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Abstract
Background: This work has investigated under what conditions confidence intervals around the
differences in mean costs from a cluster RCT are suitable for estimation using a commonly used
cluster-adjusted bootstrap in preference to methods that utilise the Huber-White robust estimator
of variance. The bootstrap's main advantage is in dealing with skewed data, which often characterise
patient costs. However, it is insufficiently well recognised that one method of adjusting the
bootstrap to deal with clustered data is only valid in large samples. In particular, the requirement
that the number of clusters randomised should be large would not be satisfied in many cluster
RCTs performed to date.

Methods: The performances of confidence intervals for simple differences in mean costs utilising
a robust (cluster-adjusted) standard error and from two cluster-adjusted bootstrap procedures
were compared in terms of confidence interval coverage in a large number of simulations.
Parameters varied included the intracluster correlation coefficient, the sample size and the
distributions used to generate the data.

Results: The bootstrap's advantage in dealing with skewed data was found to be outweighed by its
poor confidence interval coverage when the number of clusters was at the level frequently found
in cluster RCTs in practice. Simulations showed that confidence intervals based on robust methods
of standard error estimation achieved coverage rates between 93.5% and 94.8% for a 95% nominal
level whereas those for the bootstrap ranged between 86.4% and 93.8%.

Conclusion: In general, 24 clusters per treatment arm is probably the minimum number for which
one would even begin to consider the bootstrap in preference to traditional robust methods, for
the parameter combinations investigated here. At least this number of clusters and extremely
skewed data would be necessary for the bootstrap to be considered in favour of the robust
method. There is a need for further investigation of more complex bootstrap procedures if
economic data from cluster RCTs are to be analysed appropriately.
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Background
The greater complexity of cluster randomised controlled
trials (RCTs) compared with their individually ran-
domised counterparts has led to much methodological
work concerning their design and analysis[1]. However,
the analysis of cost data from these trials has received little
attention to date. The conceptual issues arising in this
context have been explored [2] but, briefly, there are two
problems.

The first is that many trials randomise only a small
number of clusters. This can sometimes produce inade-
quate randomisations where, for example, all clusters
with a characteristic related to outcome are allocated to
one treatment arm [3]. It may also be difficult to make
inferences on cluster level covariates and between-cluster
variability. Although in theory this problem is just as rele-
vant to clinical data, in practice methods of analysis based
on the t-test are fairly robust to moderate violations of the
assumptions of normality and homogeneity of variances
[4]. The situation with highly skewed continuous eco-
nomic data, however, may be more serious. Indeed, at
either the individual or cluster level, skewed data are
potentially very problematic, particularly with small num-
bers of clusters. Appeals to normality of data may not be
reasonable for the distribution of cluster means, given var-
iation in medical practice, social and geographical factors.
In individually randomised trials, problems of skewness
and small sample sizes have sometimes resulted in confi-
dence intervals with poor coverage properties (such as
negative lower limits for mean costs). In such circum-
stances economic data have been analysed using methods
such as the nonparametric bootstrap [5], first proposed by
Efron [6]. This relies on computer-intensive resampling
methods rather than a formula and commensurate
appeals to the central limit theorem. In essence, by treat-
ing the sample at hand as the population, repeated resam-
pling with replacement from this 'population' and
calculation of a parameter of interest builds up a picture,
the 'empirical distribution' of this parameter, based on so-
called 'B bootstrap estimates' of the parameter of interest.
This can be used to construct directly the required confi-
dence interval by, for instance, reading off the 2.5% and
97.5% percentiles of the distribution. Bootstrapped confi-
dence intervals may, therefore, be asymmetric and be bet-
ter able to deal with skewed data.

The bootstrap approach is flexible but does assume that
the data are independently and identically distributed
[7,8]. When stratification, cluster sampling or probability
weights are introduced into sampling this assumption is
violated and the bootstrap as described above will give
incorrect inferences. Work has been carried out in the
1980s and 1990s to generalise the bootstrap to survey
sampling and regression analysis [7,9]. The bootstrap is

included in some standard statistical packages, but it is
often overlooked that confidence intervals from this may
have poor coverage properties when there is a small
number of clusters – a phenomenon that is common in
cluster RCTs.

This paper details the results of simulation studies to eval-
uate how clustered cost data might be analysed. Small
numbers of clusters together with skewed data were uti-
lised to ascertain how the bootstrap performed against a
method of analysis commonly used in clustered clinical
data. Thus it details the generation and analysis of a single
outcome model. This single outcome model was primarily
conceptualised as a model for cost data and the term cost
is therefore used as short-hand. However, some of the sce-
narios presented may be equally applicable to clinical
data.

Methods
The performances of confidence intervals for simple dif-
ferences in mean costs utilising a robust (cluster-adjusted)
standard error and from two cluster-adjusted non-para-
metric bootstrap procedures were compared in terms of
confidence interval coverage. Specifically, the comparison
was of the percentage of 20,000 simulations for which the
estimated 95% confidence interval contained the true
value of the treatment effect. If the observed coverage were
to be 95% on average across the simulations, then 20,000
simulations would from simple binomial theory give a
margin of error of approximately

, which was considered

acceptable. Over 20,000 simulations per parameter set,
then, the following were noted:

1. The mean value (over all simulations) of the estimated
treatment effect and the confidence limits under each of
the three procedures,

2. The percentages of simulations for which the estimated
confidence interval did not contain the true value of the
treatment effect (zero) and whose lower/upper limit was
greater/less than this true value,

3. The percentage of simulations for which the estimated
confidence interval contained the true value for the treat-
ment effect. This figure was simply 100 minus the sum of
the two percentages in 2 above.

Thus ideally the two figures in 2 should each be 2.5%
whilst that for 3 should be 95% (the nominal level). It was
decided to split observed non-coverage rates according to
whether there was spurious positive treatment effect or a

2
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spurious negative one because skewed distributions were
expected to have different implications for each of these.

Data generation process
The data were constructed by assuming there were n indi-
viduals in each of 2k clusters. Half of these were ran-
domised to a hypothesised intervention group, whilst the
other half were randomised to a control group. A random
effects model incorporating a treatment dummy variable
was used:

Ehij = αhi + βTh + εhij  h = 0,1; i = 1,...k;j = 1,...n;

E(αhi) = 0; E(εhij) = 0

Thus the jth individual in the ith cluster was randomised
to receive treatment h. Each individual's outcome, Ehij,
comprised three elements: the effect of treatment, βTh, the
cluster-specific effect, αhi, and the individual-specific
effect, εhij. In order to inform the values of these parame-
ters, it was necessary to undertake some exposition of how
cost data might be distributed in a cluster RCT.

Conceptualising costs in a cluster RCT
In attempting to construct realistic scenarios for cost data
from a cluster RCT, three main factors were considered:

1. What is the nature of the distribution of individual
patient costs expected to be in the population of patients
normally eligible for treatment?

2. How representative of this population distribution are
the cost distributions within clusters likely to be? This has
implications for the ICC and the assumptions regarding
the distributions.

3. How might the introduction of an intervention affect 2
above?

As detailed previously, the existence of one unrepresenta-
tive cluster (such as a London teaching hospital) in one
arm may affect the ICC, independently of treatment, or
the treatment could directly change the ICC and the distri-
bution [2].

Parameters varied in the simulation model
This section formally sets out the parameters which, when
varied in the simulation model, attempted to capture two
potential extreme scenarios as well as situations in
between. Under the first scenario, all clusters are equally
representative of the population, leading to a high degree
of skewness within most, if not all, clusters. Under such a
scenario, the ICC is likely to be small and results would be

expected to be robust to any incorrect assumptions made
regarding the between-cluster distribution. Under the sec-
ond scenario, within-cluster costs are expected to be more
homogenous and much of the skewness in the cost data at
the population level is attributable to differences in the
cluster mean costs. As a result, the ICC would be expected
to be much larger, and the between-cluster distribution
might be expected to exhibit considerable skewness. Six
factors were varied:

1. The between-cluster distributions,

2. The within-cluster distributions,

3. The ICC in the control group,

4. The ICC in the intervention group,

5. The number of clusters in each intervention arm,

6. The number of individuals in each cluster.

The between-cluster distributions
There were two distributional assumptions used for the
cluster means. The first was the normal distribution and
the second was the lognormal distribution, which, for a
given mean and variance, exhibits higher kurtosis and
skewness than the gamma distribution, the main alterna-
tive skewed distribution.

For each of the ICC combinations given below, there were
three possible combinations of the between-cluster
distributions:

1. The cluster means in both the control and intervention
groups were normally distributed

2. The cluster means in both the control and intervention
groups were lognormally distributed

3. The cluster means in the (nominal) control group were
normally distributed, whilst in the (nominal) interven-
tion group they were lognormally distributed.

The within-cluster distributions
The same distribution was used for individual level data
in both treatment arms in order not to further increase the
number of parameter combinations possible. Lognormal
data were used in order to provide a scenario applicable to
individual level cost data.

The ICC in the control group
Given that the likely range of cost ICCs is largely
unknown, values between zero and 0.5 were used. While
high, the upper value is consistent with the one published

Var Varhi B hij W( ) ; ( )α σ ε σ= =2 2
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source of cost ICCs [10]. The ICCs used were 0.01, 0.1 and
0.25 for one of the two treatment groups. The value 0.5
was not used for the control group but was achieved in the
intervention group as a result of changes in the ICC (see
below). The total variance, equal to the between-cluster
variance plus the within-cluster variance, was arbitrarily
fixed at 100.

The ICC in the intervention group
For a given value of the ICC in the control group, the inter-
vention ICC can remain the same or it can change in a
number of ways. In particular, the intervention ICC:

1. Remained the same as the control ICC,

2. Doubled, as a result of an appropriate increase in the
between-cluster variance,

3. Doubled, as a result of an appropriate decrease in the
within-cluster variance,

4. Halved, as a result of an appropriate decrease in the
between-cluster variance,

5. Halved, as a result of an appropriate increase in the
within-cluster variance.

Although it is only the between-cluster variance or the
within-cluster variance that changes at any one time (not
both), the changes involved are large ones. Hence these
extreme scenarios should cover a range of findings.

The number of clusters in each group
The number of clusters in each group was 6, 12 or 24.
These figures reflect the small numbers of clusters
recruited in many cluster RCTs and, coupled with the clus-
ter sizes given below, they allowed alternative combina-
tions of cluster size and number of clusters to be
investigated for a given total trial size.

The number of individuals in each cluster
The cluster size was 25, 50 or 100. Mean cluster sizes
between 50 and 100 are not unusual in health services
research trials, but there is enormous variation in cluster
size, depending upon treatment area and type of
cluster[1].

Comparison of methods that allow for clustering
The first method utilises a standard procedure, where
'standard' has been taken to mean a 95% confidence inter-
val quoted for continuous data in packages such as Stata
[11], utilising a point estimate and a Huber-White
(robust) cluster-adjusted standard error [12-14]. Boot-
strapping was performed for the two other methods, as
described in Davison and Hinkley [7]. Under both meth-

ods the sampling structure was maintained in a bootstrap
replication by selecting k clusters with replacement from
the treatment group and selecting k clusters with replace-
ment from the control group – in other words, resampling
of clusters was stratified by intervention group. Under
method 1 all individuals within a resampled cluster were
then selected. Under method 2 a second level of bootstrap
was performed on individuals within clusters selected at
level one. The difference between the two randomisation
group means was then calculated for each method. This
was repeated to give 1000 bootstrap estimates (estimates
performed on the resampled data) of the treatment effect.
A bias-corrected and accelerated (BCa) confidence interval
was then estimated at the same nominal 95% level as for
the robust method [8]. Given the nature of the BCa
method, the resulting confidence interval need not be
symmetric. The bootstrap methods are described in more
detail below.

Method 1
Under this procedure (BS1), clusters are bootstrapped and
each resampled cluster is kept intact. This method is uti-
lised by Stata [11] when the cluster() option is added to
the bootstrap command. Suppose that within a randomi-
sation group, for each of k clusters, n responses are
obtained, yij, such that

yij = αi + εij  i = 1,...k;j = 1,...n.

The αis are sampled randomly from the distribution Fα
and the εijs are independently sampled randomly from
the distribution Fε.

E(αi) = 0;  (1)

It can be shown that for the bootstrap estimates (with
superscript asterisks):

When compared with (2) and (3) it should be noted that
the expected variance and covariance of the resampled
outcome data are slightly biased downwards. However, an
estimator such as the sample mean is strongly consistent

var( ) ;Yij B W= + ( )σ σ2 2 2

cov( , ) , .Y Y j lij il B= ≠ ( )σ 2 3

E Y yij
* *( ) ;=

E Y
k

k

kn

knij B Wvar ( )* *{ } = − + − ( )1 1
42 2σ σ

E Y Y
k

k knij il B Wcov ( , )* * *{ } = − − ( )1 1
52 2σ σ
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(in that its bias is zero and its variance tends to zero as the
total sample size approaches infinity); the level of bias is
small unless the number of clusters becomes very small.

Method 2
An alternative method (BS2) involving resampling indi-
viduals as well as resampling whole clusters was also con-
sidered. This uses a first stage bootstrap applied to the
estimated cluster means (sampling with replacement).
The second stage, in which individuals are bootstrapped,
involves resampling the deviations from the estimated
cluster means. However, the estimated cluster means
incorporate both within and between-cluster variability
and any analysis that restricts itself to the cluster means
will over-estimate the variance in these means [7]. By
incorporating the deviations from the estimated cluster
means we have, in effect, double-counted the within-clus-
ter variance. Therefore, the cluster means were shrunk

using Davison and Hinkley's shrinkage estimates,  (see
page 102 of their book):

where c is given by

; if the right hand side is

negative, it is reset to zero.

The variance of the adjusted cluster means, , is then

.

The deviations from the estimated cluster means were also
standardised to

Finally, for all resampled clusters, the 'shrunken' mean is
added to the standardised deviation for each resampled
individual:

This method, with the rescaling procedures will in future
be referred to as the BS2 method, or double bootstrap.

Results
The primary focus of this work was on confidence interval
coverage and rejection rates; the estimated confidence
limits are, therefore, not presented but general inferences
regarding the relative width of various confidence inter-
vals can be made easily from the coverage and rejection
rates presented below.

Coverage rates for cost confidence intervals
As a summary, Tables 1 to 3 show coverage rates for each
of the three methods of analysis for each sample size com-
bination when averaged over the 15 parameter/distribu-
tion combinations for a given control group ICC – that is,
three distributional assumptions for each of five ICC
combinations.
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Table 1: Observed coverage (%) for robust, BS1 and BS2 methods of analysis (Control ICC = 0.01)

Cluster Size
25 50 100

Number of clusters per arm 6 94.1 93.8 94.0
88.2 88.2 88.3
93.2 93.1 92.7

12 94.6 94.5
91.1 91.3
93.4 93.3

24 94.8
92.7
93.7
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Issues specific to variance or distribution combinations
are presented below. In the three tables, within each box
the first number represents the coverage of the robust con-
fidence interval, the second represents the coverage of the
BS1 method whilst the third figure represents that of the
BS2 method. A number of results are immediately
apparent:

• All three methods produce coverage of less than 95%,
the nominal level,

• All three methods appear to be consistent with respect to
the impact of the number of clusters per arm. In other
words, as the number of clusters per arm increases, the
observed coverage approaches 95% for each method,

• The coverage of the robust method is within approxi-
mately 1.5% of 95%,

• The BS1 method is always outperformed by the other
two methods. In other words the other two methods
always achieve coverage that is closer to 95%,

• The BS2 method performs much better than the BS1
method but never as well as the robust method,

• As the ICC in the control group increases (that is, across
tables) the robust method performs slightly worse whilst
the performances of the bootstrap methods are noticeably
poorer,

• When examining numbers along the diagonal in each
figure (that is, for equivalent total sample sizes), the
bootstrap methods perform much better for a large
number of clusters and small cluster size compared with
vice-versa. This is probably due to the slight downward
bias in the second moments; the degree of bias is an
inverse function of the number of clusters.

Table 2: Observed coverage (%) for robust, BS1 and BS2 methods of analysis (Control ICC = 0.1)

Cluster Size
25 50 100

Number of clusters per arm 6 93.9 93.9 93.8
87.6 87.3 86.9
90.9 90.6 90.3

12 94.5 94.4
90.5 90.2
91.8 91.6

24 94.8
92.1
92.6

Table 3: Observed coverage (%) for robust, BS1 and BS2 methods of analysis (Control ICC = 0.25)

Cluster Size
25 50 100

Number of clusters per arm 6 93.6 93.5 93.5
86.9 86.6 86.4
90.1 89.9 89.6

12 94.3 94.2
89.9 89.6
91.3 91.1

24 94.6
91.5
92.1
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From the results in these tables there does not appear to
be much to commend the bootstrap, since both bootstrap
methods are always outperformed by the robust method.
Moreover, when examining the confidence interval cover-
age results split by distribution and variance combination
(results not shown), there was only one parameter combi-
nation for which the robust method was outperformed
and this was by an amount that was consistent with
Monte Carlo sampling error. However, the rejection rates
for confidence intervals were split to ascertain if any
method was noticeably better at taking account of the
skewness in the data.

Rejection rates for confidence intervals
When examining the rejection rates for six clusters of size
25 (results not shown), those of both bootstrap methods
virtually always exceeded those under the robust method.
The exceptions were for a control ICC of 0.01 when the
within-cluster variance increased as a result of the inter-
vention for two of the distributional combinations. For
the third distributional combination the rejection rates
were the same. Since the individual level data were always
lognormally distributed (reflecting typical cost data at this
level), an increase in the within-cluster variance for log-
normally distributed data is likely to have a large effect on
skewness, provided the ICC is not too large (which would
dilute the effect of within-cluster factors).

Thus, if the desired criterion is ability to match the nomi-
nal 2.5% rejection rate in any given direction, there are
occasions when one or both bootstrap methods outper-
form the robust method in terms of the proportion of
lower rejections. In particular, this appeared to happen
when the ICC was moderate to large, together with an
extremely skewed distribution of the treatment effect, typ-
ically achieved by a large change in the ICC and some-
thing other than a normal, normal (N, N) distribution
combination. Under these circumstances the distribution
of the treatment effect is most skewed, since the cluster
means in the intervention group are exhibiting large skew-
ness by way of a lognormal distribution whose (already
moderate to large) variance has doubled. However, this
must be balanced against the poor performance of the
bootstrap methods in terms of the proportion of upper
rejections, which tended to be particularly high compared
with those from the robust method.

Larger cluster size
With a cluster size of 50 or 100 (results not shown), simi-
lar results were seen to those above, in that a large differ-
ence in the absolute value of the ICC together with
extremely skewed distributions were required for the dou-
ble bootstrap to achieve a rejection rate closer to the nom-
inal level than the robust method. In particular, increases
in the between-cluster variance accompanied by skewed

distributions at the between-cluster level typically caused
the double bootstrap to give better lower rejection rates.

Larger number of clusters
For 12 clusters of size 25 per arm (results not shown), all
three methods performed better than for an equivalent
sample size with fewer clusters per arm (6 clusters of size
50). There were very few instances in which the rejection
rate exceeded that for 6 clusters of size 50. Even the BS1
method appeared to perform more consistently than
when there were only six clusters per arm. Although it was
still always outperformed by the BS2 and robust methods,
its maximum rejection rate was 10.26%, compared with
14.24%. As before, when the ICC was very small (that is,
most of the variability was within clusters), the double
bootstrap method typically only outperformed the robust
method when the within-cluster variance increased. In
addition, for larger values of the ICC, changes in the
between-cluster variance or the within-cluster variance
could result in the double bootstrap outperforming the
robust method, confirming the results obtained for six
clusters of size 100. Lastly, normal distributions at the
between-cluster level in both arms were sufficient to
ensure that the robust method always performed better
than the bootstrap.

Larger number of clusters and larger cluster size
All the trends identified in previous sections were repli-
cated for 24 clusters of size 25 (see Tables 4, 5, 6). Inter-
estingly, for ICC = 0.25, this sample size combination
produced the largest number of occasions on which the
BS2 method outperformed the robust method, namely
eight. However, this should be balanced against the con-
tinued better coverage of the robust method overall.

Discussion
This work constitutes early stages in the further research
that has been advocated to identify appropriate
approaches to the analysis of cost outcomes from cluster
RCTs [10]. The ICCs used in the present simulations were
comparable to those estimated for costs in this previous
study, but highly variable ICCs for costs at different levels
and the magnitude of patient costs relative to total costs
have both been emphasised as important issues [10].
Thus, decisions as to whether any of the scenarios investi-
gated here are relevant to future trials will depend, in part,
upon the issue of which cost component is most
important.

Limitations
The main limitation of the work presented here is the lack
of empirical data to inform the modelling. Empirical data
on costs from cluster RCTs are required to investigate
whether the bootstrap method should be evaluated in the
presence of even more highly skewed data. The bootstrap
Page 7 of 11
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methods of Davison and Hinkley also require testing in
trials with non-constant cluster size. For the single boot-
strap, in the presence of a non-constant cluster size, each
bootstrap sample of clusters will have a different compo-
sition. The sample mean will exhibit a different degree of
variability depending upon, for example, whether the
bootstrap sample has happened to select many large or
many small clusters. The result may be incorrect infer-
ences about the variability in the sample mean. Moderate
variability in cluster size or a large number of clusters
might not be expected to have a large effect upon the esti-
mated confidence limits, but again the researcher would
have to be cautious. Whilst the double bootstrap can

address this issue, this version resamples only the devia-
tions from the cluster mean of an individual's 'own'
cluster, potentially omitting valuable statistical informa-
tion [7]. However, more complex bootstrap methods such
as those of Rao and Wu and Carpenter et al do not suffer
from this restriction and future work should allow the
cluster size to vary [9,15,16].

Future research
Despite these limitations, the results from the simulations
present a coherent picture of the relative strengths of the
methods of analysis that were compared. They also show
that methods of analysis that can deal adequately with

Table 4: Control ICC = 0.01, 24 clusters of size 25 per arm.

How does the ICC change 
as a result of the 

intervention?

Between-
cluster 

distribution 
combinatio

n1

Rejection Rate (%)2

Huber-White Single Bootstrap Double Bootstrap

Lower Upper Lower Upper Lower Upper

No change - N, N 2.65 2.45 3.55 3.46 3.11 3.08
LN, LN 2.57 2.64 3.80 3.68 3.25 3.27
N, LN 2.42 2.76 3.64 3.67 3.21 3.39

Double N, N 3.08 2.35 3.65 3.57 3.13 3.37

LN, LN 2.88 2.37 4.00 3.75 3.36 3.40
N, LN 2.84 2.46 3.93 3.45 3.29 3.27

N, N 2.55 2.59 3.38 3.40 3.26 2.99

LN, LN 2.44 2.82 3.91 4.05 3.53 3.55
N, LN 2.07 3.00 3.50 3.77 3.04 3.41

Halve N, N 1.97 3.27 3.23 3.97 2.79 3.30

LN, LN 2.10 3.03 3.49 3.83 2.93 3.04

N, LN 1.92 3.20 3.24 3.77 2.87 2.95
N, N 2.66 2.59 3.66 3.58 3.06 3.06

LN, LN 2.54 2.46 3.63 3.71 3.00 3.14
N, LN 2.38 2.57 3.43 3.51 2.87 3.05

1 Control arm is first, followed by intervention arm. N, N denotes normal distribution in both arms; LN, LN denotes lognormal distribution in both 
arms; N, LN denotes normal distribution in control arm and lognormal distribution in intervention arm
2 Entries in bold indicate where double bootstrap method achieved rejection rate closer to nominal 2.5% than Huber-White method.

σW
2 ↓

σB
2 ↑

σW
2 ↑

σB
2 ↓
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trial data incorporating a small number of clusters must
be developed and investigated. For cost data the robust
method gave confidence intervals with broadly correct
coverage when the cluster size was constant. The Huber-
White estimator can take account of non-constant cluster
size, so future work should address its ability to give
acceptable confidence intervals when data are skewed and
the cluster size varies within the trial.

Conclusions
There are a number of general points that can be drawn
from these results. First, when the between-cluster distri-
bution is normal in both treatment arms, there is virtually
no evidence in favour of using a bootstrap method. Sec-
ond, when the ICC takes values of about 0.1 or greater, the

double bootstrap can give a lower rejection rate which is
closer to the nominal level than that achieved by the
robust method, particularly when the between-cluster dis-
tributions are skewed. However, this is only common
when the ICC changes as a result of the intervention.
Third, the downward bias in the second moments of the
bootstrap methods is particularly problematic. In general,
24 clusters per treatment arm is probably the minimum
number for which one would even begin to consider the
bootstrap in preference to traditional robust methods, for
the parameter combinations investigated here. At least
this number of cluster and extremely skewed data would
be necessary for the bootstrap to approximate the results
from the robust method with any consistency. The likeli-
hood of such a scenario will clearly vary, but in any case

Table 5: Control ICC = 0.1, 24 clusters of size 25 per arm.

How does the ICC change 
as a result of the 

intervention?

Between-
cluster 

distribution 
combinatio

n1

Rejection Rate (%)2

Huber-White Single Bootstrap Double Bootstrap

Lower Upper Lower Upper Lower Upper

No change - N, N 2.70 2.72 3.25 3.34 3.00 3.16
LN, LN 2.47 2.38 4.95 4.92 4.53 4.47
N, LN 1.48 3.64 3.23 4.04 2.85 4.05

Double N, N 2.66 2.53 3.12 3.19 2.85 3.13

LN, LN 2.28 2.36 4.99 5.07 4.60 4.63

N, LN 1.59 3.70 3.49 4.25 3.04 4.25
N, N 2.43 2.77 2.94 3.38 2.71 3.05

LN, LN 1.42 3.90 4.45 5.94 3.99 5.49
N, LN 1.10 4.97 3.38 5.00 2.91 4.95

Halve N, N 2.38 2.72 3.17 3.30 3.18 3.03

LN, LN 2.25 2.50 4.48 4.61 4.15 4.14
N, LN 1.65 3.77 3.47 4.02 3.10 3.89

N, N 2.73 2.48 3.33 3.16 3.10 3.09

LN, LN 3.34 1.69 5.26 4.06 4.91 3.64
N, LN 2.20 2.95 3.61 3.56 3.17 3.49

1 Control arm is first, followed by intervention arm. N, N denotes normal distribution in both arms; LN, LN denotes lognormal distribution in both 
arms; N, LN denotes normal distribution in control arm and lognormal distribution in intervention arm
2 Entries in bold indicate where double bootstrap method achieved rejection rate closer to nominal 2.5% than Huber-White method.

σW
2 ↓

σB
2 ↑

σW
2 ↑

σB
2 ↓
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these simulations have brought out a very important
issue: a normal distribution for the cluster means is usu-
ally sufficient to eliminate the bootstrap from any consid-
eration, regardless of the skewness of the individual data.

This work has related to skewed cost (or potentially clini-
cal) data. Whilst this is of interest, policymakers are more
often interested in cost-effectiveness data. These have usu-
ally involved ratio statistics, which often cause major
problems for traditional estimators. Future work should,
therefore, investigate how well the cluster bootstrap deals
with cost-effectiveness data and hence address the ques-
tion of whether the disadvantages of the cluster bootstrap
identified here are outweighed by its potential advantages
in dealing with ratio statistics.
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Table 6: Control ICC = 0.25, 24 clusters of size 25 per arm.

How does the ICC change 
as a result of the 

intervention?

Between-
cluster 

distribution 
combinatio

n1

Rejection Rate (%)2

Huber-White Single Bootstrap Double Bootstrap

Lower Upper Lower Upper Lower Upper

No change - N, N 2.76 2.73 3.31 3.27 3.12 3.06
LN, LN 2.28 2.32 5.77 5.55 5.30 5.16
N, LN 1.38 4.08 3.42 4.43 3.00 4.30

Double N, N 2.84 2.66 3.30 3.20 2.91 3.09

LN, LN 2.03 2.17 5.55 5.81 5.07 5.25
N, LN 1.41 4.13 3.60 4.45 3.18 4.21

N, N 2.63 2.74 3.12 3.22 2.88 2.98

LN, LN 0.84 5.38 3.84 7.90 3.43 7.39
N, LN 0.71 6.53 3.25 6.20 2.94 5.89

Halve N, N 2.56 2.65 3.16 3.19 2.99 2.84

LN, LN 1.98 2.38 4.96 5.32 4.57 4.70
N, LN 1.47 4.21 3.45 4.41 3.12 4.11

N, N 2.56 2.79 3.09 3.25 2.91 3.10

LN, LN 4.26 1.39 6.70 4.54 6.16 4.15
N, LN 1.79 3.36 3.24 3.73 2.95 3.57

1 Control arm is first, followed by intervention arm. N, N denotes normal distribution in both arms; LN, LN denotes lognormal distribution in both 
arms; N, LN denotes normal distribution in control arm and lognormal distribution in intervention arm
2 Entries in bold indicate where double bootstrap method achieved rejection rate closer to nominal 2.5% than Huber-White method.
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