
Visual Computing for Industry,
Biomedicine, and Art

Vu et al. Visual Computing for Industry, Biomedicine, and Art (2018) 1:2
https://doi.org/10.1186/s42492-018-0002-5
RESEARCH Open Access
Optimizing photoacoustic image
reconstruction using cross-platform parallel
computation

Tri Vu, Yuehang Wang and Jun Xia*
Abstract

Three-dimensional (3D) image reconstruction involves the computations of an extensive amount of data that leads to
tremendous processing time. Therefore, optimization is crucially needed to improve the performance and efficiency.
With the widespread use of graphics processing units (GPU), parallel computing is transforming this arduous
reconstruction process for numerous imaging modalities, and photoacoustic computed tomography (PACT) is not an
exception. Existing works have investigated GPU-based optimization on photoacoustic microscopy (PAM) and PACT
reconstruction using compute unified device architecture (CUDA) on either C++ or MATLAB only. However, our study
is the first that uses cross-platform GPU computation. It maintains the simplicity of MATLAB, while improves the speed
through CUDA/C++ − based MATLAB converted functions called MEXCUDA. Compared to a purely MATLAB with GPU
approach, our cross-platform method improves the speed five times. Because MATLAB is widely used in PAM and
PACT, this study will open up new avenues for photoacoustic image reconstruction and relevant real-time imaging
applications.

Keywords: Photoacoustic computed tomography, Graphics processing units, Parallel computation, Focal-line back-
projection algorithm, MATLAB, Optical imaging
Background
Photoacoustic imaging is an emerging modality, which is
well-known for overcoming the light diffusion limit by
converging light absorption into sound [1]. Upon irradi-
ation by laser or radiofrequency pulses, tissue will ex-
perience thermos-elastic expansion, which generates
acoustic waves to be detected by transducers. Capitaliz-
ing on non-ionizing light illumination and rich optical
contrasts, photoacoustic imaging possesses advantages
in term of safety, penetration depth, and tissue contrast
[2]. Photoacoustic computed tomography (PACT), in
particular, employs higher energy pulses and wide-field
scanning and is capable of capturing 3D structures in a
wide range of scales, from vasculatures to organs [3, 4].
This character gives PACT an outstanding advantage
over other tomography modalities [5].
Despite its immense possibility [6–8], PACT is limited

by the extensive 3D computation. For example, to
* Correspondence: junxia@buffalo.edu
Department of Biomedical Engineering, University at Buffalo, The State
University of New York, Buffalo, USA

© The Author(s). 2018 Open Access This article
International License (http://creativecommons.o
reproduction in any medium, provided you giv
the Creative Commons license, and indicate if
reconstruct a 200 × 430 × 200 matrix, it takes half an
hour on GPU-based MATLAB on our PC with an NVI-
DIA Titan X, using the focal-line-based 3D reconstruc-
tion algorithm [9]. Even with the fact that MATLAB is
not time-efficient, this processing time is still consider-
able, placing a burden on the “pipeline” of 3D PA stud-
ies. Since reconstruction is the very “front door”
component in this “pipeline”, long reconstruction time
leads to delay in the overall research process.
Current efforts on shortening PA reconstruction range

from algorithm development to hardware improvement.
In terms of algorithm development, fast Fourier
transform-based (FFT) reconstruction [10] has suc-
ceeded at improving reconstruction speed. On the other
hand, in terms of hardware enhancement, with the
recent boom in graphics processing units (GPU), parallel
computation has been widely used in various medical
tomography modalities, such as PA [11–14], CT and
MRI [15–18]. Because PA reconstruction involves mostly
linear computation which is straightforward for being
parallelized, GPU becomes a suitable solution for
is distributed under the terms of the Creative Commons Attribution 4.0
rg/licenses/by/4.0/), which permits unrestricted use, distribution, and
e appropriate credit to the original author(s) and the source, provide a link to
changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s42492-018-0002-5&domain=pdf
mailto:junxia@buffalo.edu
http://creativecommons.org/licenses/by/4.0/

Vu et al. Visual Computing for Industry, Biomedicine, and Art (2018) 1:2 Page 2 of 6
improving the computation time [11–14]. Kang et al.
[11] combined both FFT reconstruction with GPU to
show a significant improvement of 60 times compared
to single-thread CPU on optical-resolution photoacous-
tic microscopy (OR-PAM) with 500 × 500 pixels. Impres-
sive improve in performance also proved in 3D
reconstruction. For instance, Wang et al. implemented
GPU-based image reconstruction on C and demon-
strated an improvement of 1000 times in comparison
with CPU [19]. Luis et al. even managed to perform 4D
PA imaging with 120 × 120 × 100 voxels and achieved a
speed of 51 frames per second [20]. However, all these
studies focused on the reconstruction efficiency and
neglected the front-end simplicity of user interaction,
which is also important in PA studies.
To improve the user-friendliness of image reconstruc-

tion, here we propose a cross-platform image reconstruc-
tion approach. Our solution is different from previous
studies in a sense that it spans across two programming
platforms – MATLAB and C++ on CUDA API. This
MATLAB/C++/CUDA code (MCCC) combines the sim-
plicity of MATLAB and the time-efficiency of C++. It can
tremendously assist PA research because most of current
PA systems heavily depend on MATLAB. In details, the
reconstruction code is back-projection-based, with pre-
and post-processing steps performed in MATLAB and re-
construction loops executed in CUDA/C++, through
MEXCUDA functions. Validating images are then recon-
structed using the MATLAB/CUDA-without-C++ code
(MCC), MATLAB-without-GPU code (MWGC), and our
MCCC in this study. MCC does not perform any compu-
tation in C++, and MWGC processes all the steps on
CPU only. They are used to compare with MCCC to see if
our cross-platform method reduces the reconstruction
time. Successfully, our solution is able to shorten this pro-
cessing time to one-fifth while keeping the same image
quality comparing to the MCC.

Methods
Reconstruction method – focal-line-based back-projection
algorithm
In PACT, the universal back-projection (UBP) is fre-
quently used for 3D image reconstruction [21]. Details
of this reconstruction method are described by the
following formula:

p0 r!� � ¼ 1
Ω0

Z

S

dΩ 2p rd
!; t
� �

−2t
∂p rd

!; t
� �

∂t

� �����
t¼ rd

!
− r!

�� ��=vs

Here, p0ð r!Þ is the initial PA pressure at r!, pðrd!; tÞ is
the acoustic pressure at rd

!, and delay time t is calculated
from the travel time jrd!− r! j=vs , in which vs is the speed
of sound in tissue (1.54 m/msec). Ω0 is the solid angle
spanning over the transducer surface S. The universal
back-projection algorithm is developed based on
point-like transducers and is inaccurate for focused
transducers, such as linear transducer arrays with a
focus along the axial direction. In this case, because of
the element aperture, time delay cannot be computed
directly from the point source to the center of the elem-
ent. The focal-line reconstruction algorithm addresses
this issue by utilizing a focal line which goes through the
foci of all transducer elements. The travel path (time of
arrival) of any point in 3D space is quantified based on
its intersection with the focal line: only the path that
goes across the focal line gives the strongest response in
the transducer. Detailed descriptions of this method can
be found in [9, 22].

MEXCUDA function generation
As aforementioned, MATLAB is used as the main plat-
form for pre- and post-processing the data and all the
extensive computation process is performed in C++.
Such that, we need to establish a “gateway” between
CUDA/C++ and MATLAB. MEXCUDA function offers
a perfect solution for this connection. It is a convenient
way to take input from MATLAB to C++, perform cal-
culation in C++, and then take the output back to
MATLAB. In details, MEXCUDA is the expansion of
MATLAB mex function that utilizes C/C++ for execu-
tion using C++ MEX API. The difference between mex
and MEXCUDA is that MEXCUDA is compiled by the
NVIDIA CUDA compiler (nvcc), enabling GPU execu-
tion on C++ for improved performance.
We first need to generate a MEXCUDA function be-

fore calling it in MATLAB. The source code for the
MEXCUDA function is a CU file which is written in C+
+ for CUDA. The CU file has the following main build-
ing blocks. The first block is initialization with two pur-
poses. First, it prepares the code with MathWorks’ GPU
library by calling mxInitGPU from the mxGPU API. Sec-
ondly, it creates mxGPUArray objects (mxGPUArray is a
CUDA class to contain GPU arrays) to store gpuArray
inputs from MATLAB and an output matrix “pa_img”
representing the reconstructed image. The next block of
code is parallel computation. It contains several kernel
functions on the device code to calculate pa_img from
the input mxGPUArray objects in parallel. The last block
of the CU code is finalization. It includes functions to
deliver pa_img back to MATLAB code and to destroy
the GPU matrices to save memory. From this source
code, we create the compiled MEXCUDA function by
using the mexcuda command in MATLAB. This final
MEXCUDA function is in mexw64 type, which is a
nvcc-compiled code for the 64-bit Windows operating
system. This function can be called directly in Matlab as
a subfunction.

Vu et al. Visual Computing for Industry, Biomedicine, and Art (2018) 1:2 Page 3 of 6
The workflow of a function execution by MEXCUDA is
demonstrated in Fig. 1. First, in the MATLAB front-end
code, users load raw data, convert CPU-based matrices
into GPU matrices, and set reconstruction parameters.
Then, users send inputs to MEXCUDA function. After
executing through the building blocks mentioned above,
this function returns the output as the final reconstructed
image to MATLAB. Finally, with post-processing steps in
MATLAB, users are able to visualize and examine the re-
constructed 3D structure.

Heterogeneous computing in CUDA/C++
The process flow executed in C++ employs a
widely-known programming method called heteroge-
neous computing in order to maximize the performance.
GPU, despite having excellent computing ability by cal-
culating each matrix value in parallel, cannot perform
both traditional serial and CPU-based tasks effectively,
such as checking input compatibility, pre-allocating
memory, and creating output arrays. On the other hand,
CPU is faster at handling these steps so it is better suited
for pre- and post-processing data. Such that, CPU is
employed in the initialization and finalization blocks,
while GPU is exploited in the parallel computation
block. This processing flow is presented in Fig. 2.

Validating experiments
To evaluate the efficiency of the optimized code, we
scanned a breast of a healthy volunteer to acquire 3D
vascular data. The human imaging study was performed
in compliance with the University at Buffalo IRB proto-
cols. The PACT imaging system contains three main
parts: a 10-ns-pulsed Nd:YAG laser with 10 Hz pulse
repetition rate and 1064 nm output wavelength, a cus-
tomized linear array with 128 elements and 2.25 MHz
central frequency, and a Verasonics’ Vantage data acqui-
sition system with 128 receive channels. The light illu-
mination was achieved through a bifurcated fiber bundle
Fig. 1 Overall flowchart of a MEXCUDA function
with 1.1-cm-diameter circular input and two
7.5-cm-length line outputs (Light CAM #2, Schott Fos-
tec). During the experiment, the input laser energy was
around 800 mJ/pulse and the efficiency of the fiber bun-
dle is 60%, so that the laser output from the fiber bundle
is around 480 mJ/pulse. Since the size of the laser beam
on the object’s surface was approximately 2.5 cm ×
8.0 cm, the laser intensity is 30 mJ/cm2, which is much
lower than the safety limit of 100 mJ/cm2 [23]. The
transducer was scanned along the elevation direction
over 40 mm at 0.1 mm step size. The entire imaging
area is 8.6 cm (lateral width of the probe) × 4 cm (scan-
ning distance). A schematic of the experimental setup is
illustrated in Fig. 3. Following data collection, we per-
formed 3D focal-line reconstruction with MCCC, MCC
and MWGC for comparison.

Results
We reconstruct the image using MCC, MCCC and
MWGC methods for comparison of processing time and
image quality. All the reconstructions are carried out in
our PC with an NVIDIATitan X GPU (Pascal architecture)
and Intel Core i5-6400 CPU.
In terms of reconstruction time, even though it is

already supported by GPU for parallel programming,
MCC reconstruction still shows a costly computing time.
It takes more than 30 min with a resolution factor (RF)
of five for a volume of 200 × 430 × 200 voxels. Here, RF
is the reciprocal of the voxel size (in mm). Reducing this
number can reduce the reconstruction time to 400 s as
shown in Fig. 4 with the loss of resolution as a tradeoff.
The results clearly show that C++ has played a vital

role to shorten the reconstruction time. Overall, for RF
of 5, computing time in MCCC is reduced by almost
five-fold in comparison with MCC, from 33 to 7 min.
Expectably, both of the codes with GPU support (MCC
and MCCC) outperform the reconstruction without
GPU (MWGC) which takes up to 1376 min as shown

Fig. 2 Example process flow of the heterogeneous computing. In this figure, we create a sample MEXCUDA function for calculating the radius
matrix of a scanned region to each transducer elements. The host code (CPU) is in charge of initialization and finalization blocks such as reading
the input from MATLAB, performing condition checks, and allocating memory for input and output data. Device code in GPU is responsible for
computing the radius matrix in parallel from required inputs (parallel computation block)

Vu et al. Visual Computing for Industry, Biomedicine, and Art (2018) 1:2 Page 4 of 6
in Fig. 4(a). At RF of 2, MCCC has ten times shorter
processing time than the duration of MCC as shown in
Fig. 4(b). In terms of image quality, because the
reconstruction methods are the same, there are no
changes from those images created by MCC and
MCCC as indicated by Fig. 5. This fact proves that
there is no tradeoff between reconstruction accuracy
and processing time. From the perspective of the users,
as aforementioned, there is no need for modification of
parameters or calculations in the source code in C++
because it is used as a predefined sub-function. With
this fact, the simplicity nature of the front-end
MATLAB code is maintained.
Fig. 3 Schematic drawing of PACT setup. a A 2D schematic showing all m
beam causes the tissue to expand and release acoustic waves which are ca
the moving (scanning) direction
Discussion and conclusion
To summarize, in this paper, we propose a novel way
to optimize 3D reconstruction for PACT using
cross-platform MATLAB/C++ code on CUDA. Our
approach, utilizing C++/GPU reconstruction function,
manages to significantly reduce the reconstruction
time by five times compared with the performance of
the MATLAB/GPU code. On the other hand, it main-
tains the simplicity of user interaction in MATLAB
front-end side. Our method paves the way for future
3D reconstruction optimization for PACT on
cross-platform MATLAB/C++ that benefits further
PACT research which depends heavily on MATLAB.
ajor components. b A 3D illustration of the scanning process. The laser
ptured by the transducer. This process happens continuously along

Fig. 4 a Comparison of reconstruction time between MCC, MCCC and MWGC and b a close look into reconstruction time difference between MCC
and MCCC codes with different RF

Fig. 5 Comparison of depth-encoded photoacoustic images reconstructed by the (a) MCC and (b) MCCC

Vu et al. Visual Computing for Industry, Biomedicine, and Art (2018) 1:2 Page 5 of 6

Vu et al. Visual Computing for Industry, Biomedicine, and Art (2018) 1:2 Page 6 of 6
Future work for this project will focus on further
decreasing the reconstruction time by cutting down the
number of iterations in the source code. The current
reconstruction is still processed through a significant
amount of loops based on the number of transducer ele-
ments and scanning lines. Instead of going through 128
(number of elements) × 400 (number of lines) loops, we
should find a solution to perform calculation all at once
if possible. For example, all the input data for each loop
can be allocated to all available GPU memory and be ex-
ecuted in parallel. However, the limitation of this ap-
proach is that a huge amount of memory will need to be
deployed, making it only viable for small 3D PA struc-
tures. Other than that, reducing the number of iterations
can be achieved by having only either 128 loops based
on transducer elements or 400 loops based on lines.

Acknowledgements
This study is supported in part by the Career Catalyst Research Grant from
the Susan G. Komen Foundation and the Clinical and Translational Science
Pilot Study Award from the National Institutes of Health. The Titan X Pascal
used for this research was donated by the NVIDIA Corporation.

Authors’ contributions
TV and JX conceived the study. TV wrote the Matlab and C++ codes and YW
conducted the experimental study. JX guided the overall direction of the
study. All authors read and approved the final manuscript.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 1 April 2018 Accepted: 16 June 2018

References
1. Beard P. Biomedical photoacoustic imaging. Interface focus. 2011;1(4):602–31.
2. Zhang E, Laufer J, Pedley R, Beard P. In vivo high-resolution 3D photoacoustic

imaging of superficial vascular anatomy. Phys Med Biol. 2009;54(4):1035.
3. Jeon M, Kim J, Kim C. Multiplane spectroscopic whole-body

photoacoustic imaging of small animals in vivo. Med Biol Eng Comput.
2016;54(2–3):283–94.

4. Wang LV, Yao J. A practical guide to photoacoustic tomography in the life
sciences. Nat Methods. 2016;13(8):627.

5. Jathoul AP, Laufer J, Ogunlade O, Treeby B, Cox B, Zhang E, et al. Deep
in vivo photoacoustic imaging of mammalian tissues using a tyrosinase-
based genetic reporter. Nat Photonics. 2015;9(4):239.

6. Li ML, Oh JT, Xie X, Ku G, Wang W, Li C, et al. Simultaneous molecular and
hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic
tomography. Proc IEEE. 2008;96(3):481–9.

7. Shao Q, Morgounova E, Jiang C, Choi J-H, Bischof JC, Ashkenazi S. In vivo
photoacoustic lifetime imaging of tumor hypoxia in small animals. J Biomed
Opt. 2013;18(7):076019.

8. Xia J, Chatni MR, Maslov KI, Guo Z, Wang K, Anastasio MA, et al. Whole-
body ring-shaped confocal photoacoustic computed tomography of small
animals in vivo. J Biomed Opt. 2012;17:050506.

9. Xia J, Guo Z, Maslov K, Aguirre A, Zhu Q, Percival C, et al. Three-dimensional
photoacoustic tomography based on the focal-line concept. J Biomed Opt.
2011;16(9):090505.

10. Köstli KP, Beard PC. Two-dimensional photoacoustic imaging by use of
Fourier-transform image reconstruction and a detector with an anisotropic
response. Appl Opt. 2003;42(10):1899–908.

11. Kang H, Lee SW, Lee E, Kim SH, Lee TG. Real-time GPU-accelerated
processing and volumetric display for wide-field laser-scanning optical-
resolution photoacoustic microscopy. Biomed Opt Express. 2015;6(12):4650–60.
12. Kruger RA, Kuzmiak CM, Lam RB, Reinecke DR, Del Rio SP, Steed D. Dedicated
3D photoacoustic breast imaging. Med Phys. 2013;40(11)113301:1–8.

13. Treeby BE, Cox BT. k-Wave: MATLAB toolbox for the simulation and
reconstruction of photoacoustic wave fields. J Biomed Opt. 2010;15(2):
021314.

14. Yuan J, Xu G, Yu Y, Zhou Y, Carson PL, Wang X, et al. Real-time
photoacoustic and ultrasound dual-modality imaging system facilitated with
graphics processing unit and code parallel optimization. J Biomed Opt.
2013;18(8):086001.

15. Jia X, Lou Y, Li R, Song WY, Jiang SB. GPU-based fast cone beam CT
reconstruction from undersampled and noisy projection data via total
variation. Med Phys. 2010;37(4):1757–60.

16. Scherl H, Keck B, Kowarschik M, Hornegger J, editors. Fast GPU-based
CT reconstruction using the common unified device architecture
(CUDA). Nuclear Science Symposium Conference Record, 2007 NSS’07
IEEE. Honolulu: IEEE; 2007.

17. Smith DS, Gore JC, Yankeelov TE, Welch EB. Real-time compressive sensing
MRI reconstruction using GPU computing and split Bregman methods. Int J
Biomed Imaging. 2012;2012(864827):1–6.

18. Stone SS, Haldar JP, Tsao SC, Sutton B, Liang Z-P. Accelerating advanced
MRI reconstructions on GPUs. J Parallel Distrib Comput. 2008;68(10):1307–18.

19. Wang K, Huang C, Kao YJ, Chou CY, Oraevsky AA, Anastasio MA.
Accelerating image reconstruction in three-dimensional optoacoustic
tomography on graphics processing units. Med Phys. 2013;40(023301):1–15.

20. Dean-Ben XL, Ozbek A, Razansky D. Volumetric real-time tracking of
peripheral human vasculature with GPU-accelerated three-dimensional
optoacoustic tomography. IEEE Trans Med Imaging. 2013;32(11):2050–5.

21. Xu M, Wang LV. Universal back-projection algorithm for photoacoustic
computed tomography. Phys Rev E. 2005;71(1):016706.

22. Wang D, Wang Y, Zhou Y, Lovell JF, Xia J. Coherent-weighted three-
dimensional image reconstruction in linear-array-based photoacoustic
tomography. Biomed Opt Express. 2016;7(5):1957–65.

23. Standard A. American national standard for the safe use of lasers. Z136.
2000;1:2007–1.

	Abstract
	Background
	Methods
	Reconstruction method – focal-line-based back-projection algorithm
	MEXCUDA function generation
	Heterogeneous computing in CUDA/C++
	Validating experiments

	Results
	Discussion and conclusion
	Acknowledgements
	Authors’ contributions
	Publisher’s Note
	References

