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Abstract

Motivation: Genomic selection (GS) is currently deemed the most effective approach to speed up breeding of agri-
cultural varieties. It has been recognized that consideration of multiple traits in GS can improve accuracy of predic-
tion for traits of low heritability. However, since GS forgoes statistical testing with the idea of improving predictions,
it does not facilitate mechanistic understanding of the contribution of particular single nucleotide polymorphisms
(SNP).

Results: Here, we propose a L2;1-norm regularized multivariate regression model and devise a fast and efficient itera-
tive optimization algorithm, called L2;1-joint, applicable in multi-trait GS. The usage of the L2;1-norm facilitates vari-
able selection in a penalized multivariate regression that considers the relation between individuals, when the num-
ber of SNPs is much larger than the number of individuals. The capacity for variable selection allows us to define
master regulators that can be used in a multi-trait GS setting to dissect the genetic architecture of the analyzed traits.
Our comparative analyses demonstrate that the proposed model is a favorable candidate compared to existing
state-of-the-art approaches. Prediction and variable selection with datasets from Brassica napus, wheat and
Arabidopsis thaliana diversity panels are conducted to further showcase the performance of the proposed model.

Availability and implementation: : The model is implemented using R programming language and the code is freely
available from https://github.com/alainmbebi/L21-norm-GS.

Contact: nikoloski@mpimp-golm.mpg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

First introduced in Meuwissen et al. (2001), genomic selection (GS)
is considered the most promising breeding method to speed up the
development and release of improved genotypes (Crossa et al.,
2017). It uses machine learning approaches to integrate phenotypic
data of a given trait with molecular markers [i.e. single nucleotide
polymorphisms (SNPs)] in a statistical model for a training popula-
tion. The model is then used to predict genomic estimated breeding
values for the trait of genotypes in a testing population, which have
been genotyped but not phenotyped (Hayes et al., 2001). The pre-
dictions for unseen genotypes can be used for selection without any
further phenotyping. Therefore, an increase in GS accuracy for agro-
nomically important traits can accelerate genetic gain by shortening
the breeding cycles (Heffner et al., 2010).

Early applications of GS used diverse machine learning
approaches to predict individual traits in a setting where the number
of SNPs is larger than the size of the training population. Most

widely applied approaches include regularized mixed effect models,
such as: the ridge regression best linear unbiased prediction
(rrBLUP) (Henderson, 1975), its variant genomic-BLUP (GBLUP)
(VanRaden, 2008), BayesA and BayesB (Meuwissen et al., 2001),
BayesC p (Habier et al., 2011) and the BayesLASSO (Park and
Casella, 2008), to mention a few. In addition to the Bayesian regres-
sion family, that induces model sparseness by an appropriate prior
density (e.g. Student-t) for regression coefficients, regularized high-
dimensional regressions have also been used, including: the ridge re-
gression (RR) (Hoerl and Kennard, 1970; Ogutu et al., 2012), the
LASSO (Usai et al., 2009) and the elastic-net (Wang et al., 2019).

Experience from breeding programs indicates that genetic corre-
lations between traits are quite common, and can thereby be
exploited since one trait carries information about others (Jia and
Jannink, 2012). Several studies already proposed multi-trait GS
models and tested their effects on data from simulations and crop
breeding programs. These models account for the genetic (co)vari-
ance between the traits, and their applications have shown that
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predictability for low-heritability traits can be increased by multi-
trait GS (Calus and Veerkamp, 2011; Karaman et al., 2018). These
approaches rely on vectorizing the matrix of traits (i.e. responses)
and fitting the BLUP models. However, the Bayesian family of
approaches in multi-trait setting, while statistically sound, can
quickly become computationally expensive because of the Markov
Chain Monte Carlo (MCMC) steps required to achieve convergence
during parameter estimation.

In addition, multi-trait GS, like the classical approach, does not
provide features selection capability and forgoes statistical testing of
the effects of the SNPs to improve predictability for the studied
traits. Therefore, multi-trait GS approaches have not been exploited
to simultaneously provide sparse estimates and determine master
regulators, i.e. markers which can simultaneously explain a large
proportion in the majority of traits. Insights in master regulators
may help narrow down the search for key genes underlying multiple
traits, and will thus leverage the pleiotropy in the analyzed traits.
This is particularly relevant when studying gene regulation and me-
tabolism, for which the transcriptomic and metabolic phenotype
arise due to the interconnection of thousands of genes and metabo-
lites, shown to be jointly predictive of agronomically relevant traits
(e.g. biomass) (Westhues et al., 2017). In this sense, the multi-trait
Bayesian approaches often do not result in sparse estimates for the
model parameters, rendering it difficult to specify such master
regulators.

Another means to develop multi-trait GS, with the aim of identi-
fying master regulators, is to cast it in the framework of multi-out-
put or multi-response regression that accounts for sparsity. For
instance, a classical approach in this area is the Curds & Whey
(Breiman and Friedman, 1997) that is only suitable for low dimen-
sion settings. Another approach is given by the simultaneous vari-
able selection (Turlach et al., 2005), an extension of the LASSO
where the L1 norm penalty is imposed on the regression coefficient
matrix. Although this norm results in sparsity of the selected predic-
tors, it can lead to bias in model estimation. Finally, one can also
jointly estimate the regression coefficient and the precision matrices.
For instance, the multiple-output regression (Cai et al., 2014; He
et al., 2016) incorporates both the covariances between traits (i.e.
responses) and between errors in the model to improve the regres-
sion coefficient estimate, while the multivariate penalized likelihood
(Lee and Liu, 2012; Rothman et al., 2010) utilizes the covariance be-
tween the responses or the errors. However, these approaches are
computationally challenging, since in the setting where the number
of markers (i.e. SNPs) used as predictors is larger than the number
of genotypes (i.e. observations) their maximum likelihood estimate
of the precision matrix usually do not converge (Lee and Liu, 2012).

To improve selection of markers, while not compromising esti-
mation and predictability, we assume that the responses are multi-
variate Gaussian and propose the L2;1-joint, a novel multivariate
method that models the response variables jointly in the penalize
likelihood framework using the L2;1-norm penalty. We propose a
fast and efficient optimization algorithm that simultaneously con-
structs sparse estimates of the regression coefficients along with the
precision matrix. Comparative analyses with simulated and real-
world metabolomics data show that the proposed approach is a
competitive candidate solution to the contenders.

2 Materials and methods

First, we introduce the matrix formulation of the multivariate linear
regression model, and then briefly review the L2;1-norm. Finally, we
recall the statistical formulation of some regression models that will
be used to compare our proposed method, i.e. the L2;1-norm regres-
sion for GS (L2;1-fs), the centered multiple output regression
(cMOR), and RR. Throughout the rest of this paper, for a matrix
V ¼ ðvijÞ, we denote by vi and vj its ith row and jth column respect-
ively. The symbols tr and vec stand for trace and vectorization oper-
ators respectively. V�1 is the inverse and V0 the transpose of V. The
n-dimensional identity matrix is denoted In and the Lp-norm of a
vector v 2 R

n is defined as,

kvkp ¼ ð
Xn

i¼1

jjvijjpÞ
1
p; (1)

where vi represents the ith element of v.

2.1 L2;1-norm
First introduced in (Ding et al., 2006), the L2;1-norm of a matrix

V 2 R
n�m is defined by,

jjVjj2;1 ¼
Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiXm
j¼1

v2
ij

vuut ¼
Xn

i¼1

kvijj2: (2)

It has been shown that the L2;1-norm is rotation-invariant with

respect to the rows, i.e. for any rotational matrix R of conformable
size, the equality in Eq. (3), below, holds:

jjVRjj2;1 ¼ jjVjj2;1: (3)

An important notion that is used to solve the optimization prob-

lem in Eq. (15) is the partial derivative of jjVjj2;1, defined as
@
@V jjVjj2;1 ¼ QV, with Q 2 R

n�n the diagonal matrix with entries

qii ¼ 1
2jjvi jj2

.

2.2 Multivariate linear regression and the maximum

likelihood estimate (MLE)
Let Y ¼ ½y1; y2; . . . ; ys� 2 R

n�s; X ¼ ½x1; x2; . . . ; xp� 2 R
n�p; B ¼

½b1;b2; . . . ;bs� 2 R
p�s and E ¼ ½e1; e2; . . . ; es� 2 R

n�s represent matri-
ces of observed responses, predictors, unknown regression coeffi-
cients and errors respectively. Statistical analysis using a

multivariate linear regression model models the relationship be-
tween s response variables y1; y2; . . . ; ys and p predictor variables

x1;x2; . . . ; xp, so that, if the ith observation of the response, the ith

value of the predictor variables and the ith unobserved random vec-

tor are respectively defined by yi ¼ ðyi1; yi2; . . . ; yisÞ0; xi ¼
ðxi1; xi2; . . . ; xipÞ0 and ei ¼ ðxi1; ei2; . . . ; eisÞ0, then the linear regres-

sion model takes the following matrix representation:

Y ¼ XBþ E: (4)

We also assume that ei are independent and have identical multi-

variate normal distribution with mean vector 0 and covariance ma-
trix R. This model aims to predict multiple responses with a single
set of predictors. For simplicity and without loss of generality, col-

umns of X and Y are assumed centered so that the intercept term
can be omitted. Then, up to a constant not dependent on the regres-
sion coefficient matrix B and the precision matrix X ¼ R�1, the

negative log-likelihood is

JðB;XÞ ¼ tr
1

n
ðY�XBÞXðY�XBÞ0

� �
� log jXj; (5)

with maximum likelihood estimate (MLE) for B that does not
depends on X

B̂mle ¼ ðX0XÞ�1X0Y: (6)

B̂mle is the same estimate obtained by regressing separately each re-

sponse on the same set of predictors, which is exactly the ordinary
least squares (OLS) estimate and does not take into account the pos-

sible shared information among the responses. Furthermore, in the
context of high dimensional data and large-p with small-n regression
where X is not full rank, deriving B̂mle using directly Eq. (6) is not

possible.
In the following, we assume that we have n genotypes across

each of which we measured s traits and identified p SNPs, so that Y
and X represent the traits (e.g. metabolite profiles) and the SNPs

matrices respectively.
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2.3 GS with L2;1-norm variable selection model and

contending approaches
GS based on the L2;1-norm solves,

argmin
B
jjY�XBjj2;1 þ kjjBjj2;1: (7)

The solution of this optimization problem is given by:

W ¼ D�1A0ðAD�1A0Þ�1Y; (8)

where D is the diagonal matrix with the ith entry dii ¼ 1
2jjwi jj2

,

A ¼ ½X; kIn� 2 R
n�m; W ¼ ½B

P
� 2 R

m�s; and m ¼ pþ n:

Detailed explanations regarding the computation steps can be
found in (Nie et al., 2010).

From Eq. (2), it becomes apparent that the L2-norm of each row
in the L2;1-norm penalty plays a specific role. As explained in (Sun
et al., 2009), the L2;1-norm quantifies the effect of the ith predictor
with the L2-norm, while performing summation over all data points
with the L1-norm. This gives the L2;1-norm the ability to induce row
sparsity in the regression coefficient matrix B. Among several poten-
tial penalties, we opted for the L2;1-norm since it also penalizes all
the entries in the coefficient matrix and addresses one of our aims to
identify master regulators.

To make it precise, we say that a column of the predictor matrix
X 2 R

n�p is an a�master regulator (MRa) if the corresponding row
in the estimated sparse regression coefficient matrix B̂ 2 R

p�s is
a� dense, i.e. at least an a� fraction; 0:5 � a � 1, of the entries
in the corresponding row are non-zero. Moreover, for the purpose
of this study, we only consider the case a¼1 and use mr1 to define
the proportion of rows that are MR1.

For completeness, we recall the RR optimization problem, given
in Eq. (9)

B̂ðkÞ ¼ argmin
B
jjY�XBjj2 þ kjjBjj2; (9)

with solution:

B̂ðkÞ ¼ ðX0Xþ kIpÞ�1X0Y: (10)

In contrast, LASSO solves

B̂ðkÞ ¼ argmin
B
jjY�XBjj2 þ kjjBjj1: (11)

The kernel LASSO that aims to account for possible non-linear
dependence between the response and predictor, extends LASSO by
using some suitable basis functions (kernel) as predictor and solves
the optimization problem described in Eq. (12)

B̂ðkÞ ¼ argmin
B
jjY�UðXÞBjj2 þ

ffiffiffi
k
p
jjBjj1; (12)

where U is the kernel function. Finally, the multiple output regres-
sion solves:

ðB̂; X̂; R̂Þ ¼ argmin
ðB;X�1 ;R�1Þ

tr½ðY�XBÞX�1ðY�XBÞ0�

� n log jX�1j þ k1trðBB0Þ þ k2trðBR�1B0Þ � p log jR�1j
þ k3trðX�1Þ þ k4trðR�1Þ:

(13)

X�1 and R�1 represent the inverse covariances for the error and re-
sponse respectively. We note that the optimization problem in Eq.
(13) is not convex when all variables are considered jointly, and is
convex for each individual variable when all others are kept con-
stant. An iterative algorithm is then used to solve the convex prob-
lem (He et al., 2016).

2.4 L2;1-norm regularized multivariate regression and

covariance estimation
Here, our aim is to design a multivariate regression model for GS that
exploits the correlation between genotypes to obtain marker effects
estimates along with variable selection. Applying the transpose oper-
ator on Eq. (4) yields the following negative log-likelihood function:

KðB;XÞ ¼ tr
1

s
ðY0 � B0X0ÞXðY0 � B0X0Þ0

� �
� log jXj: (14)

The L1 penalty is then applied on the precision matrix X to reduce
the number of parameters to be estimated when the number of responses
variables (i.e. traits) is large (Rothman et al., 2008) and to ensure the ex-
istence of an optimal solution with finite value of the objective function,
in the situation where one has more responses than samples (Rothman
et al., 2010). In addition, the L2;1 penalty is imposed on the regression
coefficient matrix B to provide sparse B̂ which, in turn, can aid the inter-
pretation of the fitted model. Our model then provides the estimates B̂
and X̂ by solving the following optimization problem:

f ðB;XÞ ¼ argmin
B;X

fKðB;XÞ þ k1kXk1 þ k2kBk2;1g; (15)

with tuning parameters k1 � 0 and k2 � 0 to be determined from
the data.

However, solving Eq. (15) is challenging since the optimization
problem is not convex and the L2;1-norm is not smooth. We over-
come the challenge by iteratively solving for one parameter while
keeping the other one constant. In doing so, we transform Eq. (15)
into a convex optimization problem and ensure that the problem
has a global optimum. Solving Eq. (15) for B with constant X at a
chosen point X0 is equivalent to optimizing

B̂ðX0Þ¼argmin
B

(
atr

1

s
ðY0�B0X0Þ0ðY0�B0X0ÞX0

� �
�logjX0jþk2jjBjj2;1g:

(16)

Taking the partial derivative with respect to B and equating to
zero yields

B̂ ¼ X0X0Xþ sk2

2
C

� ��1

X0X0Y: (17)

Using the Woodbury matrix identity (Riedel, 1992) in the case
where k2 6¼ 0, we obtain the formulation in Eq. (18) that is the core
of our algorithm. More specifically, the inversion of the p�p matrix
is avoided and we, instead, invert an n�n matrix in the following:

B̂ ¼ 2

sk2
C�1X0X0 Y� 2

sk2
In þ

2

sk2
XC�1X0X0

� ��1

�XC�1X0X0Y�;

"

(18)

where C is the diagonal matrix with ith entry cii ¼ 1
2jjbi jj2

. A close

look at Eq. (17) reveals the generality of our estimate: When k2 ¼ 0,
and X0 ¼ In, we obtain the OLS estimate. When X0 ¼ In and C ¼ Ip

we have the RR estimate, and, finally, when C ¼ Ip we have the
L2;1-norm based variable selection.

Solving Eq. (15) for X with fixed B at a chosen point B0 corre-
sponds to the L1-penalized covariance estimation problem (Yuan
and Lin, 2006) and the well-known efficient solution given by the
graphical lasso (GLASSO) of (Friedman et al., 2008). We make use
of GLASSO to estimate X in the model given in Eq. (19), below:

X̂ðB0Þ¼argminX

(
atr

1

s
ðY0�B00X0Þ0ðY0�B00X0ÞX

� �
�logjXjþk1kXk1g:

(19)
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The following Algorithm (1), referred to as L2;1-joint, summa-
rizes the computational steps for optimizing our model in Eq. (15).

2.5 Convergence criteria
Because the RR estimate is well-defined, including the case when the
predictors are collinear, we use its L1-norm to scale the convergence

criterion for our regression coefficient matrix B̂. In addition, we use
the sample covariance matrix of the RR residual to scale the conver-
gence of the precision matrix (Chen et al., 2014). This implies that

the convergence criteria for B̂ and X̂ are met when
P

i;j jb̂
ðtþ1Þ
ij �

b̂
ðtÞ
ij j < e1

P
ij jb̂

ridge

ij j and
P

i;j jx̂
ðtþ1Þ
ij � x̂ðtÞij j < e2

P
ij jx̂

ridge
ij j, re-

spectively. Here, e1 and e2 are the tolerance parameters that we set

to 10�5. Moreover, because our objective function is convex in B
when the other parameter is fixed and monotonically decreasing in
each iteration, another convergence criteria one can use is given by

jjB̂ðtþ1Þjj2;1 � jjB̂
ðtÞjj2;1 or when an a priori set maximum number of

iterations is reached.

2.6 Model evaluation and hyper-parameters
To evaluate the predictability we use the RV coefficient (Escoufier,
1973) that measures the relationship between two sets of variables
(measured and predicted) and the multi-output extension of the
mean squared error (MSE), respectively defined by Eqs. (20) and
(21) below:

RVðY; ~YÞ ¼ trðYY0 ~Y ~Y
0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

trððYY0Þ2Þtrðð~Y ~Y
0Þ2Þ

q ; (20)

and

MSEðY; ŶÞ ¼ 1

n

1

s

Xn

i¼1

ðyi � ŷiÞ
2; (21)

with yi and ŷi denoting the observed and predicted (or estimated) s
output of Y 2 R

n�s, respectively. The degree of penalization that can
be imposed on the model is not fixed; thus, for each penalty level a
different solution path is founds. It is therefore of great importance to
select the best estimator based on the optimal penalty level, which we
determine by cross-validation (CV). To this end, we split the entire
dataset into K non-overlapping subsets of nearly equal size. Using K-
fold cross-validation, we select the optimal k̂1 and k̂2 by solving

ðk̂1; k̂2Þ ¼ argmink1k2

XK

k¼1

jjYk �XkB
ð�kÞ
k1k2
jj2: (22)

Here, Yk and Xk are respectively the kth-fold response and pre-
dictor matrices, while. B

ð�kÞ
k1k2

is the regression coefficient matrix esti-
mated out of the kth-fold for k1 and k2. In addition, seq(3, 12, 1) and
2seqð�5;�2;1Þ are used as search grids to obtain the optimal k1 and k2

respectively.
We also use the true positive rate (TPR) and the true negative

rate (TNR) to quantify the degree of sparsity recognition by the esti-
mate of the regression coefficient matrix B̂. These are given respect-
ively by the proportion of non-zero entries in the true coefficient B
identified correctly by the estimate B̂ and the proportion of zero
entries in B that B̂ matched correctly. Since from the simulation de-
sign we know exactly what the master regulators are, we also evalu-
ate the ability of all models to correctly identify the true MR1 by
computing mr1, the proportion of rows with non-zero entries in B
correctly identify by B̂. Therefore, mr1 corresponds to the propor-
tion of master regulators.

3 Results and discussion

3.1 Comparative analysis with synthetic data
To quantify the performance of the proposed method, we devise a
series of two synthetic datasets. (1) By modifying a previously

studied simulation design (Yuan et al., 2007). We set ðRXÞij ¼ :7ji�jj,

so that rows of the design matrix X 2 R
n�p, are independently gen-

erated from the multivariate normal distribution Npð0;RXÞ. For the

genomic prediction application, different coding for the genotypes
(predictors) matrix X can be obtained. For instance, all absolute val-
ues in the intervals ½0; :5�; �:5; 1� and �1;1½ can respectively be coded
as 0, 1 and 2, which is an alternative to randomly sample the geno-
type matrix X from f0; 1;2g. For the error matrix E 2 R

n�s, an
autoregressive covariance structure of order 1, AR(1), is considered,
implying that rows of E are independently drawn from the multi-

variate normal distribution Nsð0;RÞ, with ðRÞij ¼ qji�jj and q taking

values (.1,.5,.9). Using the matrix element wise product
B ¼W �QþK �W, a sparse regression coefficient matrix is
obtained. With the modification, we further obtain some rows in B
that are non-zero so that the proportion of correctly identified mas-
ter regulators can be computed. In this setting, each entry of W is an
independent draw from N(0, 1), the entries of K are independent
realization from a Bernoulli distribution with s1 probability of suc-
cess. Each row of Q is either a vector of ones or zeros, the rows of
all one are determined based on p independent Bernoulli draws with
s2 probability of success. Following Eq.(4), 30 traits were simulated
and their heritabilities are provided in Supplementary Table S1. For
each data generation process, 20 replicates are drawn and we con-
sider a test dataset of sample size 20 to assess the predictability. (2)
To further asses the predictability of the proposed model, in the se-
cond synthetic dataset, a pleiotropy architecture under low (.1
and.2), mild (.4 and.5) and high (.7 and.8) heritability scenario is
considered. The R package simplePHENOTYPES (Fernandes and
Lipka, 2020) and the included genotypic data composed of 282
inbred maize association panel using the 55 K SNP array (Cook
et al., 2012) are used to simulate 12 highly correlated traits con-
trolled by 80 MR1. Note that, for the purpose of this study, we only
used 2000 SNPs and 80 lines were always keep for testing during
the CV.

In what follows, the performance of our proposed L2;1-norm
regularized multivariate regression and covariance estimation is
assessed and compared on the synthetic dataset with eight contend-
ers: (1) the efficient and robust feature selection via joint L2;1-norms
minimization (L2;1-fs) (Nie et al., 2010), (2) the recent centered mul-
tiple output regression (cMOR) (He et al., 2016) which showed that
centering of the predictor matrix improves prediction performance,
(3) GBLUP, (4) the Elastic-Net (Zou and Hastie, 2005), (5) the
Regularized multivariate regression for identifying master predictors
(remMAP) (Peng et al., 2010), (6) the multiple-trait Bayesian regres-
sion (MBayesB) (Cheng et al., 2018) implemented with BGLR pack-
age in R (Pérez and de Los Campos, 2014) with the proportion of
influential SNPs estimated rather than chosen, (7) the LASSO, and
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(8) the RR estimate that is included due to its quality in term of
predictability.

Let us consider the sparsity parameter s1 ¼ :5 and three choices
of the AR(1) parameter q ¼ f0:1;0:5;0:9g. In terms of predictability
depicted in Table 1A, the proposed L2;1-joint, cMOR, remMAP and
the RR achieve equal performance as quantified by the average RV
coefficient between the validation sample and the corresponding
predicted values. However, from Table 1B, the L2;1-joint correctly
identified on average 80% of MR1, while remMAP failed to identify

any, cMOR and RR do not achieve variable selection. Moreover,
among the methods with variable selection capability, L2;1-joint out-
performs the L2;1-fs, multivariate LASSO (mLASSO) and Elastic-
Net and achieve equal performance with remMAP, for low and high
correlation. In contrast to L2;1-joint, the classical L2;1-fs shows a
lower recovery rate of MR1 by identifying correctly on average 39%
of MR1 over all replicates. In addition, for methods with ability to
reveal loci that can regulate more than one trait, the MR1 recovery
rate computed in Table 1B shows the superiority of L2;1-joint with

Table 1. Comparison of model performance on synthetic data

(A) Predictability

n, p, s RR cMOR L2;1-fs L2;1-joint mLASSO MBayesB remMAP Elastic-Net

50,100,30 0.84 (0.07) 0.85 (0.07) 0.69 (0.01) 0.85 (0.06) 0.79 (0.08) 0.78 (0.08) 0.85 (.06) 0.81 (0.07)

50,300,30 0.71 (0.07) 0.72 (0.07) 0.47 (.01) 0.72 (0.07) 0.69 (0.07) 0.65 (.07) 0.70 (0.07) 0.70 (0.06)

50,800,30 0.64 (0.09) 0.64 (0.09) 0.37 (0.03) 0.62 (0.08) 0.58 (0.02) 0.58 (0.01) 0.63 (0.09) 0.62 (0.08)

(B) Recovery rate of MR1

n, p, s q RR cMOR L2;1-fs L2;1-joint mLASSO MBayesB remMAP Elastic-Net

50,800,30 0.1 – – 38.8 80.3 0 – 0 0

0.5 – – 38.9 80.4 0 – 0 0

0.9 – – 38.8 80.02 0 – 0 0

(C) Sparsity recovery TPR/TNR

n, p, s q RR cMOR L2;1-fs L2;1-joint mLASSO MBayesB remMAP Elastic-Net

50,800,30 0.1 –/0 –/0 51.8/52.9 89.01/13.26 1.05/99.1 –/0 5.2/95.6 2.7/97.7

0.5 –/0 –/0 51.7/52.9 89.02/13.2 1/99.2 –/0 8.7/92.6 2.7/97.7

0.9 –/0 –/0 51.7/53.02 89.04/13.25 1.15/99.07 –/0 5.31/95.5 2.58/97.8

Note: The dataset consists of s¼ 30 simulated phenotypes, n¼ 50 observations and varying number of predictors p 2 f100; 300; 800g to see their impact on

predictability, and fixed p¼ 800 for sparsity and MR1 analysis. (A) The predictability assessed as the RV coefficient between the true and predicted responses in

the unseen data with standard errors in parentheses. (B) The true positive rate (in %) for master regulator recovery, which determines the ability of each model to

correctly identify the known MR1 (the non-zero rows in the true regression coefficient matrix). (C) The sparsity recovery quantified by the true positive rate/true

negative rate (in %) for the regression coefficient matrix estimate B̂, specifying the potential of each model to correctly identify non-zero entries in the true coeffi-

cient matrix. All metrics are averaged over 20 replicates with AR(1) parameter q and for all models the tuning parameters were selected using 5-fold CV. The sym-

bol ‘–’ denotes the fact that all entries in the estimated regression coefficients were non-zero and hence could not be used to quantify the parameter of interest.

Table 2. Comparison of model performance on simulated phenotypes at different levels of heritability based on SNP data from maize

(A) Predictability

Traits H2 L2;1-fs L2;1-joint RR mLASSO Elastic-Net cMOR remMAP MBayesB GBLUP

1 0.1 0.08 (0.05) 0.21 (0.05) 0.01 (0.04) 0.03 (0.06) 0.02 (0.06) 0.08 (0.03) 0.24 (0.05) 0.22 (0.06) 0.03 (0.04)

2 0.4 0.48 (0.06) 0.64 (0.06) 0.27 (0.05) 0.63 (0.06) 0.63 (0.07) 0.23 (0.04) 0.58 (0.05) 0.59 (0.06) 0.25 (0.05)

3 0.7 0.69 (0.06) 0.84 (0.06) 0.38 (0.05) 0.81 (0.07) 0.81 (0.05) 0.31 (0.03) 0.81 (0.04) 0.82 (0.08) 0.37 (0.05)

4 0.2 0.20 (0.06) 0.36 (0.05) 0.11 (0.04) 0.37 (0.06) 0.37 (0.04) 0.10 (0.03) 0.40 (0.04) 0.29 (0.07) 0.19 (0.04)

5 0.5 0.57 (0.08) 0.73 (0.07) 0.37 (0.06) 0.73 (0.08) 0.73 (0.05) 0.32 (0.05) 0.67 (0.06) 0.71 (0.07) 0.37 (0.06)

6 0.8 0.76 (0.05) 0.87 (0.05) 0.42 (0.03) 0.83 (0.05) 0.83 (0.05) 0.39 (0.03) 0.83 (0.05) 0.86 (0.05) 0.43 (0.03)

7 0.1 0.12 (0.05) 0.22 (0.06) 0.01 (0.04) 0.19 (0.06) 0.18 (0.04) 0.04 (0.02) 0.27 (0.05) 0.01 (0.06) 0.01 (0.04)

8 0.4 0.49 (0.06) 0.65 (0.05) 0.32 (0.03) 0.64 (0.05) 0.64 (0.04) 0.24 (0.03) 0.58 (0.05) 0.61 (0.07) 0.30 (0.03)

9 0.7 0.68 (0.06) 0.83 (0.06) 0.33 (0.04) 0.81 (0.06) 0.81 (0.04) 0.31 (0.03) 0.81 (0.06) 0.81 (0.06) 0.33 (0.04)

10 0.2 0.24 (0.06) 0.44 (0.05) 0.06 (0.03) 0.44 (0.06) 0.44 (0.06) 0.07 (0.03) 0.46 (0.05) 0.38 (0.07) 0.06 (0.04)

11 0.5 0.54 (0.07) 0.67 (0.06) 0.38 (0.05) 0.68 (0.07) 0.69 (0.07) 0.39 (0.04) 0.62 (0.05) 0.66 (0.06) 0.38 (0.06)

12 0.8 0.81 (0.05) 0.91 (0.06) 0.42 (0.03) 0.86 (0.06) 0.86 (0.06) 0.37 (0.02) 0.86 (0.05) 0.89 (0.06) 0.42 (0.03)

(B) Recovery rate of MR1

L2;1-fs L2;1-joint RR mLASSO Elastic-Net cMOR remMAP MBayesB GBLUP

51.2 40.3 – 0 0 – 0 – –

Note: (A) The predictability of each trait assessed by the correlation coefficient between the true and predicted trait in the unseen data with standard errors in

parentheses. (B) The true positive rate (in %) for master regulator recovery, which determines the ability of each model to correctly identify the 80 markers set as

MR1. The metrics are averaged over 20 replicates and the tuning parameters were selected using 3-fold CV. The symbol ‘–’ denotes the fact that all entries in the

estimated regression coefficients were non-zero and hence could not be used to quantify the parameter of interest.
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respect to L2;1-fs, remMAP and MBayesB. One may argue that L2;1-
fs performs better than L2;1-joint simply because it includes fewer
MR1. However, as shown in Table 1B, summarizing the ability of
each model to correctly identify the true MR1, we find that the L2;1-
fs fails on average 61% of time to correctly identify non-zero rows
in the true regression coefficient matrix compared to the L2;1-joint
with an average failure rate of 20%. Since it has been shown that
RR provides accurate prediction in the context p� n, we conclude
that the proposed model maintain the desired properties of RR while
achieving variable selection that helps for model interpretability. For
the sparsity recognition measured by the TPR and TNR, Table 1C
shows that for all correlation patterns, the L2;1-joint and L2;1-fs
dominate the RR and cMOR and exhibit comparable performance
in correctly identifying the non-zero entries in the true regression co-
efficient matrix. The L2;1-joint is, however, superior when it comes
to identifying the true zero entries in B. Predictability presented in
Table 2A, for highly correlated traits simulated using maize maker
data, reveals that the proposed L2;1-joint outperforms the contend-
ers for 8 traits out of 12 for mild and high heritability and is the se-
cond best after remMAP for low heritability. Overall, models
capable to reveal master regulators are more accurate when predict-
ing traits with low heritability. These findings are in line with the
theoretical considerations, in the sense that traits with high heritabil-
ity are highly predictable andpredictability in genomic prediction
can increase when simultaneously considering correlated traits of
lower heritability. For the MR1 recovery rate shown in Table 2B, we
observe that the proposed L2;1-joint is second best performing after

the L2;1-fs with respectively 40.3% and 51.2% out of 80 master reg-
ulators correctly identified.

3.2 Comparative analysis with Brassica napus data
Some of the multi-trait genomic selection (MTGS) models are only
tractable for small or moderate number of markers (p), such as: (1)
The sparse multivariate regression with covariance estimation
(Rothman et al., 2010) (MRCE), (2) the multivariate LASSO
(mLASSO) and (3) the kernelized multivariate LASSO (Xu and Yin,
2013) (kmLASSO), implemented in the MTGS package in R
(Budhlakoti et al., 2019). Although not a multiple output regression,
GBLUP method is also included because of its reputation in GS.

In our comparative analysis, we used a dataset from Brassica
napus (rapeseed) (Kole et al., 2002), provided as a part of MTGS
package. The data consists of 3 highly correlated (correlation >.78)
traits, associated to days of flowering at different weeks (flower 0,
flower 4, flower 8) and 50 lines obtained from two cultivars (Stellar
and Major) and genotyped for 100 markers. The first 40 lines are
used in 5-fold CV to build the training and validation samples and
the remaining (testing set) put aside for prediction assessment. In
this setting, comparison of all selected multi-trait approaches can be
carried out, due to the limited number of modeled traits.

Our findings show that MBayesB, GBLUP, RR, cMOR and the
L2;1-joint capture the largest part of the linear relationship between
the responses and predictors, as assessed by the RV coefficient in
Table 3. Focusing on individual traits Figure 1A, we see that L2;1-
joint is the third best performing, after MBayesB and GBLUP, for

Table 3. Comparison of model performance on Brassica napus data

Model RV-Coef mr1 MSE

flower 0 flower 4 flower 8

RR 0.46 – 2.40 (0.69) 1.98 (0.57) 1.81 (0.52)

cMOR 0.46 – 2.35 (0.67) 2.00 (0.57) 1.84 (0.53)

L2;1-fs 0.43 33% 2.51 (0.72) 1.95 (0.56) 1.75 (0.50)

L2;1-joint 0.46 23% 2.48 (0.71) 1.95 (0.55) 1.73 (0.49)

kmLASSO 0.44 – 4.54 (1.31) 3.28 (0.94) 1.85 (0.53)

mLASSO 0.30 – 2.51 (0.73) 1.95 (0.57) 1.72 (0.50)

MRCE 0.10 97% 2.22 (0.65) 1.76 (0.51) 1.62 (0.45)

GBLUP 0.49 – 2.46 (0.73) 1.92 (0.54) 1.74 (0.53)

Elastic-Net 0.36 – 2.46 (0.72) 1.91 (0.62) 1.73 (0.49)

MBayesB 0.57 – 2.50 (0.74) 1.95 (0.56) 1.74 (0.57)

remMAP 0.28 4% 2.51 (0.71) 1.94 (0.53) 1.73 (0.50)

Note: Predictability measured by the RV coefficient between the observed and predicted values for all three traits and the proportion of SNPs found to be mas-

ter regulators by a specific GS model for the Brassica napus dataset. The estimated prediction error for all traits along with the minimum mean squared error

(MSE) value to each trait highlighted in bold for specific GS model, and standard errors in parentheses. The symbol ‘–’ denotes the fact that all entries in the esti-

mated regression coefficients were non-zero and hence could not be used to quantify the parameter of interest.
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Fig. 1. Predictability for (A) Brassica napus and (B) wheat traits, computed as the correlation coefficient between the observed phenotypes and predicted breeding values for in-

dividual traits in the validation set
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flower 0, and second best performing, after RR, for flower 8.
Withing models allowing the identification of master regulators
(remMAP and MBayesB), we see that L2;1-joint outperforms the
contender for flower 8 and is the second best performing after
MBayesB for the other two traits. However, in the case of L2;1-joint
we also identify that 23% of SNPs are found as MR1, which pro-
vides additional information that could not be obtained by
MBayesB based on the estimated p values. This is due to the strong
relationship between regression coefficients estimated from
MBayesB and the choice of p. Some p values may actually provide
sparse estimates and facilitate master regulators identification.

3.3 Comparative analysis with wheat dataset
Here, we compare the performance of L2;1-joint against other mod-
els for a moderate number of predictors. This is done using a collec-
tion of 599 historical wheat lines from the international maize and
wheat improvement center (CIMMYT) global wheat breeding pro-
gram. Part of the BGLR R package (Pérez and de Los Campos,
2014), the dataset comprises, 4 phenotypic traits representing the
average grain yield of the 599 evaluated lines in four environments.
Altogether, 1279 markers were retained for analysis, and we use the
first 500 lines in 5-fold CV to build the training and validation sam-
ples and the remaining used as unseen data to evaluate the
predictability.

Table 4 shows that the predicted values by MBayesB, L2;1-joint,
GBLUP and remMAP are the closest to the measured phenotypic
values in the test sample, as assessed by the RV coefficient. At the in-
dividual trait level, we can see that L2;1-joint, MBayesB, GBLUP and
mLASSO achieve the smallest prediction error for one out of four
traits. A further analysis of the correlation between measured and
predicted individual traits as shown in Figure 1B, ranks L2;1-joint as
the best performing for trait2 and second best performing after
MBayesB, for trait3 and trait4 among methods allowing master
regulator identification. With its additional variable selection prop-
erty evidenced here by the identification of 21% of SNPs as MR1,
we can say that, for moderate number of predictors, L2;1-joint
exhibits high performance when simultaneously considering predict-
ability and variable selection with respect to the competitors.

3.4 Comparative analysis with Arabidopsis thaliana

data
To further test our methodology on real-world datasets, we consider
the gas chromatography mass spectrometry (GC-MS) log-trans-
formed metabolomics profiles for 94 primary metabolites from
leaves in a natural Arabidopsis thaliana population consisting of
312 accessions, used already in genome-wide association analyses of
primary metabolites (Wu et al., 2016). The correlation analysis on

the metabolomic data reveals a maximum correlation of.78 and
only few values above.5. In addition, we used 214 051 SNPs
obtained using AffymetrixGeneChip Array 6.0 (Horton et al.,
2012). We removed all SNPs with less than 5% minimum allele fre-
quency (MAF), leaving us with 200 180 to build the L2;1-joint
model. In such a setting, the usage of the Bayesian multi-trait
approaches is prohibitive, due to the large number (94) of modeled
traits. As a result, the comparison includes only four approaches,
namely: RR, cMOR, L2;1-joint and L2;1-fs.

In terms of the predictability for the full metabolomic profile
determined by the RV coefficient between the measured metabolite
levels and the predicted breeding values in the test sample (i.e. the
last 40 lines, the unseen data), Table 5 shows that, all considered
models achieve almost similar results. However, a look at the num-
ber of markers entering the models demonstrate that the L2;1-joint
and L2;1-fs models are superior. Given the observation that our L2;1-
joint model outperforms L2;1-fs with respect to identification of mas-
ter regulators, it finally shows the suitability of the proposed solu-
tion in high-dimensional setting and when more than four traits are
considered.

Further correlation analysis between measured and predicted in-
dividual traits for known metabolite classes in the selection candi-
dates, (see Supplementary Figs S1–S3), shows that: (i) For the 26
organic acids metabolites, RR and L2;1-joint achieve equal predict-
ability as quantified by the number of time each method outper-
forms the contender, with L2;1-joint achieving the maximum
correlation of.48 on citric acid. (ii) Regarding the ability to predict
the levels of the 26 amino acids, we find that both models are super-
ior half of the time and achieve equal maximum correlation of .49
on isoleucine and serine for L2;1-joint and RR, respectively. (iii)
Concerning the predictability of the 17 sugars, we observe another
split, as both models are superior on 8 counts, achieve equal per-
formance on Glucose, and the maximum correlation of.5 on 1,6-

Table 5. Predictability on A. thaliana data

Model RV-Coef Selected variables mr1

RR 0.26 – –

cMOR 0.26 – –

L2;1-fs 0.27 55960 (27.9%) 4249 (2.12%)

L2;1-joint 0.26 135597 (67.73%) 30819 (15.39%)

Note: RV coefficient for predicting metabolites levels across the 40 testing

lines, features selection and identification of MR1 for L2;1-joint, L2;1-fs,

cMOR and RR. Tuning parameters are selected by 5-fold CV. The symbol ‘–’

denotes the fact that all entries in the estimated regression coefficients were

non-zero and hence could not be used to quantify the parameter of interest.

Table 4. Comparison of model performance on wheat data

Model RV-Coef mr1 MSE

trait 1 trait 2 trait 3 trait 4

RR 0.10 – 3.1 (0.7) 1.4 (0.3) 1.9 (0.4) 2.8(0.6)

cMOR 0.09 – 3.7 (0.8) 1.9 (0.4) 2.4 (0.5) 3.2 (0.7)

L2;1-fs 0.10 70% 2.6 (0.5) 1.1 (0.2) 1.6 (0.3) 2.4 (0.5)

L2;1-joint 0.13 21% 1.9 (0.4) 0.6 (0.1) 1 (0.2) 1.7 (0.4)

kmLASSO 0.008 – 2 (0.4) 0.6 (0.1) 1.29 (0.2) 2 (0.4)

mLASSO 0.08 – 1.7 (0.3) 0.9 (0.2) 1.1 (0.2) 2.1 (0.4)

GBLUP 0.14 – 1.8 (0.4) 0.5 (0.1) 1.1 (0.2) 1.8 (0.4)

Elastic-Net 0.11 1% 1.9 (0.4) 0.6 (0.1) 1.1 (0.2) 1.7 (0.3)

MBayesB 0.15 55% 1.9 (0.4) 0.6 (0.1) 1(0.2) 1.6 (0.3)

remMAP 0.13 – 1.8 (0.4) 0.7 (0.1) 1.2 (0.2) 1.9 (0.4)

Note: Predictability quantified by the RV coefficient between the observed and the predicted values for all four traits in the wheat dataset. Also shown is the

proportion of SNPs identified as master regulators and the estimated prediction error for all traits, and standard errors in parentheses. The minimum mean

squared error (MSE) value corresponding to each trait is highlighted in bold for specific GS model. The symbol ‘–’ denotes the fact that all entries in the estimated

regression coefficients were non-zero and hence could not be used to quantify the parameter of interest.

2902 A.J.Mbebi et al.



Anhydro-beta-D-glucose attained by RR. The desirable property of
L2;1-joint to perform variable selection suggest the proposed model
as a better candidate.

We quantify the effect of a given SNP on metabolites by the sum
of absolute values of the corresponding row in the estimated regres-
sion coefficient matrix. Using this approach, rows contribution of B̂
were ranked and the most relevant SNPs identified. Even though the
majority of high ranked SNPs were also master regulators, in the fol-
lowing we focus only on those which are master regulators. Since
linkage disequilibrium (LD) decays on average within 10 kb in
Arabidopsis thaliana (Kim et al., 2007), we used a 10 kb window for
genes search (i.e. 5 kb left and right for the considered SNP). Using
this procedure, a subset of the 20 most prominent (in decreasing
order) SNPs fulfilling the MR1 conditions were singled out (see
Supplementary Table S1). These include: (i) the lead SNP m22901
on chromosome 1, at locus AT4G36240, encoding GATA transcrip-
tion factor 7, involved in cell differentiation, circadian rhythm and
response to light stimulus (Manfield et al., 2007), (ii) SNP m50264,
on chromosome 2, implicating four loci, one of which, AT2G03500,
Early flowering MYB protein, directly represses flowering locus T
expression in the leaf vasculature (Yan et al., 2014) and acts as tran-
scriptional activators in abscisic acid signal transduction pathway
(Abe et al., 2003), (iii) SNP m105589, on chromosome 3, at locus
AT3G47290, encoding ATPLC8, reported to be involved in seedling
growth and endoplasmic reticulum stress responses (Kanehara et al.,
2015), (iv) SNP m120899 on chromosome 4, implicating three
genes, of which AT4G04720, encoding CPK21, is involved in plant
growth regulation and abiotic stress responses (Shi et al., 2018).

A further exploration of marker effects shows that some of these
MR1 fall within a dense region (i.e. interval with five or more con-
secutive SNPs with high effect). For instance: (i) On chromosome 4,
a 2.5 kb window (position 8298588–8296004), exhibits SNPs
m132532, m132541 and m132544 as MR1. This is a smaller inter-
val of the region where AT4G14400, also known as accelerated cell
death 6 (ACD6) gene, is located. (ii) On chromosome 5, a 1.5 kb
interval (positions 13637852–13636269), SNPs m173856,
m173857, m173858, m173861 and m173862 are also MR1. In this
interval, AT5G35410 is found, a regulatory component controlling
plant potassium uptake and involved in the response to salt stress,
protein phosphorylation and intracellular signal transduction (Wang
et al., 2018). On a more general note, we observe that the MR1

form hot spots, in the sense that once an MR1 is identified, it is
more likely to find another one in its vicinity. This can be further
visualized when looking along chromosomes for the dataset at hand.
We observe that the average distance between two MR1 is 874 bp
compare to 134 bp the average distance between two SNPs. The pre-
sented models do not consider the effect of environment nor the
interaction between genotypes and environments, although the latter
are particularly relevant for selection of genotypes that are better
performing in specific environments. Future efforts will be directed
toward incorporation of environment in covariates and consider-
ation of weighted variants of the used L2;1-norm. Further, we note
that the current formulation of the model assume same variance for
all SNPs used. Therefore, future work will focus on using weighted
variants of the L2;1-norm to begin to investigate generalizations in
which variance is not-equal across the SNPs. Moreover, it will be
important to investigate the extent to which MR1 obtained from our
approach agree with results from classical approaches for genome-
wide associations, which determine the effect of individual markers.
Such efforts will highlight the usage of the developed prediction
models for inference of underlying molecular mechanisms.

4 Conclusion

Despite the use of a rather strong assumption that a locus simultan-
eously affects all the traits or none of them, standard multi-trait GS
methods greatly improved the accuracy of genomic prediction. In
this work, we relaxed this assumption by putting no restriction on
the fraction of traits on which a marker can be causal, thus opening
the possibility to identify master regulators. Using simulated and
real-world data, we demonstrated the effectiveness of the L2;1-norm

as a tool for variable selection and master regulators identification
in a penalized multivariate regression when the number of SNPs, as
predictors, is much larger than the number of genotypes.
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