescaling of
scale dependent variables was standardized ((x − mean)/s), normalized ((x − min)/(max
− min)), adjusted normalized ([2 × (x − min)/(max − min)] − 1), or none.

Several types of training were available: the batch, online, and mini-batch. The
optimization algorithm included the scaled conjugate gradient, and gradient descent. The
training options were the following: initial lambda (0.0000005); initial sigma (0.00005);
interval center (0); and interval offset (±0.5).

The output included the network structure and network performance.
Several parameters displayed the network performance: model summary; classifi-

cation results; receiver operating characteristic ROC curve; cumulative gains chart; lift
chart; predicted by observed chart; and the independent variable importance analysis.
ROC analysis displayed a curve for each categorical dependent variable and category and
the area under each curve [35–37,45,46,56,57]. The predicting variables (predictors) were
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ranked according to their normalized importance for predicting the target (dependent)
variable and for determining the neural network. This analysis performed a sensitivity
analysis that is based on the combined training and testing samples or only on the training
sample if there is no testing sample [32,33,60].

The predicted value or category and the predicted pseudo-probability for each depen-
dent variable were saved. The synaptic weight estimates were exported to an XML file.

If it was necessary to replicate the results exactly, the same initialization value for the
random number generator, data order, and variable order should be used, in addition to
using the same procedure settings.

The setup of a radial basis function (RBF) is similar to the MLP. In a RBF, the activation
function for hidden layer was normalized or ordinary radial basis function. Figures 1 and 2
show the general architecture for MLP and RBF [32,33,60]. Figure 3 shows the sensitivity
analysis [32,33,60].

2.4. Gene Set Enrichment Analysis (GSEA)

GSEA is a method that determines whether a priori defined set of genes shows sta-
tistically concordant differences between two “biological” states (e.g., phenotypes) [48,49].
Three types of files were necessary to run the application: (1) the gene cluster text file
(*.gct) with the GSE93291 gene expression dataset; (2) the phenotype data as a categorical
class (e.g., dead/alive) file format (*.cls); and (3) the gene set database as a gene matrix file
format (*.gmx). The GSEA parameters were the following [37]: number of permutations
(1000); collapse to gene symbols; permutation type (phenotype); chip platform (GPL570,
HG-U133 Plus 2); enrichment statistic (weighted); metric for ranking genes (signal2noise);
gene list sorting mode (real); gene list ordering mode (descending); max size (500); and min
size (15) [37].

Figure 1. General architecture for multilayer perceptron (MLP) networks. A neural network is a
set of non-linear data modeling tools consisting of input layers plus one or two hidden layers. The
multilayer perceptron procedure is a feedforward architecture. In comparison to RBF, the MLP con
find more complex relationships but it is slower to compute. The MLP network is a function of one or
more predictors (also called inputs or independent variables) that minimizes the prediction error of
one or more target variables (also called outputs) [32,33,60].
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Figure 2. General architecture for radial basis function (RBF) networks. A radial basis function (RBF)
network is a feed-forward, supervised learning network with only one hidden layer, called the radial
basis function layer [32,33,60].

Figure 3. Sensitivity analysis. Independent variable importance analysis. Performs a sensitivity anal-
ysis, which computes the importance of each predictor in determining the neural network [32,33,60].
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Figure 4. Summary of the analysis methodology. The analysis was comprised of two methods, one
based on the analysis of 20,862 genes and a second based on 10 immuno-oncology panels. This
research used artificial neural networks and several machine learning techniques to identify genes
associated with the overall survival of the patients. Correlation with known MCL pathogenic genes
and the LLMPP MCL35 proliferation assay was also made.

2.5. Summary of the Research Analysis Algorithm

The algorithms for the analysis of the gene expression data of MCL are shown in
Figures 5–8.

2.5.1. Algorithm Based on the Input of 20,862 Genes (Method 1)

First, all the genes of the array were used as predictors (input layer) for the target
variables (output layer) of overall survival (dead/alive) and for the 28 genes with prognostic
value in MCL (high/low expression) using an artificial neural network. The neural network
included both a multilayer perceptron and a radial basis function analysis for each target
variable (Figure 5). In the output of each individual neural network, all the genes of the
array were ranked according to their normalized importance for predicting the target
variable. Then, the genes with a normalized importance above 70% were selected. In
addition, the normalized importance of all the neural networks were averaged, the genes
ranked according to the averaged normalized importance for prediction, and the top 1%
genes were selected. As a result, the initial set of 20,862 genes was reduced to a smaller
number (n = 1394).

Next, an MLP was performed using the 1394 genes as predictors (input layer) of the
overall survival outcome (dead/alive, output layer); this analysis was repeated 20 times,
and the top 4 MLPs with higher area under the curves were selected. The normalized
importance of each 1394 were averaged between the four results and ranked from higher to
lower values. Then, using multiple MLP analysis, the minimum number of genes (starting
from the one with higher normalized importance) that provided the highest area under the
curve was found (n = 58) (Figure 6).
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Figure 5. Artificial neural network analysis for the prediction of the overall survival of mantle cell
lymphoma (Method 1). From a start point of 20,862 genes, using several neural networks, a correlation
between the overall survival outcome and several mantle cell lymphoma pathogenic genes managed
to reduce to a final set of 10 genes. These 10 genes correlated with the survival of the patients, but also
with the proliferation index as expressed by MKI67 gene: MLP, multilayer perceptron; RBF, radial
basis function; OS, overall survival; DA, dead/alive; GSEA, gene set enrichment analysis; AUC, area
under the curve.
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Figure 6. Multilayer perceptron analysis using the selected 58 genes (Method 1 continuation). As
shown in Figure 4, the neural networks reduced the initial input of 20,862 genes to 58 predictive genes.
Next, the overall survival outcome (dead/alive) was predicted using 58 genes and a neural network.
Several parameters display the network performance: model summary; classification results; receiver
operating characteristic ROC curve; cumulative gains chart; lift chart; predicted by observed chart;
and the independent variable importance analysis. ROC analysis displays a curve for each categorical
dependent variable and category and the area under each curve [34–36,44,45,55,56]. The genes were
ranked according to their normalized importance for predicting the overall survival outcome as a
dichotomic variables (dead vs. alive). A GSEA analysis confirmed the association toward a dead
outcome. The characteristics of the network were as follows. Case processing: training n = 93 (76%);
testing n = 30 (24%). Units n = 58. Rescaling = standardized. Hidden layer: number = 1; units = 2;
activation function = hyperbolic tangent. Output layer: dependent variables = 1 (overall survival
outcome dead/alive); units = 2, activation function = softmax, error function = cross-entropy. Model
summary: training, cross-entropy error = 30.8, 14% of incorrect predictions; testing, cross-entropy
error = 14.5, 23% of incorrect predictions. Classification: training, 86% overall correct (93.8% alive,
82% dead); testing, 77% overall correct (82% alive, 74% dead). Area under the curve = 0.9. Top 10
most relevant genes were RAB13, ZFYVE19, FANCG, KIF18A, RPGRIP1L, YBX3, ZCCHC4, NCLN,
OLFM1, and PDZRN3. A complete description of the multilayer perceptron is present in our recent
publication (Carreras J. et al. Artificial Neural Networks Predicted the Overall Survival and Molecular
Subtypes of Diffuse Large B-Cell Lymphoma Using a Pan-cancer Immune-Oncology Panel. Cancers
2021, 13, 6384; https://doi.org/10.3390/cancers13246384) [58].

https://doi.org/10.3390/cancers13246384
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Figure 7. Overall survival analysis (Method 1 continuation). Because of the neural network analysis
and dimensional reduction (Figures 4 and 5), a final set of 10 genes with overall survival relationship
was highlighted. These genes not only correlated with the clinical outcome but also with the
proliferation index, as expressed by MKI67. Of note, ki67 is a marker routinely used for prediction in
mantle cell lymphoma, and the most relevant marker of the LLMPP MCL35 proliferation assay.
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Figure 8. Artificial neural network analysis for predicting of the overall survival of mantle cell
lymphoma using several immune oncology panels (Method 2). Overall survival was predicted
using 10 immuno-oncology panels. After several multilayer perceptron analyses, a set of 125 genes
predicted the overall survival outcome (dead/alive) with high accuracy. Among the most relevant
genes, TYMS was highlighted. GSEA analysis had a sinusoidal-like, with some genes enriched
toward dead or alive survival outcomes.

Finally, a Cox regression for overall survival (backward conditional) reduced the
list to 19 genes. From these 19 genes, additional analyses included Kaplan–Meier with
log-rank test for overall survival using cutoffs (Figure 7), analysis of other types of cancer
(“pan-cancer analysis”) (Figures 9 and 10), other machine learning (Figures 11–13), and
immunohistochemistry for RGS1 (Figure 14).
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Figure 9. Overall survival in a pan-cancer series. The multilayer perceptron using the 20,862 genes
identified a final set of 19 genes with prognostic value in mantle cell lymphoma. As a start point of the
gene expression of the set of 19 genes and using a risk-score formula [36,46], we confirmed that these
genes also contributed to the overall survival of diffuse large B-cell lymphoma (DLBCL). Additionally,
these genes could also predict the overall survival of a pan-cancer series of 7289 cases from The
Cancer Genome Atlas (TCGA) program that included the most frequent human cancers. Of note, the
weight and direction of the overall survival association was different in each subtype of neoplasia.
Risk scores were calculated by multiplying the beta values of the multivariate Cox regression analysis
for overall survival of each gene with the values of the corresponding gene expressions, as previously
described [58].
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Figure 10. Overall survival in a pan cancer series.
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Figure 11. Bayesian network. A Bayesian network successfully modeled the overall survival outcome
(dead/alive) using the 19 genes, previously identified in the neural network analysis (Figure 5,
Method 1). The Bayesian network enables you to build a probability model by combining observed
and recorded evidence with “common-sense” real-world knowledge to establish the likelihood of
occurrences by using seemingly unlinked attributes. The node focuses on Tree Augmented Naïve
Bayes (TAN) and Markov Blanket networks that are primarily used for classification. This graphical
model shows the variables (nodes) and the probabilistic, or conditional, independencies between
them. The links of the network (arcs) may represent causal relationships, but the links do not necessary
represent direct cause and effect. This Bayesian network is used to calculate the probability of a patient
of being alive or dead, given the gene expression of 19 genes, if the probabilistic independencies
between the gene expression and the overall survival outcome as displayed on the graph hold true.
Bayesian networks are very robust in case of missing data.

2.5.2. Algorithm Based on the Input of 10 Immune Oncology Panels (Method 2)

In comparison to the first algorithm in which the whole genes of the array were used
(n = 20,862), this second algorithm used 9 different immune oncology panels as input
data (7817 genes in total) (Figure 8). Nine individual MLP analysis for the prediction of
overall survival outcome (dead/alive) were performed, and the genes with a normalized
importance above 70% in each panel were pooled (n = 125). A GSEA analysis confirmed the
association of these genes towards the dead or alive overall survival outcome (phenotype).
Next, an additional MLP analysis confirmed the prediction of the overall survival outcome
and ranked the 125 genes according to their normalized importance. The top genes were
later tested for conventional overall survival analysis.

2.6. Conventional Statistical Analyses

Traditional statistics calculated the overall survival analyses. Overall survival was
calculated from time of diagnosis to the last follow-up time, and recorded as alive or
dead (event), following the criteria of Cheson B. D. [61,62]. Comparison between groups
was performed using Kaplan–Meier analysis and the log-rank test. The Breslow and
Tarone–Ware tests were also used. The Cox regression (with the method enter or backward
conditional) was used to calculate the hazard-risks and the 95% confidence intervals. A
p value less than 0.05 was considered statistically significant.

In case of a neural network analysis, poor prognosis/survival corresponds to the
cases whose overall survival event was dead. In case of an overall survival analysis using
the Kaplan–Meier test, poor prognosis corresponds to the group with lower cumulative
survival proportion in the plot.
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Figure 12. C5.0 decision tree model. A decision tree successfully modeled the overall survival
outcome (dead/alive) using the 19 genes, previously identified in the neural network analysis
(Figure 5, Method 1). This model uses the C5.0 algorithm to build either a decision tree or a rule set. A
C5.0 model works by splitting the sample based on the field that provides the maximum information
gain. Each subsample defined by the first split is then split again, usually based on a different field,
and the process repeats until the subsamples cannot be split any further. Finally, the lowest-level
splits are reexamined, and those that do not contribute significantly to the value are removed. In
this model, the target field (variable) must be categorical (i.e., nominal or ordinal, such as de overall
survival outcome as dead vs. alive). The input fields (predictors) can be of any type (in our analysis,
the 19 genes were entered as quantitative gene expression). The C5.0 models are quite robust in the
presence of problems such as missing data and large numbers of input fields. The C5.0 tree shows
how using only the gene expression of 9 genes, the overall survival outcome as dead or alive can be
predicted with high accuracy.
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Figure 13. Addition of the MCL35 proliferation signature in a Bayesian network. A Bayesian network
modeling was performed using the highlighted genes of both Methods 1 (19 genes) and Methods
2 (15) with the previously identified prognostic genes of MCL of the LLMPP, the MCL35 signature.
Some of the most relevant genes are highlighted, in red for the bad, green for the good prognostic
genes, and their interrelationships (arrows).

Figure 14. Overall survival according to the immunohistochemical expression of RGS1.

2.7. Immunohistochemistry

The immunohistochemistry was performed using an automated piece of equipment,
Leica BOND-MAX stainer, following the manufacturer’s instructions and as previously
described [53,59,63–65]. The RGS1 primary antibody (rabbit polyclonal) was purchased
from Thermofisher [63]. The slides were digitalized using a Hamamatsu NanoZoomer
S360, scanned, and visualized using the NDP.veiw2 software.
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3. Results
3.1. Highlights

• Using 20,862 genes as a start point (input layers) (Method 1), several neural network
analyses correlated with the overall survival outcome and with known pathogenic
genes of MCL (output layers), and a final set of 19 genes with predictive value was
highlighted (Figure 5);

• This type of analysis was repeated focusing on 10 immune, cancer, and immuno-
oncology panels (Method 2), and 15 genes were highlighted (Figure 8);

• Other machine learning techniques were used to predict the overall survival
(Figures 11 and 12);

• The highlighted genes also predicted the overall survival of a pan-cancer series
(Figures 9, 10 and A1);

• The combination of both Methods 1 (19 genes) and 2 (15 genes) with the LLMPP
MCL35 assay (17) genes and analysis using several machine learning and neural
networks techniques predicted the overall survival outcome (dead vs. alive) with
high accuracy.

3.2. Prediction of Overall Survival Based on the 20,862 Genes of the Array (Method 1)

Dimensionality reduction refers to techniques for reducing the number of input vari-
ables in training data. Fewer input dimensions often mean correspondingly fewer pa-
rameters or a simpler architecture in the machine learning model, referred to as degrees
of freedom [66]. The input layer of 20,862 predicted the overall survival of mantle cell
lymphoma (MCL), using an analysis algorithm (Figure 5). The output variables (targets)
were the overall survival outcome as a dichotomous variable (dead/alive), and the 28 genes
(high/low expression) with prognostic relevance for the overall survival were confirmed
in the same series (Table 2). Tables A1 and A2 show the complete details of the artificial
neural networks. The multilayer perceptron (MLP) technique had better performance than
the radial basis function (RBF): comparing area under the curve, percentage of incorrect
predictions (testing set), and overall percentage of correct classification (testing set), for
MLP vs. RBF, the results were 0.85 ± 0.05 vs. 0.77 ± 0.09 (p = 0.000053), 15.3% ± 5.9 vs.
26.5% ± 10.2 (p = 0.000005), and 84.7% ± 5.9 vs. 73.5% ± 10.2 (p = 0.000005), respectively.
CCND1 was the best predicted gene; in the MLP analysis CCND1 had a percentage of
incorrect predictions in the testing set of 2.8%, the lowest value among all genes (Table A1).

From the initial 20,862 genes, the list was reduced to 1394 genes, and additional
multilayer perceptron analyses led to a set of 58 genes (Figure 6). The network performance
of the MLP with the input of 58 genes was “good”, with an area under the curve (AUC)
of 0.9. The genes were ranked based on their normalized importance for prediction, and
GSEA confirmed that most of these genes were associated with the death survival outcome
(Figure 6); the most relevant were KIF18A, FANCG, GCNA, YBX3, ZCCHC4, and DMTF1.

Based on the 58 genes, a subsequent multivariate Cox regression analysis, backward
conditional, highlighted a set of 19 genes (Table A3), and a final set of 10 genes was found
after using a cut-off and a Kaplan–Meier analysis for overall survival (Table 2). KIF18A,
YBX3, PEMT, GCNA, and POGLUT3 were associated with an unfavorable overall survival,
and SELENOP, AMOTL2, IGFBP7, KCTD12, and ADGRG2 to a favorable survival (Figure 6).
Finally, the 10 genes were correlated with the cell proliferation marker of MKI67, which is
one of the most relevant genes in the pathogenesis of MCL (Table 3). The cases with low
MKI67 were associated with high KCTD12, ADGRG2, SELENOP, and IGFBP7. However,
high MKI67 associated with high YBX3. Table A4 shows a multivariate analysis for overall
survival between MIK67 and the 10 genes using a Cox regression.

Therefore, the dimensionality/data reduction of the Methods 1 went from 20,862 initial
genes, to 1394, 58, 19, and the final 10 most relevant prognostic genes for overall survival of
MCL patients.
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Table 3. Kaplan–Meier analysis for prediction of overall survival outcome (Method 1).

m Gene Cut-Off Log-Rank
p Value

Breslow
p Value Hazard Risk Correlation with High

MKI67, Odds Ratio (OR) OR p Value

1 KIF18A 8.71 <0.001 <0.001 3.5 (2.1–5.8) 1.3 (0.6–3.0) 0.499
2 YBX3 11.83 0.001 0.002 2.3 (1.4–3.8) 2.3 (0.9–5.3) 0.056
3 PEMT 8.75 0.015 0.016 1.9 (1.1–3.1) 1.1 (0.5–2.5) 0.798
4 GCNA 7.66 0.037 0.137 1.8 (1.0–3.3) 2.1 (0.9–4.9) 0.077
5 POGLUT3 8.81 0.034 0.014 1.6 (1.0–2.5) 0.9 (0.4–1.7) 0.649

6 SELENOP 12.81 0.028 0.048 0.6 (0.4–0.9) 0.2 (0.1–0.5) 0.001
7 AMOTL2 8.99 0.039 0.029 0.5 (0.3–0.9) 0.5 (0.2–1.1) 0.068
8 IGFBP7 13.37 0.019 0.042 0.5 (0.3–0.9) 0.2 (0.1–0.4) <0.001
9 KCTD12 12.02 0.022 0.042 0.5 (0.3–0.9) 0.2 (0.1–0.5) 0.01
10 ADGRG2 9.95 <0.001 <0.001 0.3 (0.2–0.6) 0.2 (0.1–0.5) 0.001

This analysis is a univariate.

3.3. Prediction of Overall Survival Based on the Immuno-Oncology Panels (Method 2)

The prediction of the overall survival outcome was performed using another strat-
egy, based on nine different immune oncology pathways, multilayer perceptron neural
networks, GSEA, and Kapan–Meier analyses (Figure 8).

The characteristics and performance parameters of the neural networks are shown in
Table A5. The most predictive panels (pathways) were the autoimmune (AUC = 0.98), the
pan cancer human IO360 (AUC = 0.94), human inflammation (AUC = 0.89), pan cancer
(AUC = 0.89), and metabolic (AUC = 0.87). Interestingly, some pathways had a more
predictive power toward the dead than the alive outcome.

After selecting the genes with a normalized importance above 70% and merging, a final
set of 125 was identified. A GSEA on these 125 genes had a sinusoidal-like pattern, with
some genes associated toward poor (dead) and others to favorable (alive) overall survival.
The genes were ranked according to their normalized importance for prediction using a
multilayer perceptron analysis, and the top 15 genes were CD8B, CEACAM6, FABP5, CFB,
IL6ST, AHR, BST2, ROBO4, AR, ID1, PIK3CD, ITGAX, TYMS, CSF1, and PCK2 (normalized
importance >0.68). Among them, TYMS was highlighted, and this gene by itself managed
to predict the overall survival of the patients (Hazard risk (HR) = 3.2, 95% CI 2.0–5.0,
p = 8.9 × 10−7). Of note, high TYMS also correlated with high MIK67 expression (Fisher’s
exact test, p = 0.001).

In a multivariate Cox regression survival analysis including these top 15 genes as
quantitative variables, backward conditional method, in the last step (11) the significant
genes were TYMS (p < 0.001, HR = 2.6), AR (p = 0.012, HR = 1.5), and CSF1 (p = 0.049,
HR = 0.6).

3.4. Prediction of Overall Survival of a Pan-Cancer Series

The predictive value of the set of 19 genes, derived from neural network analysis and
dimensional reduction of the initial 20,862 genes (Figure 5, Method 1), was tested for the
prediction of a pan cancer series of 7289 cases from The Cancer Genome Atlas (TCGA)
database and GSE10846 dataset for diffuse large B-cell lymphoma (DLBCL). Using a risk-
score formula [36,46], a different overall survival of the patients was found, confirming
the pathological role of these genes in cancer (Figures 9 and 10, Table A6, Figure A1). In
overall high-risk versus low-risk cases, Cox regression hazard risk = 3.3 (95% CI 2.9–3.6),
p < 0.0001.

3.5. Prediction of Overall Survival Outcome Using other Machine Learning Techniques

The predictive value of the set of 19 genes (Method 1) as quantitative variables for the
overall survival outcome was modeled using other machine-learning techniques, including
logistic regression, Bayesian network, discriminant analysis, KNN algorithm, LSVM, tree-
AS, C5, CHAID, Quest, random, and C&R trees. Among them, the highest overall accuracy
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for prediction was achieved by the C5 tree (95%, 9 genes used), and Bayesian network (85%,
19 genes, Figures 11 and 12).

3.6. Combination of Method 1, Method 2, and the LLMPP MCL35 Prognostic Gene Signature

A machine learning and neural network modeling was performed using the high-
lighted genes of both Methods 1 (19 genes) and Methods 2 (15) with the previously iden-
tified prognostic genes of MCL of the LLMPP, the MCL35 signature [50,67–69]. All the
available artificial intelligence methods were tested, and high overall accuracy for predict-
ing was found for logistic regression (100%), Bayesian network (92%), discriminant analysis
(86%), CHAID (85%), C&R tree (85%), and SVM (81%) (Table 4, Figure 13).

Table 4. Machine learning and neural network analysis of the combined Methods 1 and 2 with the
MCL35 signature.

Model
Overall Accuracy for

Predicting the
Overall Survival

No. of Genes Used
in the Final Model Gene Names

Logistic regression 100 50 All the 50

Bayesian network 92 50 All the 50

Discriminant 86 50 All the 50

CHAID 85 6
E2F2, GCNA, FMNL3,
POGLUT3, SELENOP,

and ZDHHC21

C&R tree 85 21

ADGRG2, CDC20,
CEACAM6, ESPL1,
FABP5, FAM83D,
FMNL3, GCNA,

GLIPR1, ID1, ITGAX,
KIF2C, MKI67, RGS1,
ROBO4, RPGRIP1L,
RRAS, SELENOP,

TAMM41, ZDHHC21,
and ZWINT

SVM 81 50 All the 50

KNN algorithm 78 50 All the 50

Neural network 76 50 All the 50

C5 76 3 ESPL1, RPGRIP1L,
and ZWINT

Quest 65 50 All the 50
In this analysis, several methods were tested, including C5, logistic regression, Bayesian network, discriminant
analysis, KNN algorithm, LSVM, random trees, SVM, Tree-AS, CHAID, Quest, C&R tree, and neural networks.
Among them, logistic regression and Bayesian network had the best overall accuracy for predicting the overall
survival (dead vs. alive). The analysis used a custom field (genes) assignment. The target variable was the
overall survival as a dichotomic (binary) variable (dead vs. alive). The inputs (predictive genes) were the most
relevant genes (n = 50) that were previously identified in the Methods 1 (n = 19), 2 (n = 15), and the MCL35
signature (n = 17), as follows: ADAMDEC1, ADGRG2, AHR, AMOTL2, AR, ATL1, BST2, CCNB2, CD8B, CDC20,
CDKN3, CEACAM6, CFB, CSF1, E2F2, ESPL1, FABP5, FAM83D, FMNL3, FOXM1, GCNA, GLIPR1, ID1, IGFBP7,
IL6ST, ITGAX, KCTD12, KIF18A, KIF2C, MKI67, NCAPG, PALLD, PCK2, PEMT, PIK3CD, POGLUT3, RAB13, RGS1,
ROBO4, RPGRIP1L, RRAS, SELENOP, TAMM41, TMEM176B, TOP2A, TYMS, YBX3, ZCCHC4, ZDHHC21, and
ZWINT. A total of 13 models were selected and ranked according to their overall accuracy for predicting the
overall survival. In the modeling, every possible combination of options was tested, and the best models were
saved. Of note, in the final models not all the genes were necessary or contributed to the model, and only the best
combinations were selected (e.g., 50 genes in the Bayesian network but only 6 in the CHAID tree).

3.7. Immunohistochemical Analysis of RGS1

RGS1 was identified as an MCL prognostic gene. It was present within the set of 19
in the last step of the first analysis algorithm (Figure 5) and the Cox regression (backward
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conditional). The prognostic association was tested by immunohistochemistry in a series of
11 cases of MCL from Tokai University. Among the different gene candidates, RGS1 was
selected because a reliable primary antibody for immunohistochemistry was available, and
we previously showed that high RGS1 protein expression correlated with poor prognosis in
diffuse large b-cell lymphoma [63]. The clinicopathological characteristics of this series was
the following: age (median, 72 years; range 41–82); male (9/11, 82%); lymph node and tonsil
biopsy (10/11, 91%); CD3-negative (100%); CD5-positive (10/11, 91%); CD20, CD10, Cyclin
D1 (CCND1) and BCL2-positive (100%); BCL6-positive (3/11, 27%); MUM-1(IRF4)-positive
(9/10, 90%); proliferation index (Ki67, 10–50%).

The RGS1 protein expression was evaluated as low and high, and correlated with the
overall survival of the patients (p = 0.048) (Figure 10). Nevertheless, no correlation was
found between RGS1 and the other clinicopathological characteristics.

4. Discussion

Mantle cell lymphoma is a hematological neoplasia that belongs to the group of
non-Hodgkin lymphomas (NHL) and it is derived from mature B-lymphocytes [16].

The postulated cell of origin in most of the cases is a naïve pregerminal center B-
cell of the mantle zone [1,9,16,17,46], because of the absence of somatic mutations in
the variable region of the heavy chain of immunoglobulin genes (IgVH). IgVH somatic
mutational status is a marker of the transition of a B-lymphocyte through a follicular
germinal center [70]. However, in 20–30% of the cases somatic hypermutation is found,
which suggests a postgerminal origin (marginal zone) [71], and these cases are associated
with a better prognosis [72]. Because of the aggressive clinical behavior of mantle cell
lymphoma, it is critical to find prognostic makers that will allow identifying the patients
who should receive more aggressive therapy.

Mantle cell lymphoma is characterized by increased cell division and replication,
decreased response to DNA damage, and enhanced cell survival (impaired apoptosis) [16].
Some of these pathways and genes correlate with prognosis. For instance, TP53 and
NOTCH1 mutations, overexpression of SOX11, and high proliferation index (Ki67 staining)
associate with a poor prognosis.

This research identified new prognostic markers using gene expression data. Dimen-
sionality reduction refers to techniques for reducing the number of input variables in
training data. Fewer input dimensions often mean correspondingly fewer parameters or a
simpler architecture in the machine learning model, referred to as degrees of freedom [66].
A neural network analysis correlated the 20,862 genes of the array with the overall survival
outcome (dead/alive), and ranked the genes according to their normalized importance
for prediction. Additionally, the analysis was enriched with the inclusion of 28 prognostic
genes, which were identified from the literature and later confirmed to have prognostic rele-
vance in this series (Table 1). Therefore, the input data of the neural network were solid and
resulted in the identification of potentially relevant new prognostic markers. Additionally,
the second type of neural network analysis was performed using several immune oncology
pathways, which provided a more supervised training and analysis. The fact that we found
a correlation of some of the highlighted genes with the expression of MKI67, a marker of
proliferation known to be critical in mantle cell lymphoma pathogenesis, suggests that the
identified new markers are also potentially relevant.

The highlighted genes influence apoptosis, angiogenesis, cell proliferation, and metabolic
processes. They contribute to hematological neoplasia or cancer (Table 5). Therefore, it is
expected that these genes also affect the progression of the pan cancer series.
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Table 5. Function and association of the highlighted genes in neoplasia.

Gene Function Role in Cancer

KIF18A Microtubule motor activity, role in mitosis Overexpressed in various types of cancer; inhibitors are
available [73]

YBX3 Translation repression, negative regulation of intrinsic
apoptosis signaling

Related to myelodysplastic syndromes and acute
myeloid leukemia [74]

PEMT Negative regulation of cell proliferation, positive
regulation of lipoprotein metabolic process Critical role in breast cancer progression [75]

GCNA Acidic repeat-containing protein, expressed in germ
cells (testis) Regulate genome stability [76,77]

POGLUT3
Protein glucosyltransferase, specifically targets

extracellular EGF repeats of proteins (NOTCH1 and
NOTCH3)

Related to glioblastoma multiforme tumorigenesis [78]

SELENOP Transport of selenium, response to oxidative stress Prostate cancer recurrence [79]

AMOTL2 Actin cytoskeleton organization, angiogenesis, cell
migration, Wnt-signaling pathway

Angiogenesis in pancreatic, and proliferation in lung
cancer [80,81]

IGFBP7 Cell adhesion, metabolic process (retinoic acid, cortisol),
regulation of cell growth Prognosis of acute lymphoblastic leukemia [82]

KCTD12 GABA-B receptors auxiliary subunit Proliferation in breast cancer [83]

ADGRG2 G protein-coupled receptor signaling pathway Tumor suppressor in endometrial cancer [84]

TYMS Regulation of mitotic cell cycle (G1/S transition) Association with non-Hodgkin lymphomas, prognosis
of pancreatic cancer [85,86]

The gene information is based on UniProt [54], and Genecards [55]. TYMs was highlighted in Method 2; the rest
of genes in Method 1.

It is important to point out that one could also use background information (e.g., pa-
tient age, sex, comorbidities, etc.) into the artificial neural network analyses. Incorporating
such information would have a large impact on the results. In this research, the target
was the prediction of the overall survival of patients based on the gene expression data
as proof of concept. In future analyses, background information will be incorporated in
MCL analysis, in a similar way as we have recently done in diffuse large b-cell lymphoma
(DLBCL) [35].

In addition to neural networks, other machine learning techniques were tested, and
the C5 tree and Bayesian networks had the best accuracy for predicting the overall survival
outcome. Of note, the type of analyses used do not necessarily represent direct cause and
effect, but the probabilistic or conditional independencies between the markers.

The recent advances in machine learning have led to many artificial intelligence (AI)
applications, which will produce autonomous systems. However, the effectiveness of these
systems is limited by the machine’s current inability to explain their decision and actions to
human users [87]. Therefore, explainable AI (XAI) will be essential to understand, trust,
and effectively managed AI machine partners [87]. In this research, the artificial neural
networks highlighted the most relevant genes according to their normalized importance
for predicting the overall survival of the patients. To make the results more explainable,
we performed serval additional machine learning techniques and conventional statistics to
understand the results. For future work, the explanation of algorithms will be developed.
Of note, in medicine, AI technologies can be clinically validated even when their function
cannot be understood by their operators [88].

Future research directions will be the validation of the methodology and highlighted
genes in other series of mantle cell lymphoma and non-Hodgkin lymphomas.

5. Conclusions

This research combined artificial neural networks, machine learning, and conventional
statistics to model the overall survival of mantle cell lymphoma and highlight pathogenic
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genes. Artificial intelligence is a promising field in the understanding of hematological
neoplasia, and other types of cancer.
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Appendix A

Table A1. Multilayer Perceptron Neural Network Analysis of Mantle Cell Lymphoma (Method 1).

Gene
Num.
Genes

Top
70%

Case Processing Summary Network Layers Model Summary Classification
Area
under

the
Curve
(AUC)

Training Testing Input Hidden Output Training Testing Training (% Correct) Testing (% Correct)

Num. % Num. % Units Num. Units Num. Units
Cross

En-
tropy
Error

Incorrect
Predic-
tions

%

Training
Time

Cross
En-

tropy
Error

Incorrect
Predic-
tions

%
Observed 0 Observed 1 Overall Observed 0 Observed 1 Overall

Dead/Alive 80 84 68.3 39 31.7 20863 1 6 1 2 38.2 21.4 01:04.9 10.4 12.8 67.6 86 78.6 88.9 86.7 87.2 0.90
SYNE1 6 90 73.2 33 26.8 20862 1 12 1 2 38.5 18.9 01:05.8 8.8 9.1 59.3 90.5 81.1 66.7 96.3 90.9 0.86

DAZAP1 80 87 70.7 36 29.3 20862 1 11 1 2 32.0 14.9 01:06.3 6.4 5.6 64 93.5 85.1 83.3 96.7 94.4 0.92
MYCN 154 85 69.1 38 30.9 20862 1 8 1 2 37.5 27.1 01:01.5 14.4 13.2 36.4 85.7 72.9 66.7 93.1 86.8 0.82

CXCL12 56 87 70.7 36 29.3 20862 1 8 1 2 40.5 19.5 00:57.4 10.1 8.3 44 95.2 80.5 83.3 93.3 91.7 0.83
NOTCH2 20 84 68.3 39 31.7 20862 1 9 1 2 29.9 20.2 00:58.2 11.8 17.9 92.3 36.8 79.8 93.1 50 82.1 0.90

CDK4 47 87 70.7 36 29.3 20862 1 11 1 2 30.4 13.8 00:51.2 13.8 22.2 91.3 66.7 86.2 100 27.3 77.8 0.89
BMI1 25 93 85.6 30 24.4 20862 1 8 1 2 53.0 26.9 00:56.3 13.2 16.7 71.7 74.5 73.1 93.8 71.4 83.3 0.81
ING1 94 76 61.8 47 38.2 20862 1 10 1 2 36.3 17.1 00:52.7 22.7 27.7 50 93.1 82.9 30.8 88.2 72.3 0.76
NSD2 38 91 74 32 26 20862 1 9 1 2 43.0 20.9 01:04.7 15.1 15.6 82.4 75 79.1 91.7 80 84.4 0.86
PTK2 6 93 75.6 30 24.4 20862 1 13 1 2 40.2 16.1 01:07.3 7.9 10 97.1 43.5 83.9 91.3 85.7 90 0.85

PIK3CA 4 76 61.8 47 38.2 20862 1 10 1 2 26.4 13.2 00:52.4 17.7 12.8 94.8 61.1 86.8 94.3 66.7 87.2 0.88
CHEK1 86 91 74 32 26 20862 1 9 1 2 45.3 27.5 00:58.7 12.9 18.8 68.8 76.7 72.5 92.9 72.2 81.3 0.85
CHEK2 8 90 73.2 33 26.8 20862 1 10 1 2 39.8 18.9 01:07.6 13.0 15.2 77.3 84.8 81.1 83.3 86.7 84.8 0.88
PIK3CD 50 82 66.7 41 33.3 20862 1 10 1 2 17.6 11.0 01:08.1 14.6 14.6 90.9 86.8 89 90.9 78.9 85.4 0.96

XIAP 22 85 69.1 38 30.9 20862 1 12 1 2 40.2 18.8 00:49.9 17.7 23.7 83.7 78.6 81.2 85.7 64.7 76.3 0.87
PAX5 23 88 71.5 35 28.5 20862 1 7 1 2 45.3 27.3 00:55.2 13.0 8.6 20 93.7 72.7 50 100 91.4 0.75

BCL2L11 12 71 57.7 52 42.3 20862 1 5 1 2 29.9 19.7 00:50.1 24.2 23.1 92.6 41.2 80.3 94.9 23.1 76.9 0.82
BORCS8_MEF2B 12 85 69.1 38 30.9 20862 1 11 1 2 39.2 21.2 00:53.3 11.6 10.5 40.9 92.1 78.8 55.6 100 89.5 0.83

PTEN 86 84 68.3 39 31.7 20862 1 10 1 2 36.0 20.2 00:57.0 12.2 7.7 92.1 42.9 79.8 93.3 88.9 92.3 0.85
MYC 10 84 68.3 39 31.7 20862 1 9 1 2 28.9 16.7 00:56.2 14.2 20.5 87.7 68.4 83.3 96.4 36.4 79.5 0.90

CCND1 23 87 70.7 36 29.3 20862 1 8 1 2 38.3 23.0 01:03.5 6.7 2.8 92.3 31.8 77 96.4 100 97.2 0.89
MKI67 2 93 75.6 30 24.4 20862 1 10 1 2 40.2 20.4 01:04.6 11.7 16.7 78 81.4 79.6 85.7 81.3 83.3 0.89
CCND2 46 76 61.8 47 38.2 20862 1 9 1 2 32.4 21.1 00:54.9 17.7 14.9 90.7 50 78.9 92.3 50 85.1 0.84

CDKN2A 112 91 74 32 26 20862 1 14 1 2 22.0 9.9 00:53.6 11.3 21.9 94.4 73.7 90.1 91.3 44.4 78.1 0.93
CDKN2C 6 90 73.2 33 26.8 20862 1 8 1 2 46.7 26.7 00:58.1 13.5 15.2 67.4 78.7 73.3 89.5 78.6 84.8 0.85

TERT 205 82 66.7 41 33.3 20862 1 9 1 2 34.6 20.7 01:00.8 14.9 19.5 93.7 31.6 79.3 93.3 45.5 80.5 0.85
NOTCH1 15 85 69.1 38 30.9 20862 1 11 1 2 32.4 17.6 00:49.1 16.3 21.1 88.2 58.8 82.4 88.5 58.3 78.9 0.85

RB1 47 88 71.5 35 28.5 20862 1 12 1 2 48.9 27.3 00:56.3 14.3 17.1 65.1 80 72.7 78.9 87.5 82.9 0.83
Combined 18 91 74 32 26 20835 1 8 29 58 1348.9 25.7 01:22.2 525.3 29.4 - - 74.3 - - 70.6 -

Average 85.9 70.1 37.1 30.2 20861 1 9.6 - - 80.4 20.1 - 30.6 15.8 75.0 70.8 79.9 84.2 73.5 84.2 0.9

Input layer: standardized rescaling method for covariates. Hidden layer: hyperbolic tangent activation function. Output layer: softmax activation function, cross-entropy error function.
Model summary, training, one consecutive step(s) with no decrease in error (error computations are based on the testing sample) as stopping rule.
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Table A2. Radial Basis Function Neural Network Analysis of Mantle Cell Lymphoma (Method 1).

Gene
Num.
Genes

Top
70%

Case Processing Summary Network Layers Model Summary Classification
Area
under

the
Curve
(AUC)

Training Testing Input Hidden Output Training Testing Training (% Correct) Testing (% Correct)

Num. % Num. % Units Num. Units Num. Units
Sum of
Squares

Error

Incorrect
Predic-
tions

%

Training
Time

Sum of
Squares

Error

Incorrect
Predic-
tions

%
Observed 0 Observed 1 Overall Observed 0 Observed 1 Overall

%

Dead/Alive 37 92 74.8 31 25.2 20863 1 8 1 2 16.9 27.2 04:13.3 6.7 38.7 45.5 88.1 72.8 10.0 85.7 61.3 0.73
SYNE1 18 85 69.1 38 30.9 20862 1 8 1 2 10.4 17.6 02:46.3 7.4 23.7 40.9 96.8 82.4 27.3 96.3 76.3 0.79

DAZAP1 28 80 65 43 35 20862 1 6 1 2 8.2 16.3 02:24.1 3.1 9.3 81.8 84.5 83.8 100.0 88.2 90.7 0.93
MYCN 48 82 66.7 41 33.3 20862 1 6 1 2 11.1 20.7 02:32.2 7.4 31.7 30.0 95.2 79.3 9.1 90.0 68.3 0.78

CXCL12 50 82 66.7 41 33.3 20862 1 5 1 2 12.7 22.0 02:39.9 8.2 26.8 10.0 100.0 78.0 0.0 100.0 73.2 0.74
NOTCH2 29 92 74.8 31 25.2 20862 1 10 1 2 11.7 15.2 03:18.6 4.9 25.8 98.6 35.0 84.8 100.0 11.1 74.2 0.80

CDK4 16 82 66.7 41 33.3 20862 1 10 1 2 11.4 20.7 02:21.8 4.9 17.1 98.3 27.3 79.3 100.0 0.0 82.9 0.83
BMI1 41 90 73.2 33 26.8 20862 1 5 1 2 20.0 34.4 03:21.6 7.4 39.4 77.6 51.2 65.6 100.0 35.0 60.6 0.70
ING1 40 79 64.2 44 35.8 20862 1 4 1 2 14.8 26.6 02:14.7 7.6 22.7 0.0 100.0 73.4 0.0 100.0 77.3 0.60
NSD2 39 92 74.8 31 25.2 20862 1 10 1 2 13.6 20.7 03:11.6 4.1 9.7 85.7 72.1 79.3 85.7 94.1 90.3 0.88
PTK2 19 90 73.2 33 26.8 20862 1 3 1 2 16.2 24.4 03:15.7 5.8 24.2 100.0 0.0 75.6 100.0 0.0 75.8 0.64

PIK3CA 46 79 64.2 44 35.8 20862 1 8 1 2 12.5 24.1 02:23.1 7.7 25.0 93.3 21.1 75.9 100.0 0.0 75.0 0.74
CHEK1 51 92 74.8 31 25.2 20862 1 8 1 2 16.4 26.1 03:12.5 7.0 41.9 78.6 70.0 73.9 50.0 72.7 58.1 0.80
CHEK2 80 88 71.5 35 28.5 20862 1 9 1 2 13.5 25.0 02:57.1 5.9 22.9 59.1 90.9 75.0 66.7 88.2 77.1 0.86
PIK3CD 47 79 64.2 44 35.8 20862 1 3 1 2 12.1 20.3 02:15.3 8.0 27.3 66.7 90.7 79.7 63.3 92.9 72.9 0.83

XIAP 89 79 64.2 44 35.8 20862 1 8 1 2 10.7 17.7 02:20.4 11.0 43.2 88.4 75.0 82.3 66.7 47.8 56.8 0.80
PAX5 81 89 72.4 34 27.6 20862 1 9 1 2 14.5 24.7 02:55.3 6.0 26.5 13.0 97.0 75.3 0.0 96.2 73.5 0.71

BCL2L11 28 88 71.5 35 28.5 20862 1 8 1 2 10.9 14.8 02:51.2 4.1 14.3 100.0 43.5 85.2 96.4 42.9 85.7 0.86
BORCS8_MEF2B 41 86 69.9 37 30.1 20862 1 3 1 2 13.8 23.3 02:45.9 5.8 18.9 19.0 95.4 76.7 30.0 100.0 81.1 0.76

PTEN 23 92 74.8 31 25.2 20862 1 7 1 2 11.1 16.3 03:14.2 3.5 12.9 95.4 55.6 83.7 92.9 33.3 87.1 0.84
MYC 18 92 74.8 31 25.2 20862 1 9 1 2 9.8 16.3 03:31.2 4.1 25.8 91.8 52.6 83.7 95.0 36.4 74.2 0.90

CCND1 42 82 66.7 41 33.3 20862 1 10 1 2 11.2 19.5 02:29.4 6.0 26.8 88.3 59.1 80.5 87.9 12.5 73.2 0.81
MKI67 37 90 73.2 33 26.8 20862 1 10 1 2 12.6 21.1 03:00.8 5.0 21.2 88.0 67.5 78.9 78.6 78.9 78.8 0.89
CCND2 40 79 64.2 44 35.8 20862 1 4 1 2 12.3 24.1 02:14.5 7.6 25.0 100.0 0.0 75.9 100.0 0.0 75.0 0.74

CDKN2A 56 92 74.8 31 25.2 20862 1 6 1 2 14.1 20.7 03:02.7 5.0 25.8 97.2 15.0 79.3 100.0 0.0 74.2 0.73
CDKN2C 34 88 71.5 35 28.5 20862 1 9 1 2 17.6 21.6 02:50.9 8.9 34.3 86.8 72.0 78.4 58.3 81.8 65.7 0.78

TERT 58 79 64.2 44 35.8 20862 1 10 1 2 10.3 17.7 02:17.2 10.0 27.3 93.7 37.5 82.3 100.0 14.3 72.7 0.71
NOTCH1 71 79 64.2 44 35.8 20862 1 3 1 2 12.4 22.8 02:14.6 7.3 25.0 100.0 0.0 77.2 100.0 0.0 75.0 0.74

RB1 87 89 72.4 34 27.6 20862 1 2 1 2 22.2 47.2 02:55.3 8.7 55.9 100.0 0.0 52.8 100.0 0.0 44.1 0.49
Combined 87 93 75.6 30 24.4 20835 1 14 29 58 366.4 20.4 09:53.4 147.2 23.7 - - 79.6 - - 76.3 -

Average 86.0 69.9 37.0 30.1 20861 1 7.2 25.0 22.3 11.2 26.4 73.4 58.4 77.7 69.6 51.7 73.6 0.77

Input layer: standardized rescaling method for covariates. Hidden layer: softmax activation function. Output layer: identity activation function, sum of squares error function. Model
summary, testing, sum of square error (the number of hidden units is determined by the testing data criterion: The “best” number of hidden units is the one that yields the smallest error
in the testing data).
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Table A3. Multivariate Cox regression analysis for predicting overall survival outcome (Method 1).

Num Gene B SE Wald df p Value Hazard Risk
95.0% CI for HR

Lower Upper

1 KIF18A 2.7 0.3 58.3 1 <0.001 14.2 7.2 28.1
2 YBX3 0.8 0.2 19.0 1 <0.001 2.2 1.6 3.2
3 GCNA 0.9 0.2 14.6 1 <0.001 2.5 1.6 4.1
4 POGLUT3 1.2 0.3 13.4 1 <0.001 3.2 1.7 6.0
5 AMOTL2 0.9 0.3 10.1 1 0.001 2.5 1.4 4.3
6 RAB13 1.2 0.4 9.8 1 0.002 3.3 1.6 7.0
7 ZCCHC4 1.1 0.3 9.5 1 0.002 2.9 1.5 5.7
8 PEMT 0.6 0.2 8.4 1 0.004 1.9 1.2 2.8
9 RRAS 0.8 0.4 4.7 1 0.029 2.2 1.1 4.4
10 PALLD 0.6 0.3 3.9 1 0.048 1.8 1.0 3.1
11 ADAMDEC1 0.7 0.4 3.5 1 0.063 1.9 1.0 3.9
12 ADGRG2 0.4 0.2 2.8 1 0.094 1.5 0.9 2.3
13 IGFBP7 −1.5 0.3 20.3 1 <0.001 0.2 0.1 0.4
14 TMEM176B −1.6 0.4 18.9 1 <0.001 0.2 0.1 0.4
15 SELENOP −1.0 0.2 15.6 1 <0.001 0.4 0.2 0.6
16 RPGRIP1L −0.5 0.1 10.5 1 0.001 0.6 0.5 0.8
17 TAMM41 −0.8 0.3 7.5 1 0.006 0.4 0.3 0.8
18 KCTD12 −1.2 0.5 7.5 1 0.006 0.3 0.1 0.7
19 RGS1 −0.4 0.2 4.5 1 0.034 0.7 0.5 1.0

Cox regression, backward conditional.

Table A4. Multivariate Cox regression overall survival analysis between MKI67 and the 10 high-
lighted genes (Method 1).

Gene B SE Wald df Sig. HR
95.0% CI for HR

Lower Upper

MKI67 1.3 0.3 20.5 1 0.000 3.8 2.1 6.8
YBX3 0.9 0.3 11.3 1 0.001 2.6 1.5 4.4

SELENOP −0.5 0.3 3.0 1 0.085 0.6 0.3 1.1
POGLUT3 0.6 0.2 6.9 1 0.009 1.9 1.2 3.1
ADGRG2 −0.7 0.3 4.5 1 0.035 0.5 0.2 0.9

GCNA 0.8 0.3 5.3 1 0.021 2.2 1.1 4.2
KIF18A 1.5 0.3 26.6 1 0.000 4.3 2.5 7.6
PEMT 0.8 0.3 6.6 1 0.010 2.1 1.2 3.8

Multivariate Cox regression analysis, backward conditional. HR, hazard risk. Note: There are only 8 genes
because it is a multivariate Cox regression analysis with the backward conditional method. In this method, the
nonsignificant variables are eliminated.
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Table A5. Multilayer perceptron analysis of the immuno-oncology pathways (Method 2).

Pathway
Num.
Genes

Top
70%

Case Processing Summary Network Layers Model Summary Classification
Area
under

the
Curve
(AUC)

Training Testing Input Hidden Output Training Testing Training (% Correct) Testing (% Correct)

Num. % Num. % Units Num. Units Num. Units
Cross

En-
tropy
Error

Incorrect
Predic-
tions

%

Training
Time

Cross
En-

tropy
Error

Incorrect
Predic-
tions

%

Observed
Alive

Observed
Dead Overall Observed

Alive
Observed

Dead
Overall

%

Cancer
Transcriptome 13 84 68.3 39 31.7 1785 1 6 1 2 41.1 27.4 00:03.9 17.6 23.1 58.8 82.0 72.6 55.6 83.3 76.9 0.84

Pan Cancer
Human IO360 15 84 68.3 39 31.7 727 1 8 1 2 22.5 13.1 00:01.4 14.7 15.4 82.4 90.0 86.9 88.9 83.3 84.6 0.94

Pan Cancer
Immune Profiling 1 84 68.3 39 31.7 707 1 5 1 2 44.9 26.2 00:01.5 15.0 12.8 64.7 80.0 73.8 88.9 86.7 87.2 0.82

Pan Cancer
Progression 18 84 68.3 39 31.7 715 1 11 1 2 51.2 32.1 00:01.7 18.7 12.8 29.4 94.0 67.9 66.7 93.3 87.2 0.74
Pan Cancer
Pathways 6 84 68.3 39 31.7 712 1 8 1 2 36.9 21.4 00:01.8 16.8 15.4 67.6 86.0 78.6 77.8 86.7 84.6 0.89
Metabolic
Pathways 27 84 68.3 39 31.7 737 1 14 1 2 39.8 22.6 00:01.6 13.7 17.9 55.9 92.0 77.4 66.7 86.7 82.1 0.87
Immune

Exhaustion 12 84 68.3 39 31.7 720 1 10 1 2 47.2 31.0 00:01.6 18.2 17.9 50.0 82.0 69.0 66.7 86.7 82.1 0.79
Human

Inflammation 23 84 68.3 39 31.7 247 1 9 1 2 33.7 17.9 00:00.6 16.6 23.1 73.5 88.0 82.1 55.6 83.3 76.9 0.89
Host Response 8 84 68.3 39 31.7 747 1 9 1 2 41.1 21.4 00:01.6 18.1 20.5 67.6 86.0 78.6 66.7 83.3 79.5 0.83
Autoimmune 13 84 68.3 39 31.7 719 1 10 1 2 11.9 6.0 00:01.5 12.5 10.3 88.2 98.0 94.0 88.9 90.0 89.7 0.98

Organ
Transplantation 12 84 68.3 39 31.7 728 1 11 1 2 41.5 21.4 00:01.6 15.7 10.3 64.7 88.0 78.6 88.9 90.0 89.7 0.85

Input layer: standardized rescaling method for covariates. Hidden layer: hyperbolic tangent activation function. Output layer: softmax activation function, cross-entropy error function.
Model summary, training, one consecutive step(s) with no decrease in error (error computations are based on the testing sample) as stopping rule.
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Table A6. Overall survival of the pan cancer series using the risk-scores.

Subtype Overall Low-Risk High-Risk K–M Log-Rank
p Value Cox p Value Cox HR

95% CI for HR

Lower Higher

Breast 962 821 141 4.0 × 10−17 6.5 × 10−15 4.0 2.8 5.6
Lung 475 426 49 1.0 × 10−10 1.1 × 10−9 3.3 2.3 4.9

Prostate 497 446 51 1.5 × 10−4 2.0 × 10−3 9.2 2.3 37.2
Colorectal 466 415 51 1.4 × 10−5 3.3 × 10−5 2.9 1.7 4.8

Cervix 191 169 22 3.4 × 10−10 8.9 × 10−8 7.7 3.6 16.2
Stomach 440 293 147 2.6 × 10−4 3.1 × 10−4 1.8 1.3 2.4

Skin (melanoma) 335 177 158 3.2 × 10−10 1.3 × 10−9 2.6 1.9 3.5
Bladder 389 207 182 9.2 × 10−13 9.7 × 10−12 3.0 2.2 4.1
Ovary 247 217 30 0.6 × 10−5 1.5 × 10−5 2.9 1.8 4.6

DLBCL 414 289 125 3.3 × 10−16 1.5 × 10−14 3.3 2.5 4.5
Kidney 792 470 322 5.9 × 10−17 2.5 × 10−15 3.2 2.4 4.3

Uterus (endometrium) 247 214 33 5.5 × 10−11 2.4 × 10−8 7.4 3.7 15.0
Leukemia (AML) 149 115 34 1.9 × 10−14 7.0 × 10−12 5.5 3.4 9.0

Pancreas 176 109 67 0.4 × 10−5 9.0 × 10−6 2.6 1.7 3.9
Thyroid 489 434 55 9.9 × 10−12 6.4 × 10−7 17.4 5.6 53.5

Liver 361 197 164 6.7 × 10−10 4.0 × 10−9 3.0 2.1 4.3
CNS (GBM) 659 209 450 2.6 × 10−17 8.9 × 10−15 4.5 3.1 6.6

Overall 7289 5208 2081 2.8 × 10−178 2.5 × 10−159 3.3 2.9 3.6

K–M, Kapan–Meier; HR, hazard risk, DLBCL, diffuse large B-cell lymphoma; AML, acute myeloid leukemia; CNS,
central nervous system; GBM, glioblastoma multiforme. This analysis is univariate.

Figure A1. Differential gene expression of the set of 19 genes per cancer subtype. Based on a risk-
score formula and the gene expression of 19 genes, the overall survival for each risk-group could
be calculated. The contribution in the prognosis for each gene is shown on the right. This Figure is
complementary to Figure 9.
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