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The coronavirus disease 2019 (COVID-19) caused by se-
vere acute respiratory syndrome (SARS) coronavirus-2 
(SARS-CoV-2) first observed in December 2019, in Wuhan 
hospitals, Hubei, China, has spread since to become a world-
wide pandemic. The World Health Organization (WHO) re-
ported on 19 November 2020, 55,928,327 confirmed cases 
with 1,344,003 deaths in 235 countries (https://covid19.

who.int/). The majority of the infected subjects have shown 
mild or even no symptoms, whereas some have presented 
much worse prognosis. The severe cases of COVID-19 
patients developed a severe pneumonia, acute respira-
tory distress syndrome, a severe coagulopathy, myocardial 
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BACKGROUND:
The risk that coronavirus disease 2019 (COVID-19) patients develop crit-
ical illness that can be fatal depends on their age and immune status 
and may also be affected by comorbidities like hypertension. The 
goal of this study was to develop models that predict outcome using 
parameters collected at admission to the hospital.

METHODS AND RESULTS:
This is a retrospective single-center cohort study of COVID-19 patients 
at the Seventh Hospital of Wuhan City, China. Forty-three demographic, 
clinical, and laboratory parameters collected at admission plus dis-
charge/death status, days from COVID-19 symptoms onset, and days of 
hospitalization were analyzed. From 157 patients, 120 were discharged 
and 37 died. Pearson correlations showed that hypertension and sys-
tolic blood pressure (SBP) were associated with death and respiratory 
distress parameters. A  penalized logistic regression model efficiently 
predicts the probability of death with 13 of 43 variables. A regularized 
Cox regression model predicts the probability of survival with 7 of 
above 13 variables. SBP but not hypertension was a covariate in both 
mortality and survival prediction models. SBP was elevated in deceased 
compared with discharged COVID-19 patients.

CONCLUSIONS:
Using an unbiased approach, we developed models predicting out-
come of COVID-19 patients based on data available at hospital ad-
mission. This can contribute to evidence-based risk prediction and 

appropriate decision-making at hospital triage to provide the most 
appropriate care and ensure the best patient outcome. High SBP, a 
cause of end-organ damage and an important comorbid factor, was 
identified as a covariate in both mortality and survival prediction 
models.
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disease, acute renal failure, encephalopathy, or multiple 
organ failure and death.1–4

The most frequent symptoms of COVID-19 are fever, 
cough, and myalgia or fatigue, and less common symptoms 
include sputum production, headache, loss of sense of smell 
and taste, hemoptysis, and diarrhea.3,5,6 Clinical features 
have included pneumonia with abnormal or severe clin-
ical features such as acute respiratory syndrome with 
ground-glass opacities in subpleural regions, acute cardiac 
ischemia or heart failure, acute renal failure, or neurolog-
ical manifestations including stroke, associated with micro-
vascular thrombosis, all of which could lead to death. The 
symptoms of COVID-19 appear approximately 5–6  days 
after transmission has occurred, and the onset period to 
death has ranged from 6 to 40 days with a median of 14 days.7 
The risk of death and period to death are dependent on the 
age and status of the immune system of the patient and may 
also be affected by comorbidities like hypertension, cardio-
vascular disease, diabetes, obesity, cancer, and immune sup-
pression from diseases or treatments. Hypertension or high 
blood pressure (BP) may have an important impact on the 
severity of COVID-19 as it is a leading risk factor for cardi-
ovascular disease.8

Establishing early the prognosis of COVID-19 patients 
using prediction models at the time of hospital admis-
sion could help relieve pressure on the healthcare system 
by allowing evidence-based risk prediction and deci-
sion-making when triaging patients, and thus contribute to 
the ability of healthcare workers to provide the most appro-
priate care to the patients, which could improve outcomes. 
Shi et al. showed that in addition to age and sex, hyperten-
sion was identified as an important risk factor associated 
with severe cases of COVID-19.9 Another study, identified 
markers of systemic inflammation (elevated neutrophil-
to-lymphocyte ratio [NLR], derived NLR ratio [neutrophil 
count divided by white cell count minus neutrophil count], 
and platelet-to-lymphocyte ratio) and age as predictors of 
poor clinical outcome in COVID-19 patients.7 Although a 
high prevalence of comorbidities (88%) including hyperten-
sion, diabetes, and heart disease were observed, they were 
not included as covariates. Yuan et al. determined an optimal 
cutoff value of computerized tomography scan for the pre-
diction of COVID-19 patients with pneumonia.10 COVID-
19 patients with pneumonia who died presented a high 
prevalence of comorbidities (80%) including hypertension, 
diabetes, and cardiac disease that could have contributed 
to death. Guo et al. demonstrated that elevated troponin T 
(TnT) plasma levels, a marker of cardiac injury, were asso-
ciated with greater mortality rate in COVID-19 patients, 
which was enhanced when TnT was combined with preex-
isting cardiovascular disease.11 The above studies underscore 
the importance of factors such as age, respiratory disease, 
systemic inflammation, and cardiovascular comorbidities at 
the time of hospital admission in determining the survival or 
death of COVID-19 patients.

We suggest that the combination of demographic, clin-
ical, and laboratory parameters including age, respiratory 
disease, systemic inflammation, and comorbidities such as 
cardiovascular disease could be used to generate models that 

efficiently allow prediction of risk and development of severe 
disease leading to worse outcomes in COVID-19 patients at 
the time of admission to the hospital. To test this hypothesis, 
we have used the COVID-19 patient dataset from the already 
published study of Guo et al. from the Seventh Hospital of 
Wuhan, China11 to determine the probability of death using 
both logistic regression and proportional hazards survival 
models. In both cases, an unbiased approach was used to se-
lect the covariates among parameters collected at the day of 
admission to the hospital, and cross-validation was used to 
estimate model performance.

METHODS

Study design and participants

This is a single-center, retrospective, cohort study 
performed using electronic medical records of COVID-
19 patients admitted from 23 January to 23 February 2020 
to the Seventh Hospital of Wuhan City, China, which was 
a designated hospital to treat patients with COVID-19 
and was supervised by the Zhongnan Hospital of Wuhan 
University in Wuhan, China. The dataset was used originally 
in the study of Guo et  al.11 that complied with the ethical 
principles for medical research involving human subjects 
of the 1975 Declaration of Helsinki12 and was approved 
by the Institutional Ethics Board of Zhongnan Hospital of 
Wuhan University and the Seventh Hospital of Wuhan City 
(No. 2020026). Data were collected in consecutive patients 
hospitalized with COVID-19, including 211 patients who 
were successfully treated and discharged, and 45 patients 
who died. Sixty-seven discharged patients and 2 patients 
who died were excluded from analysis because of incomplete 
data, leaving 144 discharged individuals and 43 individuals 
who died included for final analysis. Consent was obtained 
from patients or patients’ next of kin. The end point of the 
study of Guo et al. was the incidence of COVID-19-associated 
death. Since the data were anonymized and data linkage or 
recording or dissemination of the results will not generate 
identifiable information, the Research Review Office of the 
Jewish General Hospital and the Centre-West Integrated 
University Network indicated in writing that under Article 
2.4 of the TriCouncil (Canada) Policy Statement (2018), no 
further Research Ethics Review was required, the patient 
dataset coming from a study with a university hospital Ethics 
Board approval in China.

Statistical analysis

Data are shown as % for categorical variables and as 
means ± SD for continuous variables. The primary de-
pendent variable in our analyses was patient discharge or 
death. We examined this outcome both as a binary variable, 
and looked at time to these events. All measures in Tables 1 
and 2 were considered for their associations with patient 
outcome. Comparisons between the discharged and death 
patient groups were done using chi-square tests for catego-
rical data and Wilcoxon rank-sum tests for continuous data. 
P < 0.05 was considered statistically significant.
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Pearson correlation coefficients between variables were 
calculated, and visualized with a correlogram generated by 
the R package “corrplot.” Correlations with P  <  0.01 were 
considered statistically significant.

The probability of death was estimated using L1 penalized 
logistic regression. Fivefold cross-validation was performed 
with the R package “caret,” 13 a wrapper to the “glmnet” 
package, to optimize the area under the receiver operator 
characteristic (ROC) curve in a penalized model.14 The pe-
nalization parameter α was fixed to 1.0 to force L1 penaliza-
tion, and the second penalization parameter λ was estimated 
with cross-validation. After estimating the optimal number 
of predictors, post-selection inference was performed by 
fitting a standard logistic regression model, retaining only 

the predictors estimated to have nonzero coefficients after 
the first penalized regression. The variables in this post-
selection inference table may not meet traditional signifi-
cance thresholds since they have been selected through the 
cross-validation process in the penalized regression, not by 
their P values. Furthermore, with these variables, we used 
5-fold cross-validation to estimate an ROC curve, and to es-
timate model performance with the area under the curve.

An L1 penalized survival time model was estimated using 
Cox proportional hazards in the R package glmnet.15 First, 
a regularized Cox regression model, with outcome defined 
as time to death since onset of symptoms (right-censored 
model), was fit. Fivefold cross-validation was used to select 
the optimal subset of predictors by minimizing the deviance 

Table 1. Demographics and clinical characteristics of discharged and deceased COVID-19 patients

Parameters

COVID-19 patients

P valuesDischarged Deceased

Number of patients 120 37  

Age (years) 56 (46–65) 72 (66–76) <0.001

Male sex (%) 43.3 62.8 0.059

Body temperature (°C) 36.8 (36.4–37.2) 36.8 (36.4–37.2) 0.704

Systolic blood pressure (mm Hg) 125 (118–132) 137 (124–150) <0.001

Diastolic blood pressure (mm Hg) 76 (70–80) 78 (74–86) 0.061

Heart rate (beats/minute) 80 (76–89) 90 (78–110) 0.004

Respiration rate (breaths/minute) 20 (20–20) 20 (20–25) 0.001

Onset of COVID-19 symptom (days) 10 (7–13) 8 (6–11) 0.229

Days of hospitalization 17 (13–24) 11 (5–18) <0.001

Comorbidities

 Diabetes (%) 11.7 27.0 0.035

 Hypertension (%) 28.3 59.5 0.001

 Cerebrovascular disease (%) 1.7 13.5 0.008

 COPD (%) 0.8 5.4 0.139

 Liver disease (%) 5.0 0.0 0.337

 Renal disease (%) 2.5 5.4 0.337

 Cancer (%) 5.0 10.8 0.247

 Smoking (%) 7.5 16.2 0.122

 Atrial fibrillation (%) 1.7 18.9 0.001

Medications

 ACEIs (%) 2.5 10.8 0.054

 ARBs (%) 6.7 5.4 1.000

 CCBs (%) 15.0 43.2 0.001

 β-Blockers (%) 12.5 24.3 0.114

Demographics and clinical characteristics collected on admission and days from onset of COVID-19 symptoms and days of hospitalization 
of discharged and deceased COVID-19 patients are presented. Data are shown as % for categorical and as median (interquartile range) for 
continuous variables. Categorical data were compared using chi-square test and continuous data using Mann–Whitney U test. Abbreviations: 
ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin receptor blockers; CCBs, calcium channel blockers; COPD, chronic ob-
structive pulmonary disease.
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of the Cox model. Thereafter, post-selection inference was 
performed with the selected predictors with an interval-
censored proportional hazards model for time to death 
since symptom onset, matching time of hospitalization 
to the period when the individual was observed. This ap-
proach accounts appropriately for the fact that all variables 
were measured at the day of hospitalization rather than at 
the time of onset of symptoms. The proportional hazards 
assumption was checked using the diagnostic test proposed 
by Grambsch and Therneau.16 The coefficients in the for-
mula calculating the probability of survival up to a certain 
time were generated with the R function “survfit.coxph.” 17 

Performance was assessed with Harrell’s concordance 
statistic.18

RESULTS

Demographic and clinical characteristics of COVID-19 
patients

The dataset contained 58 parameters from data col-
lected on day of admission to the hospital (including 
demographics, clinical characteristics, and laboratory 
parameters), discharge/death status, days from onset of 

Table 2. Laboratory parameters of discharged and deceased COVID-19 patients

Parameters

COVID-19 patients

P valuesDischarged Deceased

Number of patients 120 37  

Blood gas analysis

 SpO2 (%) 98 (95–99) 90 (85–93) <0.001

 PaO2 (mm Hg) 93 (77–12) 56 (49–67) <0.001

 FiO2 (volumetric fraction of O2) 0.21 (0.21–0.29) 0.45 (0.35–0.61) <0.001

 PaO2/FiO2 (mm Hg) 402 (298–493) 120 (98–203) <0.001

Blood electrolytes and proteins

 Sodium (mEq/l) 139 (137–143) 139 (137–144) 0.946

 Potassium (mEq/l) 3.68 (3.39–3.97) 3.56 (3.20–4.21) 0.631

 Calcium (mmol/l) 2.17 (2.08–2.25) 2.07 (1.99–2.12) <0.001

 Albumin (g/l) 37.0 (33.4–39.1) 32.3 (29.5–34.9) <0.001

 Globulin (g/l) 27.5 (25.6–29.8) 29.2 (27.4–33.4) 0.002

 Albumin/globulin ratio 1.35 (1.15–1.51) 1.09 (0.94–1.24) <0.001

Blood cell counts and fractions

 White blood cell number (109/ml) 4.7 (3.8–6.1) 8.1 (5.6–12.2) <0.001

 Neutrophil number (109/ml) 3.3 (2.4–4.9) 7.4 (4.7–11.5) <0.001

 Neutrophil fraction (%) 73.5 (64.2–80.3) 88.5 (81.8–92.9) <0.001

 Lymphocyte number (109/ml) 0.86 (0.64–1.14) 0.61 (0.30–0.93) 0.001

 Lymphocyte fraction (%) 17.6 (12.1–25.4) 6.5 (3.8–9.8) <0.001

 Neutrophil-to-lymphocyte ratio 4.1 (2.5–6.5) 13.5 (8.4–25.0) <0.001

Liver and kidney functions

 Alanine aminotransferase (U/l) 21.0 (14.0–31.5) 31.0 (19.0–39.0) 0.007

 Aspartate aminotransferase (U/l) 28.0 (20.8–47.0) 47.0 (31.0–65.0) <0.001

 Creatinine (mg/dl) 0.67 (0.58–0.81) 0.78 (0.67–1.07) 0.003

Cardiac, inflammatory, and metabolic makers

 Troponin T (ng/ml) 0.009 (0.006–0.012) 0.30 (0.014–0.077) <0.001

 hsCRP (mg/l) 31.3 (12.5–61.3) 93.3 (63.6–179.1) <0.001

 Lactic acid (mmol/l) 1.70 (1.30–2.00) 2.40 (1.70–3.10) <0.001

Laboratory parameters collected on admission to the hospital of discharged and deceased COVID-19 patients are presented. Data are 
shown as % for categorical and as median (interquartile range) for continuous variables. Continuous data were compared using Mann–Whitney 
U test. Abbreviations: FiO2, fraction of inspired oxygen; hsCRP, high-sensitivity C-reactive protein; PaO2, partial pressure of oxygen; SpO2, pe-
ripheral oxygen saturation.
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COVID-19 symptoms, and days from hospitalization to 
discharge from the hospital or death during hospitali-
zation for 187 patients with COVID-19. Of the 58 data 
parameters collected, 12 variables were removed where 
more than 15 individuals had missing values, leaving 43 
parameters collected on admission plus discharge/death 
status, days from onset of COVID-19 symptoms, and 
days of hospitalization. The cutoff for missing values in 
15 individuals was based on the distribution shown in 
Supplementary Figure S1 online. As standard prediction 
models do not tolerate missing values, our analysis was 
done using 157 patients with no missing data, a subset 
of the original 187 patients reported in the study of Guo 
et  al.11 The demographics, clinical characteristics, and 
laboratory parameters of COVID-19 patients without and 
with missing data are presented in Supplementary Tables 
S1 and S2 online. Only 1 parameter was significantly dif-
ferent, neutrophil number, which was lower in patients 
with missing data.

COVID-19 patients were separated in 2 groups, 
discharged from the hospital (120 patients) or death during 
hospitalization (37 patients) (Tables  1 and 2). Deceased 
patients were older and presented higher systolic BP (SBP), 
heart rate, and respiration rate (RR), and more comorbidities 
including diabetes, hypertension, cerebrovascular disease, 
and atrial fibrillation compared with discharged patients 
(Table  1). As well, proportionally more deceased patients 
took angiotensin-converting enzyme inhibitors (ACEIs) 
or calcium channel blockers (CCBs). Laboratory results 
correlated with the respiratory distress and the presence of 
more comorbidities in deceased compared with discharged 
patients (Table 2). In addition, higher levels of markers of 
liver dysfunction (alanine aminotransferase and aspar-
tate aminotransferase [AST]) and kidney function (creat-
inine) were observed in deceased patients. TnT, a marker 
of cardiac injury, was higher in deceased compared with 
discharged patients (Table  2). Systemic inflammation 
assessed by blood cell counts and fractions and high-
sensitivity C-reactive protein (hsCRP) levels was elevated 
in deceased vs. discharged patients. All patients presented 
elevated lactic acid (>1 mmol/l), to a greater degree in de-
ceased vs. discharged patients.

A penalized logistic regression model efficiently predicts 
the probability of worse outcomes of COVID-19 patients 
with 13 parameters collected at admission

Pearson correlations determined between 43 
covariates collected on admission and death status re-
vealed associations between mortality and 22 covariates 
(Figure  1). Interestingly, hypertension and SBP were as-
sociated with parameters of severe cases of COVID-19 
including death and respiratory distress parameters, 
as already suggested in early studies (reviewed in ref. 
19). A  penalized logistic regression with a 5-fold cross-
validation identified a model predicting death in COVID-
19 patients using 13 parameters collected at admission; 
the optimum value of the penalization parameter λ was 
0.034, the area under the ROC curve was 0.943, sensitivity 
was 0.966, and specificity was 0.764. The 13 parameters 

included age, SBP, RR, peripheral oxygen saturation 
(SpO2), DM, atrial fibrillation, ACEIs, CCBs, hsCRP, 
AST, TnT, lactic acid, and the fraction of inspired oxygen 
(FiO2). When fitting a standard logistic regression using 
only these 13 variables to perform post-selection infer-
ence, the probability of death can be calculated as:

Probability of death =
exp(η)

1 + exp(η)

where η depends on the values of predictors and it takes 
the form

η = − 15.191 + 0.158 × age + 0.013 × SBP + 0.676 × RR
− 0.258 × SpO2 + 1.433 × diabetes
+ 3.515 × atrial fibrillation + 4.629 × ACEIs
+ 0.678 × CCBs + 0.003 × hsCRP1 + 0.018 × AST
+ 12.464 × TnT + 1.920 × lactic acid + 16.499 × FiO2

This information is also shown in Table 3, with standard 
errors and P values; as stated in Methods, traditional signifi-
cance is not observed for all variables since they were selected 
through the penalized L1 regression. The performance of 
these 13 variables to predict death was estimated by using 
logistic regressions embedded in 5-fold cross-validation; the 
overall area under the curve was 0.886 (Figure 2).

A regularized Cox regression model predicts the probability 
of survival of COVID-19 patients with 7 parameters 
collected at admission

Using time to death since onset of COVID-19 symptoms 
as the outcome, a regularized Cox regression model with 
5-fold cross-validation identified 7 parameters collected at 
admission as the most relevant variables to generate a model 
predicting survival of COVID-19 patients (partial likeli-
hood deviance of 0.2805). The 7 parameters are age, SBP, 
RR, hsCRP, TnT, lactic acid, and FiO2. Using time to death 
since symptoms as an interval-censored (or counting pro-
cess) observation, a post-selection inference Cox propor-
tional hazards model generated a model predicting survival 
of COVID-19 patients using 7 parameters identified above 
(Figure 3). The probability of survival of COVID-19 patients 
up to time t, indicated by our Cox model, was calculated as 
described below.

P(T > t|age, SBP, RR, hsCRP, TnT, lactic acid, FiO2)

= S0(t)
exp(age×0.0589+SBP×(0.0207)+RR×0.2141+hsCRP×0.0118

+TnT1×1.3890+lactic acid×0.1374+FiO2×2.3598)

where (t) is the baseline survival function, which can 
be estimated from data using a nonparametric approach.20 
Harrell’s concordance statistic for this model was 0.91. 
Figure 3 shows the hazard ratios per SD of each covariate, in 
contrast to this equation which shows the log hazard ratios 
for a single unit change on the original scale.

http://academic.oup.com/ajh/article-lookup/doi/10.1093/ajh/hpaa225#supplementary-data
http://academic.oup.com/ajh/article-lookup/doi/10.1093/ajh/hpaa225#supplementary-data
http://academic.oup.com/ajh/article-lookup/doi/10.1093/ajh/hpaa225#supplementary-data
http://academic.oup.com/ajh/article-lookup/doi/10.1093/ajh/hpaa225#supplementary-data
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DISCUSSION

In this study, we have generated models predicting risk of 
developing severe disease leading to worse outcomes. Our 
study includes consecutive patients recruited at the Seventh 
Hospital of Wuhan, and followed until death or discharge, 
and therefore any selection bias should be minimal, and 
related only to the catchment pool for the hospital. First, 
we developed a logistic regression model that allows pre-
diction of worse outcomes of COVID-19 patients with 13 

covariates identified using by allowing cross-validation to 
determine the optimal number of covariates to retain from 
among a combination of 43 demographic, clinical, and lab-
oratory parameters collected at the time of admission to 
hospital. Similarly, we created a Cox proportional hazards 
model predicting the probability of survival of COVID-19 
patients with 7 covariates identified using a similar unbiased 
approach among the same set of 43 parameters, taking into 
account the time to death since appearance of symptoms as 
counting process. It is noteworthy that these 7 covariates 

Figure 1. Correlogram of the correlation coefficients of the 43 parameters collected at admission and death status. Correlations were determined using 
a Pearson Product Moment correlation. Correlations with P value <0.01 were considered significant. The insignificant correlation coefficient values are 
left blank. Correlation coefficient scale is represented on the right of the figure with the blue square showing positive correlation and red square negative 
correlation. Abbreviations: ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin receptor blockers; CCBs, calcium channel blockers; COPD, 
chronic obstructive pulmonary disease; DBP, diastolic blood pressure; FiO2, fraction of inspired oxygen; hsCRP, high-sensitivity C-reactive protein; PaO2, 
partial pressure of oxygen; SBP, systolic blood pressure; SpO2, peripheral oxygen saturation.
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containing SBP on arrival to the hospital were included in 
the 13 covariates of the model predicting a worse outcome.

Candidate approaches have been used to identify impor-
tant risk factors associated with severe cases of COVID-19.7,9–

11 In this study, we used an unbiased approach to identify the 
covariates in order to generate an optimal worse outcome 
predicting model. This approach was successful as the area 
under the ROC curve was 0.886. The identified covariates 
are a combination of parameters already shown to be im-
portant risk factors associated with severe cases of COVID-
19. Interestingly, the unbiased approach identified covariates 
that were shown previously to demonstrate synergistic ef-
fect when combined. The high mortality rate observed in 
COVID-19 patients with high TnT levels was double in 
presence of cardiovascular disease.11 The 7 covariates used 
to generate the model predicting survival of COVID-19 

patients were contained within the 13 covariates of the mor-
tality predicting model. This may underscore the importance 
of these parameters in the outcome of COVID-19 patients. 
The common identified covariates are age, SBP, RR, hsCRP, 
TnT, lactic acid, and FiO2. A similar unbiased approach was 
used by Liang et al. to develop a model predicting the risk of 
developing critical illness of COVID-19 patients at the time 
of admission with an area under the ROC curve of 0.88.21 
Critical illness was defined as a composite of admission to 
the intensive care unit, invasive ventilation, or death. These 
authors identified similar covariates among 72 parameters 
of COVID-19 patients collected at admission: age, pulmo-
nary compromise markers (chest radiographic abnormality, 
dyspnea, hemoptysis), coma, number of comorbidities, 
cancer history, a marker of systemic inflammation (NLR), 
a marker of tissue damage (lactate dehydrogenase), and a 
marker of liver function (direct bilirubin). Differences in 
identified covariates may be due to a different predicted out-
come and parameters determined at admission.

SBP but not hypertension was identified as a covariate 
in both mortality and survival prediction models. SBP was 
elevated in deceased compared with discharged COVID-
19 patients. It is unclear whether SBP was already elevated 
before or rose after infection with the SARS-CoV-2 in the 
deceased COVID-19 patient group. High SBP in the de-
ceased COVID-19 patient group may be due to untreated 
or uncontrolled hypertension. It is also possible that SBP 
elevation is the consequence of reduced enzymatic activity 
of angiotensin-converting enzyme 2 (ACE2) induced by 
binding of a higher SARS-CoV-2 load, with decreased gen-
eration of the vasodilator peptide angiotensin 1–7 from an-
giotensin II, or results from effects of systemic inflammation. 
However, the deceased group of patients were older, and 
hypertension is more prevalent in the elderly. Accordingly, 

Table 3. Post-selection inference from logistic regression l predicting death in COVID-19 patients

Variables Regression coefficient Std. error Z values P values

Intercept −15.191 8.926 −1.702 0.089

Age 0.158 0.067 2.348 0.019

SBP 0.013 0.028 0.462 0.644

Respiration rate 0.676 0.366 1.846 0.065

SpO2 −0.258 0.090 −2.857 0.004

Diabetes 1.433 1.222 1.277 0.202

Atrial fibrillation 3.515 1.649 2.131 0.033

ACEIs 4.629 2.128 2.205 0.028

CCBs 0.678 1.181 0.574 0.566

hsCRP 0.003 0.010 0.262 0.794

Aspartate aminotransferase 0.018 0.021 0.848 0.397

Troponin T 12.464 16.924 0.736 0.462

Lactic acid 1.920 0.937 2.049 0.041

FiO2 16.499 6.115 2.698 0.007

The post-selection generalized linear model of death prediction was determined using 13 variables identified by penalized logistic regression. 
Abbreviations: ACEIs, angiotensin-converting enzyme inhibitors; CCBs, calcium channel blockers; FiO2, fraction of inspired oxygen; hsCRP, 
high-sensitivity C-reactive protein; SBP, systolic blood pressure; SpO2, peripheral oxygen saturation.

Figure 2. ROC curve of the model predicting death in patients with 
COVID-19 using 13 selected parameters collected on admission to the 
hospital. The dashed line represents the reference line. The area under the 
ROC curve is 0.886. Abbreviation: ROC, receiver operator characteristic.
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significantly higher SBP in the deceased group could be the 
result of confounding due to the older age of the patients 
that died.19 Elevated SBP could be a marker of preexisting 
end-organ damage and is an important comorbid factor. 
It is also unknown whether TnT was elevated in deceased 
compared with discharged COVID-19 patients before infec-
tion with SARS-CoV-2 or rose later. Two drugs used to con-
trol BP, ACEIs and CCBs, were identified as covariates for 
the prediction of death of COVID-19 patients. There is no 
evidence that these drugs contribute to the pathophysiology 
of COVID-19.19 The greater frequency of use of these drugs 
in deceased COVID-19 patients may be related to the higher 
SBP or rate of prevalence of cardiovascular disease (Table 1).

Limitations

The relatively small number of patients from 1 center in 
1 country is a limitation. A  larger cohort of patients from 
multiple centers and countries would allow validating 
our prediction models. As well, confirmation that these 
models are applicable in other healthcare systems is impor-
tant. Secondly, the number of parameters collected on ad-
mission could be considered limited. A  larger number of 
parameters could ensure identification of the best covariates. 
For example, it would have been nice to know time of in-
fection, and to have detailed immune characterizations of 
the patients at admission, but these data are either unknow-
able or not available. Thirdly, it is unknown whether high 
SBP and high TnT levels in deceased patients were preex-
isting conditions or developed after onset of COVID-19 
symptoms. Although the interval-censored survival models 
are more appropriate in this context, the implementation of 
penalized survival analysis does not allow the counting pro-
cess specification. Therefore, we fit right-censored penalized 

models and only used interval censoring for post-selection 
inference. This is unlikely to materially change our results 
since right-censored models starting at time of hospitaliza-
tion gave similar results.

This study generated an efficient model to predict critical 
disease leading to worse outcome in COVID-19 patients 
at admission to the hospital using 13 covariates selected 
among 43 demographic, clinical, and laboratory parameters 
using an unbiased approach. A model predicting survival 
which included 7 of these 13 covariates was generated using 
a similar approach. Age, RR, and hsCRP1 were the 3 main 
covariates that predict the outcome of COVID-19 patients; 
both in the prediction of survival and mortality. High SBP 
on arrival at the hospital, which is an important comorbid 
factor, was identified as a covariate in both models. The 
prediction of critical illness and survival of COVID-19 
patients at admission to the hospital could contribute to 
risk stratification and evidence-based decision-making at 
triage, which would help to provide appropriate care to 
COVID-19 patients, potentially contributing to improve 
their outcomes. These parameters predicting outcome on 
admission would help in both ethical crisis triage following 
evidence-based patient survival probability, as well as con-
tribute to dedicating in anticipation of deterioration avail-
able resource-intensive approaches to those patients for 
who critical disease can be predicted. A caveat to this con-
clusion is that the model described here is specific to the 
management available at the time that these data were col-
lected. Progress in treatment since then is reducing case-
fatality rates and may eventually supersede this particular 
model of risk prediction and necessitate development of 
new models adapted to a new reality.

Figure 3. The estimated hazard ratios for each predictor of the counting process Cox proportional hazard regression model predicting survival of 
COVID-19 patients. Hazard ratios in the figure are for a 1-SD change in the covariate. Abbreviations: FiO2, fraction of inspired oxygen; hsCRP, high-
sensitivity C-reactive protein; PaO2, partial pressure of oxygen; SBP, systolic blood pressure.
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Supplementary data are available at American Journal of 
Hypertension online.

FUNDING

This research was supported by Canadian Institutes 
of Health Research (CIHR) First Pilot Foundation Grant 
143348 to E.L.S., by the Special Project for Significant New 
Drug Research and Development in the Major National 
Science and Technology Projects of China (project 
2020ZX09201007) to Z.L., by a grant from Genome Canada 
(2017 B/CB) to K.O.K., by a Canadian Vascular Network 
fellowship to A.C., and by a scholarship from the Fonds de 
recherche Québec santé to K.Z.

DISCLOSURE

This manuscript was sent to Guest Editor, Hillel W. Cohen, 
MPH, DrPH for editorial handling and final disposition. The 
authors declared no conflict of interest.

DATA AVAILABILITY

The data and analytic methods will be/have been made 
available to other researchers for the purpose of reproducing 
the results or replicating the procedure.

REFERENCES

 1. Ellul MA, Benjamin L, Singh B, Lant S, Michael BD, Easton A, Kneen R, 
Defres S, Sejvar J, Solomon T. Neurological associations of COVID-19. 
Lancet Neurol 2020; 19:767–783.

 2. Gupta  S, Hayek  SS, Wang  W, Chan  L, Mathews  KS, Melamed  ML, 
Brenner SK, Leonberg-Yoo A, Schenck EJ, Radbel J, Reiser J, Bansal A, 
Srivastava A, Zhou Y, Sutherland A, Green A, Shehata AM, Goyal N, 
Vijayan  A, Velez  JCQ, Shaefi  S, Parikh  CR, Arunthamakun  J, 
Athavale AM, Friedman AN, Short SAP, Kibbelaar ZA, Abu Omar S, 
Admon AJ, Donnelly JP, Gershengorn HB, Hernan MA, Semler MW, 
Leaf DE; Investigators S-C. Factors associated with death in critically 
ill patients with coronavirus disease 2019 in the US. JAMA Intern Med 
2020; 180:1436–1446.

 3. Rothan HA, Byrareddy SN. The epidemiology and pathogenesis of coro-
navirus disease (COVID-19) outbreak. J Autoimmun 2020; 109:102433.

 4. Wiersinga  WJ, Rhodes  A, Cheng  AC, Peacock  SJ, Prescott  HC. 
Pathophysiology, transmission, diagnosis, and treatment of corona-
virus disease 2019 (COVID-19): a review. JAMA 2020; 324:782–793.

 5. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, 
Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, 
Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, 
Cao B. Clinical features of patients infected with 2019 novel corona-
virus in Wuhan, China. Lancet 2020; 395:497–506.

 6. Lechien JR, Chiesa-Estomba CM, De Siati DR, Horoi M, Le Bon SD, 
Rodriguez A, Dequanter D, Blecic S, El Afia F, Distinguin L, Chekkoury-
Idrissi Y, Hans S, Delgado IL, Calvo-Henriquez C, Lavigne P, Falanga C, 
Barillari MR, Cammaroto G, Khalife M, Leich P, Souchay C, Rossi C, 
Journe F, Hsieh J, Edjlali M, Carlier R, Ris L, Lovato A, De Filippis C, 
Coppee  F, Fakhry  N, Ayad  T, Saussez  S. Olfactory and gustatory 
dysfunctions as a clinical presentation of mild-to-moderate forms of 
the coronavirus disease (COVID-19): a multicenter European study. 
Eur Arch Otorhinolaryngol 2020; 277:2251–2261.

 7. Yang AP, Liu JP, Tao WQ, Li HM. The diagnostic and predictive role of 
NLR, d-NLR and PLR in COVID-19 patients. Int Immunopharmacol 
2020; 84:106504.

 8. Lewington  S, Clarke  R, Qizilbash  N, Peto  R, Collins  R; Prospective 
Studies Collaboration. Age-specific relevance of usual blood pressure 
to vascular mortality: a meta-analysis of individual data for one million 
adults in 61 prospective studies. Lancet 2002; 360:1903–1913.

 9. Shi Y, Yu X, Zhao H, Wang H, Zhao R, Sheng J. Host susceptibility to 
severe COVID-19 and establishment of a host risk score: findings of 
487 cases outside Wuhan. Crit Care 2020; 24:108.

 10. Yuan M, Yin W, Tao Z, Tan W, Hu Y. Association of radiologic findings 
with mortality of patients infected with 2019 novel coronavirus in 
Wuhan, China. PLoS One 2020; 15:e0230548.

 11. Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, 
Lu  Z. Cardiovascular implications of fatal outcomes of patients 
with coronavirus disease 2019 (COVID-19). JAMA Cardiol 2020; 
5:811–818.

 12. World Medical Association. World Medical Association Declaration 
of Helsinki: ethical principles for medical research involving human 
subjects. JAMA 2013; 310:2191–2194.

 13. Kuhn M. Building predictive models in R using the caret Package. J Stat 
Softw 2008; 28:1–26.

 14. Friedman J, Hastie T, Tibshirani R. Regularization paths for generalized 
linear models via coordinate descent. J Stat Softw 2010; 33:1–22.

 15. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for 
Cox’s proportional hazards model via coordinate descent. J Stat Softw 
2011; 39:1–13.

 16. Grambsch  PM, Therneau  TM. Proportional hazards tests and 
diagnostics based on weighted residuals. Biometrika 1994; 81:515–526.

 17. Link  CL. Confidence intervals for the survival function using 
Cox’s proportional-hazard model with covariates. Biometrics 1984; 
40:601–609.

 18. Harrell FE Jr, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the 
yield of medical tests. JAMA 1982; 247:2543–2546.

 19. Schiffrin EL, Flack JM, Ito S, Muntner P, Webb RC. Hypertension and 
COVID-19. Am J Hypertens 2020; 33:373–374.

 20. Tsiatis AA. A large sample study of Cox’s regression model. Ann Stat 
1981; 9:93–108.

 21. Liang W, Liang H, Ou L, Chen B, Chen A, Li C, Li Y, Guan W, Sang L, 
Lu  J, Xu Y, Chen G, Guo H, Guo  J, Chen Z, Zhao Y, Li S, Zhang N, 
Zhong N, He J; China Medical Treatment Expert Group for COVID-19. 
Development and validation of a clinical risk score to predict the occur-
rence of critical illness in hospitalized patients with COVID-19. JAMA 
Intern Med 2020; 180:1081–1089.


