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Recombinant inbred (RI) systems such as the BXD mouse family represent a population
with defined genetic architecture and variation that approximates those of natural
populations. With the development of novel RI lines and sophisticated methods that
conjointly analyze phenotype, gene sequence, and expression data, RI systems such as
BXD are a timely and powerful tool to advance the field of behavioral ecology. The latter
traditionally focused on functional questions such as the adaptive value of behavior but
largely ignored underlying genetics and mechanisms. In this perspective, we argue that
using RI systems to address questions in behavioral ecology and evolutionary biology
has great potential to advance research in these fields. We outline key questions and
how they can be tackled using RI systems and BXD in particular. The unique opportunity
to analyze genetic and phenotypic data from studies conducted in different laboratories
and at different times is a key benefit of RI systems and may lead the way to a
better understanding of how adaptive phenotypes arise from genetic and environmental
factors.

Keywords: QTL, behavioral ecology, BXD, systems genetics, recombinant inbred

INTRODUCTION
The field of behavioral ecology seeks to understand causes and
consequences of variation in complex behavioral phenotypes with
a focus on ecological and social conditions to which behavior may
be adapted (Krebs and Davies, 1978; Davies et al., 2012; Hager and
Gini, 2012). To this end, studies have long relied on what Grafen
(1984) termed the “phenotypic gambit;” the assumption that the
phenotypic traits in question, be they life history strategies or
behavioral patterns, are reflective of their underlying genetics,
the details of which, however, are largely irrelevant to the mod-
els and predictions in question (Owens, 2006; Smiseth et al.,
2008). Indeed, if the sole objective is to understand the adaptive
value of behavior and test model predictions empirically it has
been demonstrated that one can perfectly well investigate the fit-
ness costs and benefits of behavior without reference to genetics
(Kacelnik, 1984; Dreiss et al., 2010). However, some cases violate
the assumptions of the gambit, to the point where the gambit’s
predictions are wrong (Hadfield et al., 2007; Gratten et al., 2008).
Moreover, recent advances in genetics, epigenetics and bioinfor-
matics have shown that the evolution of many traits can only
be modeled accurately when we take into account their genetic
architecture.

ADVANCING BEHAVIORAL ECOLOGY USING RI SYSTEMS
With the increased development of genetics and genomics tools,
research in behavioral ecology in particular and evolutionary
biology in general can be advanced by going beyond Grafen’s
gambit and adopting some of the technologies developed in
other disciplines (e.g., Hager et al., 2012). While this argu-
ment is far from new and, for example, quantitative genetic
approaches have been used for over 20 years to address questions

in behavioral ecology (e.g., Boake, 1994; Boake et al., 2002), with
the development of advanced recombinant inbred (RI) systems
and genome sequencing the range of questions can be expanded,
and we are able to investigate in much greater detail how adap-
tive effects arise. Thus, in addition to the traditional focus on
functional (adaptive) questions, we can now better study the
evolution of behavior, proximate mechanisms, and ontogeny as
outlined in Tinbergen’s (1963) four questions: (1) causation: what
immediate causes lead the organism to perform the behavior
(proximate causes)? (2) survival value: what is the adaptive advan-
tage associated with a behavior (functional causes)? (3) evolution:
how has the behavior evolved in the species’ phylogeny? and
(4) ontogeny: how does a behavior arise during the organism’s
development?

Among the key questions are how does plasticity enable some
individuals to better respond to environmental variation, and
how, at a genetic level, is plasticity achieved? Which traits are plas-
tic and which not, and why? What types of genetic variants are
most often involved in evolutionary change and adaptation? How
do complex behavioral phenotypes develop during ontogeny and
how much of their variation is due to genetic versus environ-
mental variation? To what extent do genes help shape the social
environment in which individuals live, and what are the conse-
quences of this for behavioral traits and their adaptation to this
environment? Are complex behavioral phenotypes constrained in
their response to selection (thus producing a seemingly subopti-
mal phenotype) and are there genetic constraints? Further, with
novel genomics and bioinformatics tools such as network anal-
yses, one can now start to establish the pathways involved from
sequence variation to intermediate phenotypes (e.g., physiologi-
cal traits) through to complex phenotypes such as behavior. We

www.frontiersin.org October 2012 | Volume 3 | Article 198 | 1

http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/editorialboard
http://www.frontiersin.org/Genetics/about
http://www.frontiersin.org/Genetics
http://www.frontiersin.org/Genetic_Architecture/10.3389/fgene.2012.00198/abstract
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=BeatriceGini&UID=24497
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=ReinmarHager&UID=24153
mailto:reinmar.hager@manchester.ac.uk
mailto:reinmar.hager@manchester.ac.uk
http://www.frontiersin.org
http://www.frontiersin.org/Genetic_Architecture/archive


Gini and Hager Recombinant inbred systems and behavioral ecology

give brief examples of how to tackle some of the above questions
in Box 1 with a worked example in Figure 2.

Traditionally, research on the genetic and environmental basis
of behavioral traits has used crosses of model organisms that are
divergent in the expression of the trait of interest (e.g., low and
high aggressiveness; Brodkin et al., 2002), phenotyping of knock-
out mutants for one or two candidate genes or breeding designs
that allow the estimation of heritability, i.e., the proportion of
phenotypic variation that can be explained by genetic variation.
In wild populations with complex pedigrees, the animal model
has been used to partition variance components (e.g., Kruuk,
2004). All of these approaches rely on data of a population that
is genetically unique in its variation among individuals and in its
architecture. Thus, any new experimental population needs to be
geno- and phenotyped, and results of different studies, even using
the same founders, cannot be pooled easily due to differences in
genotypes in the population. RI systems circumvent this problem
as the genetic variation is fixed (hence inbred) for a given pop-
ulation and animals bred from this population can be used in
future research knowing that the genetic variation in the entire
population remains constant and defined.

In this perspective we outline the advantages of using RI
populations for studies in behavioral ecology integrating infor-
mation about multiple genes, phenotypes, and environmental
factors. Thus, our aim is to bring together the advances made
in genetics and the conceptual framework of behavioral ecol-
ogy. We focus on a mammalian RI system, the C57Bl6/J crossed
with DBA (BXD) mouse population, because it is by far the
largest model system both in terms of genetic and analytical
resources. Most importantly, however, is that the BXD sys-
tem is the most widely applicable for research in mammalian

behavioral ecology and can be used by behavioral ecologists
and animal behaviorists without genetic background. Of course,
other systems such as recombinant congenic or chromosome
substitution lines in mice may be more suitable for particular
questions and insect RI lines have also been extensively used for
some time (e.g., Drosophila; Gleason et al., 2002). Nevertheless,
BXD enables the rapid integration and analysis of experimen-
tally obtained phenotype data with genetic and gene expres-
sion data without the need to generate the latter in a specific
experiment.

THE BXD RECOMBINANT INBRED MODEL SYSTEM
RI strains consist of many lines, each of which is defined by
a fixed recombination pattern of exactly two possible alleles
(Silver, 1995). For example, in the BXD strain, there are over
100 different lines. Animals in each of these lines have the same
genotype but they vary across lines. RI animals are homozy-
gous at all loci so they can be maintained indefinitely, but each
line expresses a unique combination of parental alleles, exactly
two possible alleles, as two parental strains were crossed. From
a parental intercross families are derived and then continuously
inbred within a family, thus “freezing” the unique recombi-
nation pattern of the resulting line (Figure 1). The BXD set
was established from an intercross of the inbred mouse strains
C57Bl/6J and DBA/2J, which differ in many phenotypic traits
and are thus ideal to study behavioral traits (e.g., Boughter et
al., 2007). Currently, the BXD set consists of 103 lines and was
originally developed by Taylor in the late 1970’s (lines BXD1–
BXD43) (Chesler et al., 2005), with lines 43 upwards developed
later by Lu Lu, Jeremy Peirce, Lee M. Silver, and Robert W.
Williams.

Box 1 | Behavioral ecology questions that can be addressed in RI systems.

• Genetic basis of trait variation. What genetic variants are associated with phenotypic variation? This requires the use of a genome-
scan (Figures 2A and 2B). Trait values obtained in an experiment are entered into GeneNetwork, which correlates them to variation in
the genotype between BXD lines. The genomic regions with the highest correlation are identified visually as peaks in the LRS score
(i.e., the location of a QTL, Haley and Knott, 1992) . Heritability can be assessed in a simple ANOVA using line as the independent
variable and the trait of interest as the dependent variable, then dividing the between line variance by the total variance. Once
candidate genes are identified by selecting biologically relevant candidates listed under the peak of the QTL with the highest LRS
score, their sequence can be examined using the interval analyst tool, which displays substitutions, insertion and deletions. The next
step is to find out whether the mutation affects the phenotype directly, or whether it acts via the expression of a second gene.
Mutations in genes that code for extra-nuclear proteins can be distinguished by those in regulatory genes by using the links to other
databases such as the NCBI. These provide a short description of the gene status (e.g., “protein coding”) as well as links to the
literature describing gene function in more detail. Large expression datasets are available and can be correlated to gene sequences.

• Phenotypic plasticity. How is plasticity achieved at a genetic level? Measuring behavior or other life history traits in multiple lines
across a gradient of environmental conditions allows genome-scans (Figure 2A) for these traits that can identify genetic variants
modifying traits in some but not other environments. Correlation (Figure 2D) of the measured traits with e.g., physiological traits and
gene expression levels may reveal information about why some traits are more plastic than others and with which gene expression
levels the phenotypes correlate. By phenotyping animals during development one can establish which genes play a role at what stage
in development; varying environmental conditions for each of the lines can identify environmental dependency of genetic variants in
their effects on phenotypes.

• Constraints. Are complex behavioral phenotypes constrained in their response to selection and why? Genetic constraints can be
explored by assessing specific epistatic interactions (see below) and determining which traits are affected by interacting genes using
correlation of gene expression levels and phenotypes. Because phenotypes other than those measured in a specific experiment are
available for BXD, as are gene expression data for major brain parts, correlational analyses in RI panels are much more comprehensive
than could be in any single experiment.

• Epistasis. A specific pairwise mapping tool calculates and displays correlations between gene pairs and phenotype and comparison
between main effects of genes and interaction effects (Figure 2C).
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FIGURE 1 | Derivation of the BXD set. All BXD lines are derived from two
parental strains, namely C57Bl/6J and DBA/2J. Following a cross between
the two, the F1 generation consists of genetically identical individuals that
inherited one chromosome from each parental strain. Intercrosses were
then carried out between F1 individuals, generating recombination in
the F2. Patterns of recombination were frozen with 20 generations of
sib-matings, which resulted in almost complete homozygosity in
generation F23. From then on, breeding was continued by full-sib matings
within every line, and individuals were monitored to ensure consistency in
the genotype of each line over time. After generation F23, therefore, each
line represents a unique mosaic of C57Bl/6J and DBA/2J alleles; there is
extensive variation between line, and virtually no genetic variation between
individuals of one line.

The BXD set derives its high variability from the fact that
its genome contains elements from Mus musculus domesticus
(c. 92%), M. m. musculus (c. 7%), and M. m. castaneus (c. 1%)
(Yang et al., 2007). 11% of the genome of BXD lines is identical by

descent when all inbred strains are considered (Yang et al., 2007).
Therefore, those non-polymorphic regions cannot be investigated
in BXD. Further, statistical power is limited by the number of lines
and is generally smaller compared with a unique intercross pop-
ulation between inbred lines (where each individual is genetically
unique rather than each line in RI sets).

The development of the Collaborative Cross (CC), a RI
panel developed from three wild-derived and five inbred strains
(Churchill et al., 2004), promises much greater genetic diversity
and higher resolution at gene level. The first studies from this
system have recently been published (Threadgill and Churchill,
2012) and demonstrate the potential of the CC panel. In particu-
lar in combination with studies on BXD (high power but lower
resolution), the CC panel allows the dissection of the genetic
architecture of complex behavioral traits. Of course, genetic diver-
sity is maximized in mice derived from recently caught wild mice
(Guenet and Bonhomme, 2003).

The BXD set is characterized by 4–5 million segregating sin-
gle nucleotide polymorphisms (SNPs), 500,000 insertions and
deletions (indels), and 55,000 copy number variants (CNVs,
1–100 kb; Sachidanandam et al., 2001). Importantly, because
recombination patterns are fixed in each line, data collected in
separate experiments can be analyzed in conjunction since the
genetic variation in the lines remains identical. This allows corre-
lational analyses between phenotypes and may identify biological
pathways and pleiotropic gene effects. Further, no genotyping
is required to identify candidate genes: an established linkage
map with currently ∼3800 SNP markers is used for quantita-
tive trait loci (QTL) mapping, the results of which highlight
areas of the genome associated with any given trait. Those areas
can be examined in detail down to the nucleotide level, thanks
to the fact that over the past two years the DNA sequences of
both underlying mouse strains (C57BL/6J, henceforth B6 and
DBA/2J, henceforth DBA) have been established (Wang et al.,
2010). Moreover, gene expression data for many cell and tis-
sue types have been generated in a variety of conditions and are
accessible on GeneNetwork. Further, an extensive online tool for
statistical analysis is now available (GeneNetwork) that integrates
phenotypes, gene expression and DNA data to allow detailed
investigations (Figure 2).

GENETIC BASIS OF TRAITS: CANDIDATE GENES AND
CONSTRAINTS
Understanding the genetic basis of phenotypic variation is crucial
to a number of questions in behavioral ecology and often lies at
the heart of the question why an animal behaves in a certain way
and whether a behavior may be adaptive, or why not (Fitzpatrick
et al., 2005). Can we identify candidate genes underlying behav-
ior? How much does an animal’s behavior depend on ecological
conditions and is there genetic variation for a trait or strategy (i.e.,
it may respond to selection and evolve)? Are genes that under-
lie a specific behavior also causal to other phenotypes and are
these possibly functionally related (Box 1)? A first step to answer-
ing such questions is the identification of locations in the genome
that contain sequence variants (QTL) modifying the phenotype in
question. QTL analysis examines the association between marker
genotypes and phenotypes using, in this case, interval mapping
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FIGURE 2 | A selection of the analytical tools available on GeneNetwork.

In this example, the focal trait (ID number 12361) is a behavioral phenotype
(mouse activity in a maze) submitted by Cook et al. and defined as “Anxiety

assay, baseline untreated control (BASE group), activity in closed quadrants
using an elevated zero maze in 60–120 days-old males and females during

(Continued)
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FIGURE 2 | Continued

10 min [n beam breaks].” (A) Genome scan: the output of the interval
mapping analysis. The program calculates the correlation between known
SNPs and the phenotype values entered by the user. This generates a
Likelihood Ratio Statistic (LRS) for each location on the genome, which is
plotted as a blue line. A high LRS score suggests that genes associated with
the trait are present at the location of significant SNP markers. Statistical
significance thresholds are defined using a permutation test (n = 2000) and
displayed on the graph as grey and red lines (suggestive and significant
thresholds, respectively). This graph clearly shows a significant quantitative
trait locus (QTL) on chromosome 1, possibly associated with additional linked
loci, as well as two suggestive QTL on chromosomes 17 and 19. (B) The
second graph shows a similar LRS plot, zoomed in on a section of
chromosome 1 between 150 and 185 megabases. Multiple LRS peaks are
visible, suggesting that multiple loci in the region may be affecting this
phenotype in mice. The QTL found can be further investigated by examining
correlation patterns and the gene expression databases (see description of
panel D). The graph also presents an additional red line representing the
magnitude of the effect of alleles, i.e., how much larger is the trait value on
average in individuals with the B6 allele. This line is associated with the y-axis
on the right-hand side. It indicates that mice possessing a B6 allele break the
beam in the dark section of the maze 60 times more often than their
counterparts, on average. The gene track at the top of the graph permits an
initial exploration of the interval. Scrolling over a square reveals the gene at
that location; squares are color-coded according to the number of SNPs
existing between the B6 and DBA alleles as loci with greater polymorphism
have a higher chance to be associated with differences in the phenotype.
(C) Results of the epistasis analysis. The program analyzes the correlation
between every possible pair of chromosome locations and the phenotype.
Red and yellow colors indicate high LRS scores and therefore high chances of
a gene associated with the trait at that location. The bottom right-hand half of
the graph shows results for the combined single-gene and epistatic effects.
Indeed, the red and yellow band at the bottom of the graph corresponds to
the significant QTL highlighted in (A) and (B), which achieves high combined

LRS scores because of the strong single-gene effect of a few QTL. The top
left-hand half of the graph shows the results for epistatic interactions only.
Two pairs of epistatic loci with a significant association with the phenotype
are circled in red. These suggest strong epistatic interactions between a
gene on chromosome 19 and one on chromosome 3 and between a second
pair of loci on chromosomes 17 and 1. Significance threshold are given in a
table below the graph on the website, and can be compared with a table of
LRS values. (D) A network graph summarizing the interactions between the
focal phenotype, other behavioral phenotypes, and gene expression in the
brain. The focal phenotype is labeled ZM_ACTIVITY. Other phenotypes are in
green boxes, whereas gene expression data is in blue boxes. Red and orange
lines represent positive correlations, blue and green ones represent negative
correlations; the thickness of lines indicates the strength of the correlation.
The traits in this graph were obtained by selecting the top 10 unique traits
from the “best correlations” searches, but only traits fully connected in the
graph are shown. The behavior phenotypes displayed are:
LM_ALT_CONTEXT = “fear conditioning response,” LOCACTGridDay2 =
“baseline locomotor activity using grid test,” Rtemp = “body temperature
(rectal) of 13-week old males,” SalACT = “locomotion after [saline] injection.”
Blue boxes contain gene symbols for which gene expression correlates with
the focal phenotype. Hippocampus gene expression was used for Cnih4 and
Nvl, hypothalamus data for Copa, Mfn2, Darc and Ildr2. Firstly, this graph
illustrates that behavior correlates in a number of contexts, including zero
mazes, open field, and fear conditioning. Importantly, it also shows that some
of the same genes correlate with many behavioral phenotypes. These two
observations might be the first step towards an in-depth genetic analysis of
behavioral syndromes. Moreover, some intriguing potential clues to the
mechanisms involved are given. For instance, rectal temperature correlates
with anxiety and locomotion, which in turn correlate with the expression of
Mfn2, a gene involved in mitochondrial function and metabolism, and known
to be associated with hypertension. Finally, it should be noted that Copa,
Darc, and Cnih4 are all located in the QTL interval on chromosome 1, and the
correlation between their expression and the focal anxiety phenotype makes
them good candidate genes for the behavior measure here.

(Lander and Botstein, 1989). Such analyses identify regions in the
genome where alleles responsible for altering a particular pheno-
type may be located. Identifying these QTL also provides a degree
of insight into what parts of the genome change when popula-
tions evolve (Grozinger, 2010). This commonly used approach
has identified loci for a variety of behaviors, including anxiety in
mice (Henderson et al., 2004; Sokoloff et al., 2011), foraging in
bees (Rüppell et al., 2004) and mating calls in crickets (Ellison et
al., 2011).

When running a QTL analysis, GeneNetwork generates an
allele effect plot (in addition to the standard QTL plot), quan-
tifying the effects of alleles at all possible locations on the phe-
notype. Using this tool, a QTL analysis may also shed light on
whether differences in phenotype are due to one or two large
effect genes or many loci of small effect (Stapley et al., 2010).
A model constructed by Malcom (2011) highlights the impor-
tance of considering the genetic architecture when attempting to
predict evolutionary trajectories by suggesting that a trait con-
trolled by a small gene network will adapt more rapidly but reach
a less than optimal endpoint, whereas a trait controlled by a large
gene network will evolve more slowly but more accurately. In the
BXD RI set the list of potential candidate genes with the region
defined by a QTL can be further narrowed down by comparing
the DNA sequences of the two founding strains DBA and C57
(Wang et al., 2010) searching for genes that show a functional
polymorphism.

GENE INTERACTIONS
An element contributing to the complexity of the genotype–
phenotype relationship is epistasis, where multiple genes interact
to affect a phenotype, i.e., the effects of a genotype at one locus
depend on the genotypes at other loci. Evolutionarily, epistasis
is important because it can contribute to the additive genetic
variance, which determines the response to selection (Wolf et
al., 2000). Epistasis has been studied extensively using genome
scans in the context of human disease, where modifier genes have
long been known to alter or mask the effect of disease-related
mutations (Nadeau and Dudley, 2011). In behavioral ecology,
understanding epistasis patterns may raise new questions on the
robustness of individuals in the face of deleterious mutations,
opening up the possibility that selection may be less able to
remove deleterious mutations from some populations due to the
masking effects of modifier genes. Indeed, Weinreich et al. (2005)
have demonstrated that functional epistasis (sensu Hansen and
Wagner, 2001), where the effect of an allele depends on the genetic
background at other loci, can alter evolutionary trajectories.
Thus, if we wish to understand and predict evolutionary trajecto-
ries (for instance to model the effect of anthropogenic change on
natural populations: Hellmann and Pineda-Krch, 2007; Yurk and
Powell, 2009), investigations of epistasis in RI lines may provide
insight into the genetic architecture of behavioral traits.

Behavioral ecologists often test predictions in animal systems
derived from optimality models where simplifying assumptions

www.frontiersin.org October 2012 | Volume 3 | Article 198 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Genetic_Architecture/archive


Gini and Hager Recombinant inbred systems and behavioral ecology

are made about the key parameters the animals seeks to opti-
mize. One of the key reasons for deviations from predictions may
be genetic constraints imposed by genetic linkage to genes with
antagonistic (fitness) effects (e.g., Gratten et al., 2008). In BXD,
we can investigate positive or negative gene interaction using
epistasis analyses but also by exploring correlations with other
phenotypes that were collected in other studies. The direction of
phenotypic correlation between traits may be an indicator of pos-
itive or negative genetic linkage and genetic analyses can then be
focused on loci underlying the correlated traits or can be exam-
ined in more detail with the network graph and partial correlation
tool (Figure 2D; for more information, see the online tutorials
on http://webqtl.org/tutorial/ppt/index.html). If a set of traits has
been identified to be part of the same pathway (e.g., high corre-
lation and biologically plausible), pleiotropy can be investigated
by plotting the set of traits onto a multiple QTL map, which
superimposes the Likelihood Ratio Statistic (LRS) plot for all phe-
notypes selected. Because in a given study it will be impossible
to measure many conceivably related phenotypes, RI sets offer
the enormous advantage to draw on both gene expression and
phenotypic data collected in different studies.

It has long been established that effects of genetic variation
on phenotypic variation can depend on environmental condi-
tions (e.g., Bradshaw, 1965; West-Eberhard, 1989), but only with
genome-wide scans is it possible to identify novel genes whose
effects on phenotypes depend on environmental conditions (e.g.,
Thomas, 2010). In behavioral ecology, it is likely, and somewhat
unsurprising, that for example life history strategies depend on
ecological conditions (Werner and Gilliam, 1984; Ludwig and
Rowe, 1990; Ghalambor et al., 2010). However, to what degree
a specific behavior may depend on environmental conditions,
which genes (and thus traits) might be susceptible to quantifi-
able environmental modification (ranging from physical to social
environment, e.g., diet or number of siblings) can be explored in

detail in RI systems as it allows clear manipulation of environ-
mental conditions on defined genetic backgrounds. For example,
one can compare behavioral phenotypes measured across multi-
ple RI lines under two different environmental conditions (e.g.,
diet, social environment) to identify genes that modify behavior
in one environment but not the other.

CONCLUSION
In systems biology the concept of gene networks has come to the
forefront, with the proposal that many aspects of development,
physiology, and behavior are controlled in a modular fashion
(Grozinger, 2010; Nadeau and Dudley, 2011). Modules, or sets
of genes acting in concert to generate individual aspects of biol-
ogy such as metabolism, behavior etc., are thought to arise by
necessity in organisms, causing constraints such as behavioral
syndromes in animals (Sih et al., 2004). Large phenotypic changes
such as the ones involved in speciation are thought to often arise
from a change in the way modules interact with each other, rather
than changes within the modules themselves (Grozinger, 2010).
The systems genetics approach proposed in this perspective is
ideal for testing the hypothesis of modularity. In particular, tools
have been specifically designed to map gene networks and esti-
mate their strength (Figure 2D); results from such analyses will
begin to elucidate the relationships within and between modules.

The key to answering functional, mechanistic, and ontogen-
tic questions about behavior relies on using a system that allows
testing predictions using experimental manipulations, and for
which detailed data from genetics to gene expression, physiol-
ogy through to complex behavioral phenotypes can be obtained.
Large RI panels such as BXD make this possible and are thus
an ideal system to experimentally investigate key concepts in
behavioral ecology. Moreover, we may be able to gain a compre-
hensive understanding of the genetic and environmental causes of
phenotypic diversity among and within species.
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