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Abstract: We implemented a spatial model for analysing PM10 maxima across the Mexico City
metropolitan area during the period 1995–2016. We assumed that these maxima follow a non-identical
generalized extreme value (GEV) distribution and modeled the trend by introducing multivariate
smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical
Bayesian approach was developed to analyse the distribution of the PM10 maxima in space and time.
We evaluated the statistical model’s performance by using a simulation study. The results showed
strong evidence of a positive correlation between the PM10 maxima and the longitude and latitude.
The relationship between time and the PM10 maxima was negative, indicating a decreasing trend
over time. Finally, a high risk of PM10 maxima presenting levels above 1000 µg/m3 (return period:
25 yr) was observed in the northwestern region of the study area.

Keywords: air pollution; particulate matter; extreme value theory; Markov Chain Monte Carlo
(MCMC); nonstationary

1. Introduction

Air pollution in urban areas has become a major problem [1]. Increases in industry and urban
traffic due to economic and population growth have led to an increase in gas and particulate emission
that contribute to air pollution [2]. Among air pollutants, fine inhalable particles, known as particulate
matter (PM) are associated with respiratory illnesses such as bronchitis, emphysema, asthma and
other chronic obstructive pulmonary diseases [3]. PM can be classified by size; particles of 10 µm or
less in diameter are called PM10. They can consist of diverse solid and liquid particles, which may
contain chemical constituents such as nitrates, sulfates and organic carbon [4]. PM originates from
factories, internal combustion engines, heating systems, volcanoes, and deserts, and can include dust
particles formed through the mechanical breakdown of larger particles during agricultural and mining
processes [5]. In the Mexico City metropolitan area, a study conducted by the U.S. Department of
Energy (DOE) and Mexico’s Petróleos Mexicanos (PEMEX) showed that approximately 50% of the
PM10 was composed of dust from roadways, construction, and bare land [6].
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Previous studies on the damage caused to human health by breathable particulate matter
have revealed an association between high concentrations of PM10 and mortality due to respiratory
diseases [1,7]. To reduce exposure and minimize the adverse effects of these particulates on public
health, several studies have been conducted with a focus on understanding the causes and factors
related to the origin and flow of these particles [4,8]. Most of these studies have relied on continuous
measurements of PM10 to predict future concentrations based on various models, such as multiple
regression models, neural networks [9] and generalized linear models [5]. However, these short-term
forecasting methodologies were developed for use in locations with limited infrastructure, and where
obtaining continuous measurements of PM10 concentrations is difficult. In other, more densely
populated regions, such as the Mexico City metropolitan area, there are systems that measure these
concentrations and send information in real time to a central location for the immediate activation
or deactivation of alerts or emergency procedures. In these cases, it is more convenient to study air
pollutants through the use of robust methodologies such as the theory of extreme values.

Extreme value theory is used in many fields, such as environmental studies, engineering and
finance, to monitor the quantitative risk of future extreme events [10,11]. In the environmental sciences,
it is used to model extremes of temperature, rainfall, wind and pollution, among other phenomena.
The asymptotic distribution of maxima is known as the generalized extreme value distribution, which is
described by three parameters corresponding to location, scale and shape [12]. These parameters
are estimated using the maximum likelihood method [13]. However, this method is not robust with
a small sample size, so many other estimation methods have also been proposed, such as the method
of moments, the use of L-moments and the use of weighted probability moments [14–16].

Recently, new methodologies have been proposed for the study of extreme values, mainly for
application to hydroclimatological and environmental data, all of them based on the generalized
extreme value distribution. For example: Gaetan and Grigoletto [17] proposed the use of Markov
random fields approximated based on smoothing kernel parameters for modeling the parameters of
the GEV distribution. Reich et al. [18] studied heat waves using a Bayesian hierarchical model with
the generalized Pareto distribution (GPD). Cooley and Sain [19] studied maximum rainfall events by
assigning a normal prior to the parameters of the GPD. Sang and Gelfand [11] studied the extreme
values of spatial stochastic processes and modeled the observed trend as a function of covariates.

In a real scenario, it is common that conditions change and that the assumptions of stationarity that
are required in a traditional analysis of extreme values not met; this is because there are often trends of
extreme values [20–22]. Recent studies have introduced covariate functions for describing extreme
value distributions to model either the location parameter, the scale parameter or both. Regarding the
location parameter, Weissman [23] used a sine function, Tawn [24] and Scarf [25] proposed a linear
function, Rosen and Cohen [26] and Pauli and Coles [27] used splines, and Bocci et al. [28] used a
geoadditive model. In the case of the scale parameter, because this parameter is assumed to be positive,
it is more common to model its logarithm; therefore, Yee and Stephenson [29] used additive models,
El Adlouni et al. [10] and Rodriguez et al. [30] used linear functions, and Cannon [31] proposed the
use of neural networks.

In this article, we present a spatio-temporal analysis of extreme PM10 values in the Mexico City
metropolitan area. The objective of this study was to analyse PM10 data collected over time and in
different spatial locations to gain insight into the distribution of PM10 maxima and to quantify the risk
of future extreme PM10 pollution events, even in non-monitored regions.

2. Materials and Methods

2.1. Study Area

The Mexico City metropolitan area is one of the world’s largest urban agglomerations,
with approximately 25.4 million inhabitants spread over 7866 km2 at an average elevation of 2240 m
above mean sea level. It is surrounded by mountains to the east and west, creating a basin with
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low points to the the north which leads to air pollution problems because of limited ventilation [6].
Two synoptic wind regimes prevail throughout the year: an anticyclonic westerly wind from November
to April and a moist trade wind associated with the rainy season from May to October. Despite weak
prevailing synoptic winds, the thermally induced local wind converges toward the city, which tends to
restrict the ventilation of polluted air [32]. The study area and the locations of the primary sampling
sites are shown in Figure 1.

Figure 1. Study area.

2.2. Methodology

2.2.1. A Nonstationary GEV Model

Let Y1, ..., Yn be an independent and identically distributed set of random variables with
distribution function FX (x) and let Mn = max (Y1, ..., Yn). Let FMn be the distribution function of
Mn, because FMn = FX (x)n we have that Mn is a degenerate distribution when n→ ∞. The extreme
value theory considers that the only nondegenerate limiting distribution Gn = (Mn − an)/bn (if such
a sequences of constants {bn > 0} and {an} exist) as n→ ∞ is the generalized extreme value (GEV)
distribution [12]:

FGEV(y) =

exp
{
−
(

1 + κ
(y−µ)

σ

)− 1
κ

}
, κ 6= 0,

exp
{
− exp

(
− (y−µ)

σ

)}
, κ = 0

for y : 1 + κ
(y−µ)

σ > 0 when κ 6= 0, where −∞ ≤ y ≤ µ + σ/κ when κ < 0 (Weibull), −∞ ≤ y ≤ +∞
when κ = 0 (Gumbel) and µ + σ/κ ≤ y ≤ +∞ when κ > 0 (Fréchet). Here, µ ∈ R, σ > 0 and κ ∈ R
are the location, scale and shape parameters, respectively; see [33].

In the nonstationary case, the parameters are expressed as a function of a vector of covariates
xt: GEV (µ(xt), σ(xt), κ(xt)) [34]. To ensure a positive value for the scale parameter, log σ(xt) is used
instead of σ(xt) in the estimation process.

2.2.2. Proposed Approach

For the non-stationary case, consider assigning a linear predictor to the location and scale
parameters. The κ parameter is usually assumed to be constant [29]. Therefore, we propose using the
following conditions for the above parameters:
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µt = ∑P1
i=1 Xtiβ1i + ∑P2

i=1 Ztiu1i,

log σt = ∑P1
i=1 Xtiβ2i + ∑P2

i=1 Ztiu2i, (1)

κt = κ

where X is a scaled and centered n × p1 matrix of covariates that includes the intercept;
βi, i = 1, 2, is a vector of length p1; ui, i = 1, 2, is a vector of length p2; Z is an n× p2 matrix such that

{Z}ij = exp
[
−
(∥∥∥xi − kj

∥∥∥)2
]

, i = 1, . . . , n, j = 1, . . . , p2; xi is the vector of covariates for the i-th

observation, scaled and centered; and kj the j-th centroid obtained using the method of average linkage
hierarchical clustering [28,35].

2.2.3. Maximum Likelihood Estimation

For a sample of n observations: y = (y1, ..., yn), the maximum likelihood estimator for the
non-stationary GEV can be determined by maximizing the likelihood function

L(µt, σt, κt | y) =
n

∏
t=1

1
σt

exp

{
−
[

1 + κt

(
yt − µt

σt

)]− 1
κt

}
×
[

1 + κt

(
yt − µt

σt

)]−(1+ 1
κt

)

where n is the number of observations. The function of κt is usually assumed constant [29], so the
log-likelihood is:

`(µt, σt, κ | y) = −n log σt −
n

∑
t=1

[
1 + κ

(
yt − µt

σt

)]− 1
κ

−
n

∑
t=1

(
1 +

1
κ

)
log
[

1 + κ

(
yt − µt

σt

)]

Let C = bX Zc and b′(i) =
⌊

β′
(i)

u′(i)
⌋

, where C is a n× p matrix, with p = p1 + p2; b′(i) is a vector

of p× 1 parameters, the linear predictors can be written as:

µt = Cb1 ; log σt = Cb2 ; κt = κ

For this study, we assigned a penalization (P) to the vector of parameters, such that:

P =

 1
σ2

β

⊗ Ip1 0

0 1
σ2

u
⊗ Ip2


where Ip1 and Ip2 are identity matrices of order p1 and p1 respectively, σ2

β and σ2
u are values that control

the degree of regularization of the model.
Therefore the penalized log-likelihood of the model is:

`
p
n(µt, σt, κ | y) =

n

∑
t=1

`t(µt, σt, κ | y)−
2

∑
i=1

b′(i)Pb(i) −
1
σ2

κ
κ2

where:

`t(µt, σt, κ | y) = − log σt −
[

1 + κ

(
yt − µt

σt

)] 1
κ

log
[

1 + κ

(
yt − µt

σt

)]
Defining `n(µt, σt, κ | y) =

n
∑

t=1
`t(µt, σt, κ | y) and `PL(b(1), b(2), κ) =

[
−

2
∑

i=1
b′(i)Pb(i) − 1

σ2
κ

κ

]
we can

rewrite the log-likelihood as:

`
p
n(µt, σt, κ | y) = `n(µt, σt, κ | y) + `PL(b(1), b(2), κ) (2)
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In order to compare two models, let M1 with θ1 a parametric vector against another model M0

with θ0 a subset vector such as M1 ⊂ M0, a simple way to compare two models is to use the deviance
statistic defined by [34]

D = 2 (l∗n (M1)− l∗n (M0))

where l∗n (M) is the maximized log likelihood function of model M. Values of D greater than χ2
k are

considered significant, where k is the difference between the dimensions of M1 and M0, thus model
M1 explains better data variation than model M0.

Penalized maximum likelihood estimators are used in this work for two reasons, the first is to
use these estimators to perform a procedure of variables selection through the deviance, and second,
we will use these estimators as initial values for the Bayesian hierarchical model to reduce the number
of samples necessary to reach the stationary distribution of the MCMC algorithm.

2.2.4. Bayesian Implementation

Under the assumption that π (yt|θt) is the GEV distribution with parameters of θt = (µt, σt, κ),
a Bayesian formulation for the model of extreme values is as follows:

π (θt, ω|yt) ∝ π (yt|θt)π (θt|ω)π (ω) (3)

where ω = (β1, β2, u1, u2) is such that the set of equations given in Equation (1) is satisfied.
This hierarchical model consists of three levels: a data level, denoted by π (yt|θt); a process level,
denoted by π (θt|ω); and a prior level, denoted by π (ω). Alternatively, the model given in Equation (3)
with the conditions given in Equation (1) can be reformulated as a function of the parameter space of
ω∗ = (β1, β2, u1, u2, κ) and ω∗∗ = {σ1, σ2}; therefore, we can write the posterior distribution as follows:

π (ω∗, ω∗∗|yt) ∝ π (yt|ω∗)π (ω∗|ω∗∗)π (ω∗∗) (4)

where π (yt|ω∗) is the GEV density under the conditions on the parameters given in Equation (1).
The prior distribution for ω∗ is such that

β1 ∼ N
(
0, 104 I

)
β2 ∼ N

(
0, 104 I

)
u1|σ1 ∼ N

(
0, σ2

1 IKx

)
u2|σ2 ∼ N

(
0, σ2

2 IKx

)
κ ∼ Uni f orm(−5, 5)

The prior distribution for the hyperparameters ω∗∗ is given by

σ2
1 ∼ Hal f − Cauchy(25)

σ2
2 ∼ Hal f − Cauchy(25)

To sample the a posteriori distribution, we use a MCMC method with an acceptance probability
given by

α (θ∗|θ) = min
(

1,
π (x|θ∗)π (θ∗) Q (θ∗, θ)

π (x|θ)π (θ) Q (θ, θ∗)

)
where π (θ) is the prior distribution for the parameters, π (x|θ) is the likelihood, and Q is the
proposal function.

2.2.5. Simulation Study

In this section, we examine the performance of the hierarchical GEV model defined in Equation (4)
using simulated data. We simulated 500 extremes from a GEV model with two covariates, x1 and x2,
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corresponding to the longitude and latitude, respectively. The x1 values were generated with equally
spaced data in the range of 0 to 4π, and the values of the covariate x2 were randomly selected from the
interval [0, 4], with

µt = sin

 (√
(x1−2π)2+(x2−2π)2

) 3
2

5


σt = σ = 0.3 (5)

κt = κ = −0.1

For our model, we ran 70,000 iterations to obtain samples of the a posteriori density, after a burn-in
period of 60,000 iterations, and applied thinning in every fifth iteration. The hierarchical model given
in Equation (4) was fitted by setting p2 = 10 in equation set Equation (1). The estimate of the shape
parameter was −0.14. The true functions of µ and σ as functions of the covariates x1 and x2 are shown
in Figure 1a,c, respectively. The function corresponding to µ that was chosen for the simulation is
a function that cannot be separated based only on the main effects of the covariates, so it cannot be
adjusted as in most traditional models for extreme values. The function for sigma is a flat function in
the space covariate.

The true surface and local spatial patterns of the location parameter (Figure 2a) that were used to
simulate the extreme values were recovered reasonably well by the smoothing function (Figure 2b).
Similarly, a comparison of Figure 2c,d reveals that the smoothing function for the scale parameter of
the extreme values based on the model given in Equation (1) recovered the true flat function for σ

given in Equation (5).

(a) (b)

(c) (d)

Figure 2. Real functions (a,c) and functions obtained by fitting the parameters (b,d) of a non-stationary
generalized extreme value (GEV) model to simulated data with a sample size of n = 500.
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To evaluate the performance of our model, we reserved a set of 1000 locations to serve as the
testing set and then calculated the correlation with respect to their estimated values. Specifically, for the
location parameter, we obtained a correlation of 0.99 between the predicted values and the testing data.
Typically, when the trend found in the maxima can be modeled using nonlinear functions of a set of
covariates, the interpretations of the individual coefficients of the smoothing function lose importance,
and they are often meaningless. Therefore, the main information about the trend is provided by the
smoothing function constructed from the complete set of estimated parameters.

2.2.6. Maxima in PM10 Pollution Levels

Data Collection

The data correspond to 1238 observations of quarterly block maxima in PM10 between 1 January
1995, and 31 December 2016, obtained at 31 fixed monitoring stations of the Red Automática de
Monitoreo Atmosférico (RAMA) network established by the Comision Ambiental Metropolitana of
Mexico City to monitor compliance with ambient air quality standards; this network is part of the
Sistema de Monitoreo Atmosférico (SIMAT), a program responsible for ongoing measurements of the
main air pollutants in Mexico City.

Data Analysis

We constructed a GEV model of the PM10 maxima in the Mexico City metropolitan area,
using multivariate smoothing functions of spatio-temporal covariates, latitude (s1), longitude (s2)
and time (t), grouped into X(1) and meteorological covariates, wind speed (ws) and relative humidity
(rh), grouped into X(2), to fit the trends in the non stationary GEV model. We defined two models to
estimate the GEV parameters, the GEV0 model which included the spatio-temporal covariates and the
GEV1 model that included the spatio-temporal covariates as well as the meteorological covariates.

According to the proposed approach in Equation (1), we define the joint contribution δθt (X) of
the set of covarites X corresponding to the θt parameter of the GEV distribution, as follows

δµt (X) = ∑
p1
i=1 Xtiβ1i + ∑

p2
i=1 Ztiu1i,

δlog σt (X) = ∑
p1
i=1 Xtiβ2i + ∑

p2
i=1 Ztiu2i, (6)

δκt (X) = κ

The GEV0 model is a baseline model that incorporates the spatio-temporal covariates X(1) using
a multivariate spline structure that implicitly includes the interaction between the covariables of the
group, as follows

µt = δµt

(
X(1)

)
,

log σt = δlog σt

(
X(1)

)
, (7)

κ = δκt

(
X(1)

)
The GEV1 model is an extension of the GEV0 model that incorporates in an additive way the

meteorological set of covariates X(2) with the structure given by Equation (6).

µt = δµt

(
X(1)

)
+ δµt

(
X(2)

)
,

log σt = δlog σt

(
X(1)

)
+ δlog σt

(
X(2)

)
, (8)

κ = δκt

(
X(1)

)
+ δκt

(
X(2)

)
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3. Results and Discussion

A descriptive summary of the data is shown at Table 1. Four examples of quarterly block maxima
of PM10 levels are presented in Figure 3. The U.S. and Mexican standard for PM10 pollution levels is
150 µg/m3. An analysis of Table 1 shows that in the area of Villa de las Flores, the permissible level
was exceeded by more than three quarters of all measured extreme values. At three of the monitoring
stations, CUA = Cuautitlán, NET = Netzahualcoyotl and XAL = Xalostoc, all observations exceeded
the permitted standard level, this is because these locations have a high population density and more
concentrated industry. The peak PM10 concentrations exceeded 1000 µg/m3 at CES = Cerro de la
Estrella, MER = Merced, SAG = San Agustín, VIF = Villa de las Flores and XAL = Xalostoc; at SAG =
San Agustín station, the level recorded was 10 times higher than the recommended safe limit.

Table 1. Descriptive summary information on the extreme values of particulate matter less than
10 micrograms in diameter (PM10) at the stations considered in the study.

Name Symbol Long(W) Lat(N) Min. 1st Qu. Median Mean 3rd Qu. Max.

Acolman ACO 99◦07′ 03.89′′ 19◦28′04.4′′ 76 166.2 197.5 230.5 252.5 535
Ajusco Medio AJM 99◦12′16.54′′ 19◦31′44.67′′ 92 99 109 121.1 137 175
Atizapan ATI 99◦04′56.64′′ 19◦31′33.58′′ 108 137 185 203.9 256 387
Benito Juárez BJU 99◦07′10.53′′ 19◦25′28.59′′ 102 118.5 127 265.8 274.2 707
Camarones CAM 99◦12′14.88′′ 19◦19′30.52′′ 102 150 181.5 189.8 213.2 462
Cerro de la Estrella CES 99◦04′28.84′′ 19◦20′05.03′′ 130 279 373 444 617.5 1023
Chalco CHO 99◦01′34.02′′ 19◦25′16.14′′ 150 207.5 283 272.3 341 401
Cuajimalpa CUA 99◦10′37.82′′ 19◦36′09.15′′ 75 108 119 131.7 168 191
Cuautitlán CUT 99◦05′47.72′′ 19◦39′29.60′′ 198 267.2 297 289.5 305 427
FES Acatlán FAC 99◦00′38.03′′ 19◦14′47.25′′ 98 167.5 248 272.3 364 758
Hangares HAN 99◦08′59.97′′ 19◦18′52.12′′ 117 228 302 333.8 369 959
Hospital General de México HGM 99◦14′36.68′′ 19◦28′56.90′′ 96 143.8 153 190 193.2 376
Investigaciones Nucleares INN 99◦05′01.04′′ 19◦25′13.86′′ 69 71.25 120 142 190.8 259
Iztacalco IZT 99◦12′00.39′′ 19◦21′57.12′′ 78 128.5 186 230.8 317 569
La Villa LVI 99◦01′49.16′′ 19◦31′58.68′′ 118 203.8 286 309 355.5 871
Merced MER 99◦07′23.53′′ 19◦20′08.48′′ 109 187.5 290.5 357.8 437 1233
Miguel Hidalgo MGH 99◦07′03.50′′ 19◦23′03.88′′ 100 109 121 134.7 137 230
Milpa Alta MPA 98◦54′43.21′′ 19◦38′07.8′′ 119 123.5 128 150.3 166 204
Netzahualcoyotl NET 99◦10′11.25′′ 19◦28′06.25 298 580.5 737 722.4 887 991
Pedregal PED 99◦04′25.96′′ 19◦21′38.85 94 146 189 233 284 884
Plateros PLA 99◦09′07.94′′ 19◦24′41.82 112 178 233 241.2 294 440
San Agustín SAG 99◦15′46.31′′ 19◦21′26.48′′ 104 216.5 346 430.9 571 1570
Santa Fe SFE 99◦11′54.96′′ 19◦43′19.86′′ 91 131 149 159.2 182 267
Santa Ursula SUR 98◦53′09.91′′ 19◦16′01.01′′ 100 164 237 265.8 335 603
Tlahuac TAH 99◦15′14.87′′ 19◦34′37.06′′ 91 183 281 336.9 463.2 977
Taxqueña TAX 99◦17′30.13′′ 19◦21′55.12′′ 128 188.5 262 280.6 334.5 513
Tlalnepantla TLA 99◦12′09.57′′ 19◦24′14.58′′ 121 190 236 317.3 374 912
Tultitlán TLI 99◦12′27.87′′ 19◦16′19.77′′ 41 203.2 293 303 368.5 828
UAM Iztapalapa UIZ 99◦09′34.54′′ 19◦22′13.67′′ 105 158 172 201.8 238 539
Villa de las Flores VIF 99◦22′49.87′′ 19◦17′31.08′′ 82 243.8 380.5 405.8 470.8 1269
Xalostoc XAL 98◦59′24.68′′ 19◦10′36.83′′ 187 330 443 497 609 1076

Figure 4 shows boxplots of the PM10 maxima at each of the 31 monitoring stations considered
in the study. The sites with lower PM10 maxima, less than 151 µg/m3 on average, are located
in MGH = Miguel Hidalgo, MPA = Milpa Alta, AJM = Ajusco Medio and CUA = Cuajimalpa.
Relatively well-preserved areas can still be found at these sites, which also have the lowest industrial
activity and urban growth in the study area. By contrast, we also found sites with more than 723 µg/m3

PM10 on average, such as NET = Netzahualcoyotl, XAL = Xalostoc, CES = Cerro de la Estrella and
MER = Merced, which are characterized by high industrial activity and heavily traveled paved and
unpaved roads with heavy vehicular traffic [6].
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(a) (b)

(c) (d)

Figure 3. Example of quarterly block maxima of PM10 levels at (a) VIF = Villa Flores; (b) MER = Merced;
(c) XAL = Xalostoc and (d) TLA = Tlanepantla. Linear trend over time are indicated in red.

In order to determine the significance of the meteorological variables in the non-stationary
GEV model, we adjusted the GEV0 and GEV1 models by using the method of maximum likelihood
(ML) and penalized maximum likelihood (PML) and we compared these two models through the
deviance statistics. The results presented in Table 2 show that the model GEV1 is not statistically
better than the baseline model GEV0, therefore the set of meteorological covariates wind speed
(ws) and relative humidity (rh) did not present evidence at the 95% level to be included in the
non-stationary model GEV for the modeling of PM10 maxima. Table 2 shows the effect of penalization
of the parameters in the model, in the case of maximum likelihood method none regularization
was performed, therefore `PL(b(1), b(2), κ) is considerably greater than the case of the penalized
maximum likelihood. The maximum likelihood estimators have desirable statistical properties,
however penalized estimators are preferred because they control the overfitting and reduce the
instability of the estimates. In this work penalized estimators are used as initial values for the
Bayesian hierarchical model, in order to reduce the number of chains necessary to reach the stationary
distribution of the sampling MCMC algorithm.
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Table 2. Statistical comparison of the GEV0 model against the GEV1 model.

% Method Model `n(y | µt , σt , κ) `PL(b(1), b(2), κ) Deviance p-value

ML GEV0 −4607.8 −21, 763.3 32 0.12
GEV1 −4591.8 −21, 737.2

Penalized ML GEV0 −4845.8 −28.1 26.6 0.33
GEV1 −4832.5 −28.7

Once the set of covariates involved in the model is determined, a hierarchical Bayesian model
was fitted to analyse the PM10 maxima in the Mexico City metropolitan area. At the first level,
we modeled the PM10 maxima using the generalized extreme value distribution; at the second level,
we used multivariate smoothing spline functions to model nonstationary spatio-temporal extremes;
and finally, at the third level, we assumed a priori distribution functions for the parameters of
the model. Unfortunately, the posterior density in Equation (4) is not analytically tractable, so we
implemented our model via the random walk Metropolis-Hastings algorithm to draw samples of the
unknown parameters.

We performed the analysis using the statistical software R (version 3.3.1, R Foundation for
Statistical Computing, Vienna, Austria). We fitted our Bayesian hierarchical model with the conditions
expressed in Equation (6), setting p2 = 10. We ran 70,000 MCMC samples after a burn-in period of
60,000 iterations, with thinning every fifth iteration. A look at the log-likelihood of the chain revealed
convergence toward the stationary distribution of the MCMC algorithm.

Evidently, the extreme values of PM10 vary over time and from area to area because of local
conditions, such as the topographic setting or the local wind. This fact justifies the modeling of the
location parameter with respect to time and space. We verified this behavior by means of the estimates
presented in Table 3, which show that the magnitudes of the studied maxima tend to decrease over
time. Similarly, the boxplots in Figure 4 show that the distribution of the maxima is not the same in
all monitored locations; therefore, a suitable model for the PM10 maxima must include temporal and
spatial variations and their possible interactions. One of the strengths of our study is that the proposed
model implicitly includes interactions between covariates, whereas most models consider only the
main effects through additive or linear functions.

Figure 4. Boxplots of the PM10 maxima at 31 monitoring stations in the Mexico City metropolitan area.
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The estimates for the parameters of model Equation (1) corresponding to the coefficients of the
main effects of the space-time covariates in the location and scale smoothing functions as well as
the shape parameter are shown in Table 3. In this case, the vector of parameters β1 corresponds to
µ, and the vector β2 corresponds to log σt. We noticed that the effect β(1)t of time on the location
parameter is negative and that the effects β(1)s1 and β(1)s2 of the longitude and latitude are both
positive. Because of the smoothing term in Equation (6) and the standardization of the covariates used
in the model, it is not possible to establish a direct relation between the parameters estimated in Table 1
and the parameters of the GEV distribution in model Equation (6), except through the terms β(1)0
and β(2)0, which can be interpreted as the values of the location and scale parameters, respectively,
of the GEV distribution in the middle of the studied period and in the center of the geographic area
considered in the study.

Table 3. Estimates and 95% credible intervals of the nonstationary GEV model for the PM10 maxima.

% Parameter Mean 95% CI

β(1)0 235.6905 (235.367, 236.0144)
β(1)t −46.1495 (−46.4354,−45.8724)
β(1)s1 23.609 (23.3706, 23.8377)
β(1)s2 25.6023 (25.3444, 25.8610)
β(2)0 4.6134 (4.6112, 4.6157)
β(2)t −0.3365 (−0.3387,−0.3344)
β(2)s1 0.2200 (0.2179, 0.2220)
β(2)s2 0.1687 (0.1667, 0.1707)

κ 0.1715 (0.1694, 0.1737)

The spatial smoothing for the location and scale functions is shown in Figure 5. The estimation
function for the location parameter in the latitude–longitude coordinate system shows that the PM10

maxima tend to increase in the northwesterly direction. The scale parameter also increases in the
northwesterly direction, but unlike for the location parameter, a slight decrease is observed in the
region close to Iztacalco. The estimate of the shape parameter is 0.1715, and its 95% credible interval is
(0.1694, 0.1737).

(a) (b)

Figure 5. Estimated spatial smoothing of the (a) location parameter and (b) scale parameter in the
year 2016.
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We have developed and validated a model of extreme values using a robust and solidly-based
theory, an important application of the results of our study is through a risk map or return level
map. The return level Zp is the threshold at which an extreme value is exceeded with probability p,
which is expected to occur once every 1/p years [34]. Figure 6 shows the return levels for a return
period of 25 years. Accordingly, the trend of increased risk in the northwest of the study area is
preserved, with the greatest levels of risk in areas close to VIF = Villa Flores, SAG = San Agustín and
ACO = Acolman and a lower level of risk in the area surrounding Pedregal.

Figure 6. Return level surface for a return period of 25 years for the study region.

Previous studies have analysed extremes of air pollutants using the generalized extreme value
distribution [30,36]. However, the majority of these investigations have used information from
a single site and consequently have ignored the aspect of spatial variability, which may result in
underestimation of the GEV parameters. Several approaches to the spatio-temporal modeling of
extreme values [19,28] have been implemented for environmental extreme data analysis. Therefore,
on the basis of these studies, we have proposed a model that offers structural advantages for the
modeling of extreme values.

Similar to the findings reported by studies in other countries [3], the extreme PM10 concentrations
studied here exhibited spatial variations within the study area.

These results were consistent with the environmental characteristics of each monitored region:
the locations with the highest industrial and population densities showed higher concentrations of
PM10, and consequently, in these locations, the GEV model yielded high estimates of the location and
scale parameters and the 25-year return map showed greater risks of extreme future events.

Most PM10 modeling studies on short-term dynamics have found that weather covariables such
as wind speed or temperature are significant in the model [37]. This is not always the case in studies
with a longer time horizon, where the conclusions for the long term are more robust. One of the
reasons is due to the temporality of the data, daily maxima present a different association with
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respect to the meteorological covariates than the maxima obtained in a longer time window, such as
quarterly maxima.

One of the findings of our study is the negative contribution of the effect of time on the trend of
PM10 maxima; an explanation of this phenomenon is the continuous implementation of new emission
control policies and the continuous revision of environmental norms in the Mexico City, which have
recently become increasingly strict, mainly by regulating the traffic and restricting the automotive
vehicles that can be used i.e., vehicle’s model year. Additionally, the Mexico City government have
implemented a website for monitoring air quality (http://www.aire.cdmx.gob.mx/default.php),
thus environmental contingency alerts are activated to mitigate the adverse effect of air pollutants on
public health.

4. Conclusions

Recent years have seen a growing interest in the monitoring of PM10 air pollution because of
the multiple health problems it causes in densely populated areas. In the Mexico City metropolitan
area, PM10 air pollution often originates from dust from roadways and organic black carbon formed
during combustion processes. This has led to is an ongoing public health problem over the past
several years affecting a large section of the population. Recently, due to population growth and the
increase in the number of combustion vehicles and industries, the PM10 air pollution problem has
worsened. Therefore, it is extremely important to study the spatio-temporal trend of the PM10 maxima
and provide this information to the management authorities so that prevention standards and policies
can be reviewed and adapted to prevent extreme cases of PM10 air pollution.

Because wind speed (ws) and relative humidity (rh) are statistically significant covariates in most
models for the short-term forecast for PM10 concentration, we consider including these covariates
in the non-stationary GEV model. However by using the deviance statistic and the chi-square test,
we found that at a credible level of 95%, the model with these covariates was not statistically better
than the model that did not include these variables. Therefore, wind speed and relative humidity were
not statistically significant in the non-stationary GEV model with quarterly block maxima of PM10

levels. The return levels for a return period of 25 years revealed a clear spatial trend of increased levels
of PM10 in the northwest study area and a decreasing trend in the extreme values over time.

In this study, we implemented a methodology to analyse the nonstationary extreme data and
to perform a spatio-temporal study of the maxima of breathable particulate matter pollution (PM10)
levels in the Mexico City metropolitan area. These PM10 levels usually vary in space and time, and can
potentially include significant spatio-temporal interactions. Therefore, the commonly used models
can underperform the GEV estimates and consequently result in inaccuracies. We achieved this using
an analysis of non-stationary extreme values, in which we used a combination of existing traditional
statistical techniques. We used the maximum likelihood method to perform a variable selection step,
the penalized maximum likelihood estimators to obtain initial values and reduce the convergence time
of the MCMC algorithm and fitted the estimators using a Bayesian approach to eliminate potential
invalid parameter values. The combination of these statistical techniques gives support and solidity to
our results.

We proposed a modification to the Bayesian estimation methods used in the previous studies
related to the analysis of extreme values applied to environmental areas. In our model, the covariates
are included in the generalized extreme value distribution through multivariate spline functions and,
therefore, interactions between the covariates are also considered in the model. We observed that this
approach can be easily extended to the modeling of extreme events and the generation of risk maps for
air pollution, rainfall, heat waves, wind speed, etc. The results of the simulations conducted led us to
conclude that the methodology is adequate and reliable for this type of study. Additionally, as a first
attempt, time has been treated as a covariate. Extensions of this work should consider a more general
model for spatio-temporal analysis, a specific analysis of the prior distributions of the parameters,
and a method for determining the correct number of nodes in the multivariate spline functions.

http://www.aire.cdmx.gob.mx/default.php


Int. J. Environ. Res. Public Health 2017, 14, 734 14 of 15

Acknowledgments: This work was supported by the Program for Professional Teaching Development (PRODEP)
under Grant Number DSA/103.5/16/10481.

Author Contributions: Alejandro Ivan Aguirre-Salado and Humberto Vaquera-Huerta conceived and designed
the experiment and, wrote some parts of the paper. Alejandro Ivan Aguirre-Salado designed the programming
code for processing the data and wrote the paper. Carlos Arturo Aguirre-Salado and Carlos Soubervielle-Montalvo
helped in some spatial analyses and wrote some parts of the paper. Silvia Reyes-Mora, Ana Delia Olvera-Cervantes
and Guillermo Arturo Lancho-Romero contributed in the mathematical rationale of the model and wrote some
parts of the paper. All authors revised and approved the final version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Joseph, A.; Sawant, A.; Srivastava, A. PM10 and its impacts on health—A case study in Mumbai. Int. J.
Environ. Health Res. 2003, 13, 207–214.

2. Kumar, P.; Jain, S.; Gurjar, B.; Sharma, P.; Khare, M.; Morawska, L.; Britter, R. New Directions: Can a “blue
sky” return to Indian megacities? Atmos. Environ. 2013, 71, 198–201.

3. Wang, X.; Guo, Y.; Li, G.; Zhang, Y.; Westerdahl, D.; Jin, X.; Pan, X.; Chen, L. Spatiotemporal analysis for the
effect of ambient particulate matter on cause-specific respiratory mortality in Beijing, China. Environ. Sci.
Pollut. Res. 2016, 23, 10946–10956.

4. Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter.
Environ. Int. 2015, 74, 136–143.

5. Garcia, J.; Teodoro, F.; Cerdeira, R.; Coelho, L.; Kumar, P.; Carvalho, M. Developing a methodology to predict
PM10 concentrations in urban areas using generalized linear models. Environ. Technol. 2016, 37, 2316–2325.

6. Edgerton, S.A.; Bian, X.; Doran, J.; Fast, J.D.; Hubbe, J.M.; Malone, E.L.; Shaw, W.J.; Whiteman, C.D.;
Zhong, S.; Arriaga, J.; et al. Particulate air pollution in Mexico City: A collaborative research project. J. Air
Waste Manag. Assoc. 1999, 49, 1221–1229.

7. Thishan Dharshana, K.; Coowanitwong, N. Ambient PM10 and respiratory illnesses in Colombo city, Sri
Lanka. J. Environ. Sci. Health A 2008, 43, 1064–1070.

8. Elbayoumi, M.; Ramli, N.A.; Yusof, N.F.F.M.; Al Madhoun, W. Spatial and seasonal variation of particulate
matter (PM10 and PM2.5) in Middle Eastern classrooms. Atmos. Environ. 2013, 80, 389–397.

9. Paschalidou, A.K.; Karakitsios, S.; Kleanthous, S.; Kassomenos, P.A. Forecasting hourly PM10 concentration
in Cyprus through artificial neural networks and multiple regression models: Implications to local
environmental management. Environ. Sci. Pollut. Res. 2011, 18, 316–327.

10. El Adlouni, S.; Ouarda, T.; Zhang, X.; Roy, R.; Bobée, B. Generalized maximum likelihood estimators for the
nonstationary generalized extreme value model. Water Resour. Res. 2007, 43, W03410.

11. Sang, H.; Gelfand, A.E. Continuous spatial process models for spatial extreme values. J. Agric. Biol.
Environ. Stat. 2010, 15, 49–65.

12. Jenkinson, A.F. The frequency distribution of the annual maximum (or minimum) values of meteorological
elements. Q. J. R. Meteorol. Soc. 1955, 81, 158–171.

13. Smith, R.L. Maximum likelihood estimation in a class of non-regular cases. Biometrika 1985, 72, 67–92.
14. Hosking, J.R.M.; Wallis, J.R.; Wood, E.F. Estimation of the generalized extreme-value distribution by the

method of probability-weighted moments. Technometrics 1985, 27, 251–261.
15. Hosking, J.R. L-moments: Analysis and estimation of distributions using linear combinations of order

statistics. J. R. Stat. Soc. Ser. B 1990, 52, 105–124.
16. Madsen, H.; Rasmussen, P.F.; Rosbjerg, D. Comparison of annual maximum series and partial duration series

methods for modeling extreme hydrologic events: 1. At-site modeling. Water Resour. Res. 1997, 33, 747–757.
17. Gaetan, C.; Grigoletto, M. A hierarchical model for the analysis of spatial rainfall extremes. J. Agric. Biol.

Environ. Stat. 2007, 12, 434–449.
18. Reich, B.; Shaby, B.; Cooley, D. A Hierarchical model for serially-dependent Extremes: A study of heat waves

in the Western US. J. Agric. Biol. Environ. Stat. 2014, 19, 119–135.
19. Cooley, D.; Sain, S.R. Spatial hierarchical modeling of precipitation extremes from a regional climate model.

J. Agric. Biol. Environ. Stat. 2010, 15, 381–402.
20. Leadbetter, M.R.; Lindgren, G.; Rootzen, H. Extremes and Related Properties of Random Sequences and Processes;

Springer: New York, NY, USA, 1983; p. 336.



Int. J. Environ. Res. Public Health 2017, 14, 734 15 of 15

21. Wang, X.L.; Zwiers, F.W.; Swail, V. North Atlantic Ocean wave climate scenarios for the 21st century. J. Clim.
2004, 17, 2368–2383.

22. Kharin, V.V.; Zwiers, F.W. Estimating extremes in transient climate change simulations. J. Clim. 2005,
18, 1156–1173.

23. Weissman, I. Estimation of parameters and large quantiles based on the k largest observations. J. Am.
Stat. Assoc. 1978, 73, 812–815.

24. Tawn, J. Bivariate extreme value theory: Models and estimation. Biometrika 1988, 75, 397–415.
25. Scarf, P.A. Estimation for a four parameter generalized extreme value distribution. Commun. Stat. Theory M

1992, 21, 2185–2201.
26. Rosen, O.; Cohen, A. Extreme percentile regression. In Statistical Theory and Computational Aspects of

Smoothing; Springer: New York, NY, USA, 1996; pp. 200–214.
27. Pauli, F.; Coles, S. Penalized likelihood inference in extreme value analyses. J. Appl. Stat. 2001, 28, 547–560.
28. Bocci, C.; Caporali, E.; Petrucci, A. Geoadditive modeling for extreme rainfall data. ASTA Adv. Stat. Anal.

2013, 97, 181–193.
29. Yee, T.W.; Stephenson, A.G. Vector generalized linear and additive extreme value models. Extremes 2007,

10, 1–19.
30. Rodriguez, S.; Reyes, H.; Perez, P.; Vaquera, H. Selection of a subset of meteorological variables for ozone

analysis: Case study of pedregal station in Mexico City. Environ. Sci. Eng. A 2012, 1, 11–20.
31. Cannon, A.J. A flexible nonlinear modelling framework for nonstationary generalized extreme value analysis

in hydroclimatology. Hydrol. Process. 2010, 24, 673–685.
32. Jauregui, E. Local wind and air pollution interaction in the Mexico basin. Atmósfera 1988, 1, 131–140.
33. Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest or smallest member

of a sample. Proc. Camb. Philos. Soc. 1928, 24, 180–190.
34. Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: London, UK, 2001.
35. Figueiredo, M.A. On Gaussian radial basis function approximations: Interpretation, extensions, and learning

strategies. In Proceedings of the 15th International Conference on Pattern Recognition (ICPR-2000), Barcelona,
Spain, 3–7 September 2000; Volume 2, pp. 618–621.

36. Kütchenhoff, H.; Thamerus, M. Extreme value analysis of Munich air pollution data. Environ. Ecol. Stat.
1996, 3, 127–141.

37. Lin, C.Y.; Chiang, M.L.; Lin, C.Y. Empirical model for evaluating PM10 concentration caused by river dust
episodes. Int. J. Environ. Res. Public Health 2016, 13, 553.

c© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Study Area
	Methodology
	A Nonstationary GEV Model
	Proposed Approach
	Maximum Likelihood Estimation
	Bayesian Implementation
	Simulation Study
	Maxima in PM10 Pollution Levels


	Results and Discussion
	Conclusions

