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Abstract
The brain exhibits temporally complex patterns of activity with features similar to those of

chaotic systems. Theoretical studies over the last twenty years have described various

computational advantages for such regimes in neuronal systems. Nevertheless, it still

remains unclear whether chaos requires specific cellular properties or network architec-

tures, or whether it is a generic property of neuronal circuits. We investigate the dynamics of

networks of excitatory-inhibitory (EI) spiking neurons with random sparse connectivity oper-

ating in the regime of balance of excitation and inhibition. Combining Dynamical Mean-Field

Theory with numerical simulations, we show that chaotic, asynchronous firing rate fluctua-

tions emerge generically for sufficiently strong synapses. Two different mechanisms can

lead to these chaotic fluctuations. One mechanism relies on slow I-I inhibition which gives

rise to slow subthreshold voltage and rate fluctuations. The decorrelation time of these fluc-

tuations is proportional to the time constant of the inhibition. The second mechanism relies

on the recurrent E-I-E feedback loop. It requires slow excitation but the inhibition can be

fast. In the corresponding dynamical regime all neurons exhibit rate fluctuations on the time

scale of the excitation. Another feature of this regime is that the population-averaged firing

rate is substantially smaller in the excitatory population than in the inhibitory population.

This is not necessarily the case in the I-I mechanism. Finally, we discuss the neurophysio-

logical and computational significance of our results.

Author Summary

Cortical circuits exhibit complex temporal patterns of spiking and are exquisitely sensitive
to small perturbations in their ongoing activity. These features are all suggestive of an
underlying chaotic dynamics. Theoretical works have indicated that a rich dynamical res-
ervoir can endow neuronal circuits with remarkable computational capabilities. Neverthe-
less, the mechanisms underlying chaos in circuits of spiking neurons remain unknown.
We combine analytical calculations and numerical simulations to investigate this funda-
mental issue. Our key result is that chaotic firing rate fluctuations on the time scales of the
synaptic dynamics emerge generically from the network collective dynamics. Our results
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pave the way in the study of the physiological mechanisms and computational significance
of chaotic states in neuronal networks.

Introduction
Single cell recordings [1] and electro-encephalography [2, 3] suggest the existence of chaotic
dynamics in the brain. Consistent with chaotic dynamics, in-vivo experiments have demon-
strated that cortical circuits are sensitive to weak perturbations [4, 5]. Remarkably, the mis-
placement of even a single spike in a cortical network has a marked effect on the timing of
subsequent spikes in the network [6].

Chaotic states in extended dynamical systems can be classified as synchronous or asynchro-
nous, depending on the spatial patterns of the dynamics. In synchronous chaos the temporal
fluctuations exhibit spatial correlations. If the temporal fluctuations are spatially incoherent,
the chaotic state is classified as asynchronous.

EEG measures the activity of a large population of neurons. Therefore, it is probable that
chaoticity observed in EEGs reflects synchronous chaos in brain regions of rather large size.
Models of local cortical circuits exhibiting synchronous chaos have been studied in [7–12]. A
computational advantage of synchronous chaos in the brain is that it enables neuronal popula-
tions to respond quickly to changes in their external inputs [7] and facilitates the access of the
network to states (e.g. limit cycles or fixed points) that encode different stimuli [3]. A large
body of experimental data, however, has reported that cortical neurons exhibit very weak cor-
relations [13, 14] and thus are more compatible with asynchronous than with synchronous
chaos. Moreover, recent studies have demonstrated that the richness, the complexity and the
high dimension of the dynamics in systems operating in asynchronous chaos endows them
with remarkable computational capabilities [15–18]. The present paper focuses on the mecha-
nisms underlying the emergence of asynchronous chaos in local neuronal circuits.

Asynchronous chaos was studied in a seminal work by Sompolinsky, Crisanti and Sommers
(SCS) [19], who investigated a large network of N neuronal-like units fully connected with ran-
dom weights drawn from a zero mean Gaussian distribution (called hereafter as the SCS
model). The dynamics of the network are those of a “rate”model [20], in which the activity of a
unit, S(t), is characterized by a continuous variable which is a non-linear function, S = ϕ(h), of
the total input to the unit. In the SCS model the activity variables take values between [-1, 1]
and the function ϕ(h) is sigmoidal and odd. Using Dynamical Mean-Field Theory (DMFT)
SCS showed that if the standard deviation of the weight distribution is sufficiently large, the
dynamics bifurcate from fixed point to asynchronous chaos. The SCS model in its original
form or in its discrete time version has been used in numerous studies in theoretical and
computational neuroscience [15–17, 21–25].

However, the connectivity of the SCS model violates Dale’s Law, whereby in biological net-
works a given neuron is either excitatory or inhibitory [26]. Also, the equation of the SCS
model dynamics are invariant under the transformation h! −h, a symmetry not fulfilled in
more realistic neuronal network models. More importantly, as this is the case frequently for
rate models, the physiological meanings of the dynamical “neuronal” variables and of the
parameters are not clear in the SCS network. Should these variables and the time constant of
their dynamics—which sets the time scale of the chaotic fluctuations—be interpreted as charac-
terizing neurons, or synapses?

In this paper we address the following general and fundamental issues: To what extent are
asynchronous chaotic states generic in networks of spiking neurons? How does this depend on
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single neuron properties? How do excitation and inhibition contribute to the emergence of
these states? To what extent these chaotic dynamics share similarities with those exhibited by
the SCS model? We first study these questions in one population of inhibitory neurons receiv-
ing feedforward excitation. We then address them in networks of two populations, one inhibi-
tory and the other excitatory, connected by a recurrent feedback loop. A major portion of the
results presented here constitutes the core of the Ph.D thesis of one of the authors (O.H) [27].

Results

One population of inhibitory neurons: General theory
We consider N randomly connected inhibitory spiking neurons receiving an homogeneous
and constant input, I. The voltage of each neuron has nonlinear dynamics, as e.g. in the leaky
integrate-and fire (LIF model, see Materials and Methods) or in conductance-based models
[20].

The connection between two neurons is Jij = JCij (i, j = 1, 2. . .N), with J� 0, and Cij = 1 with
probability K/N and 0 otherwise. The outgoing synapses of neuron j obey

tsyn
dSjðtÞ
dt

¼ �SjðtÞ þ J
X
tsj<t

dðt � tsj Þ ð1Þ

where Sj(t) is the synaptic current at time t and τsyn the synaptic time constant. When neuron j
fires a spike (time tsj ), Sj increments by J. Thus, the total input to neuron i, hi(t) = I+∑j Jij Sj(t),

satisfies:

tsyn
dhiðtÞ
dt

¼ �hiðtÞ þ I þ
X

j

X
ts
j
<t

Jijdðt � tsj Þ ð2Þ

We assume K� 1, hence the number of recurrent inputs per neuron is K � Oð ffiffiffiffi
K

p Þ. Scaling J
and I as: J ¼ �J0=

ffiffiffiffi
K

p
, I ¼ ffiffiffiffi

K
p

I0, the time-averaged synaptic inputs are Oð ffiffiffiffi
K

p Þ and their spa-
tial (quenched) and temporal fluctuations are O(1) [28, 29]. Finite neuronal activity requires
that excitation and inhibition cancel to the leading order in K. In this balanced state, the mean
and the fluctuations of the net inputs are O(1) [28, 29]. The properties of the balanced state are
well understood if the synapses are much faster than all the typical time constants of the intrin-
sic neuronal dynamics [30]. Temporally irregular asynchronous firing of spikes is a hallmark of
this regime [13, 28, 29, 31, 32]. However, this stochasticity does not always correspond to a
true chaotic state [28, 29, 33–36]. In fact, this depends on the spike initiation dynamics of the
neurons [37]. The opposite situation, in which some of the synapses are slower than the single
neuron dynamics, remains poorly understood. This paper mostly focuses on that situation.

When the synaptic dynamics is sufficiently slow compared to the single neuron dynamics,
the network dynamics can be reduced to the set of non-linear first order differential equations:

tsyn
dhiðtÞ
dt

¼ �hiðtÞ þ I þ
X

j

JijrjðtÞ ð3Þ

riðtÞ ¼ gðhiðtÞÞ ð4Þ
where ri(t) is the instantaneous firing rate of neuron i and g(h) is the neuronal input-output
transfer function [20]. These are the equations of a rate model [20, 38] in which the activity var-
iables correspond to the net synaptic inputs in the neurons. Eqs (3)–(4) differ from those of the
SCS model in that they have a well defined interpretation in terms of spiking dynamics, the
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time constant has a well defined physiological meaning, namely, the synaptic time constant, the
transfer function quantifies the spiking response of the neurons and is thus positive, the inter-
actions satisfy Dale’s law and the neuronal connectivity is partial.

Dynamical mean-field theory (DMFT). We build on a DMFT [19] to investigate the
dynamics, Eqs (3)–(4), in the limit 1� K� N. Applying this approach, we rewrite the last two
terms in the right hand side of Eq (3) as a Gaussian noise whose statistics need to be self-consis-
tent with the dynamics. This yields a set of self-consistency conditions which determine the sta-
tistics of the fluctuations, from which the synaptic net inputs and the firing rates of the
neurons can be calculated. This approach is described in detail in the Materials and Methods
section.

The DMFT shows that, for a given transfer function, depending on the parameters J0 and I0,
the dynamics either converge to a fixed point state or remain in an asynchronous, time-depen-
dent state. In the fixed point state, the net inputs to the neurons, h0

i , (i = 1. . .N) are constant.

Their distribution across the population is Gaussian with mean μ and variance J0
2q. The

DMFT yields equations for μ, q, as well as for the distribution of firing rates r0i (i = 1. . .N) (Eqs
(24)–(25) and (36)). In the time-dependent state, hi(t) exhibit Gaussian temporal fluctuations,
which are characterized by a mean, μ = [hh(t)i], and a population-averaged autocovariance
(PAC) function, σ(τ) = [hh(t)h(t+τ)i] − μ2 ([�] and h � i denote means over the population and
over time, respectively). Solving the set of self-consistent equations which determine σ(τ) and μ
(Eqs (25), (27) and (37)–(38)) indicates that σ(τ) decreases monotonically along the flow of the
deterministic dynamics, thus suggesting that the latter are chaotic. To confirm that this is
indeed the case one has to calculate the maximum Lyapunov exponent of the dynamics (which
characterizes the sensitivity of the dynamics to initial conditions [39]) and verify that it is posi-
tive. This can be performed analytically in the framework of DMFT [19]. However, this is
beyond the scope of the present paper. Therefore, in the specific examples analyzed below we
rely on numerical simulations to verify the chaoticity of the dynamics.

For sufficiently small J0, the fixed point state is the only solution of the dynamics. When J0
increases beyond some critical value, Jc, the chaotic solution appears. We show in the Materials
and Methods section that Jc is given by:

Jc
2

Z1
�1

Dz½g 0ðmþ Jc
ffiffiffi
q

p
zÞ�2 ¼ 1 ð5Þ

where q and μ are computed at the fixed point state andDz ¼ e
�z2

2ffiffiffiffi
2p

p dz.

On the stability of the fixed point state. The NxN matrix characterizing the stability of
the fixed point isD ¼ Mffiffiffi

N
p � I with I the NxN identity matrix and:

Mij ¼ �J0

ffiffiffiffi
N
K

r
Cijg

0ðh0
j Þ ð6Þ

where h0
j is the total input in neuron j at the fixed point. This is a sparse random matrix with,

on average, K non zero elements per line or column. In the limit N!1, these elements are

uncorrelated, have a mean�J0
ffiffiffi
K
N

p R1
�1

g 0ðmþ J0
ffiffiffi
q

p
zÞDz and variance J20

R1
�1

g 0ðmþ J0
ffiffiffi
q

p
zÞ� �2

Dz

(for large N, the second moment of the matrix elements is equal to their variance). Interest-
ingly, Eq (5) means that the SD of the elements ofM crosses 1 (from below) at Jc. As J0
increases, the fixed point becomes unstable when the real part of one of the eigenvalues crosses

1. Note that that for large K,D always has a negative eigenvalue, which is Oð ffiffiffiffi
K

p Þ.
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In the specific examples we investigate below, simulations show that when the chaotic state
appears the fixed point becomes unstable. This implies that for J< Jc given by Eq (5) the real
parts of all the eigenvalues of Mffiffiffi

N
p are smaller than 1 and that for J = Jc, the real part of one of the

eigenvalues, the eigenvalue with maximum real part, crosses 1. This suggests the more general

conjecture that in the limit 1� K� N the eigenvalue with the largest real part ofM=
ffiffiffiffi
N

p
is:

lmax ¼ J0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ1
�1

Dz½g 0ðmþ J0
ffiffiffi
q

p
zÞ�2

vuuut ð7Þ

Below we compare this formula to results from numerical diagonalization ofM=
ffiffiffiffi
N

p
.

One population of inhibitory neurons: Examples
The above considerations show that when synapses are slow, the dynamics of inhibitory net-
works is completely determined by the transfer function of the neurons. Therefore, to gain
insights into the way dynamics become chaotic in such systems we proceed by investigating
various spiking models that differ in the shape of their transfer functions.

Sigmoidal transfer functions. Neurons in a strong noise environment can be active even
if their net inputs are on average far below their noiseless threshold, whereas when these inputs
are large the activity saturates. The transfer functions of the neurons can therefore be well
approximated by a sigmoid. Specifically here we consider the dynamics described in Eqs (3)–
(4) with a sigmoidal transfer function:

gðxÞ ¼ �ðxÞ≜ 1

2
1þ erf

xffiffiffi
2

p
� �� �

ð8Þ

This form of the sigmoid function makes analytical calculations more tractable. Fig 1A shows
that for J0 = 4, I0 = 1, the simulated network dynamics converge to a fixed point. This is not the
case for J0 = 6 and J0 = 15 (Fig 1B, 1C). In these cases the activities of the neurons keep fluctuat-
ing at large time. Note also that the mean level of activity is different for the three neurons.
This is a consequence of the heterogeneities in the number of inputs the neurons receive.

Fig 1. Dynamics in the inhibitory population rate model with g(x) = ϕ(x). Activity of 3 neurons in simulations (N = 32,000, K = 800, τsyn = 10 ms). A: J0 = 4.
B: J0 = 6. C: J0 = 15.

doi:10.1371/journal.pcbi.1004266.g001
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These differences in the network dynamics for these three values of J0 are consistent with
the full phase diagram of the DMFT in the parameter space I0 − J0. Fig 2A depicts the results
obtained by solving numerically the self-consistent equations that define chaos onset with g(x)
= ϕ(x) (Eqs (17)–(18) in S2 Text). In the region above the line a chaotic solution exists whereas
it does not exist below it. Simulations indicate that in the region above the line, very small per-
turbations from the fixed point state drive the network toward the time dependent state. In
other words, the fixed point solution is unstable above the line: the bifurcation to the time
dependent state is thus supercritical.

The instability of the fixed point on this line is also confirmed by direct diagonalization of

the matrixM=
ffiffiffiffi
N

p
(see Eq (6)). To this end, we solved numerically the mean field equations

for different values of J0 to obtain μ and q, randomly sampled h0
i values from the distribution

defined by μ and q to generate the random matrix matrixM=
ffiffiffiffi
N

p
, and then computed numeri-

cally the spectrum of the matrix (for N = 10000). Examples of the results are plotted in Fig 3A
for two values of J0, one below and one above the critical value Jc. In both cases, the bulk of the
spectrum is homogeneously distributed in the disk of radius λmax centered at the origin. Fig 3B
plots λmax computed numerically (dots) and compare the results to our conjecture, Eq (7)
(solid line). The agreement is excellent. The instability of the fixed point corresponds to λmax

crossing 1.
To verify the chaoticity of the time dependent state predicted by the DMFT in the region

above the bifurcation line we simulated the dynamics and computed numerically the largest
Lyapunov exponent, Λ, for different values of I0 and J0 (see Materials and Methods for details).
The results plotted in Fig 2A (red dots and inset) show that Λ crosses zero near the DMFT
bifurcation line and is positive above it. Therefore the dynamics observed in simulations are
chaotic in the parameter region above this line as predicted by the DMFT.

We solved numerically the parametric self-consistent differential equation which deter-
mined the PAC, σ(τ), (Eqs (25), (29) and (37)–(38)) for different values of J0 and I0. An exam-
ple of the results is plotted in Fig 2B. It shows that numerical simulations and DMFT

Fig 2. Dynamics in the inhibitory population rate model with g(x) = ϕ(x). A: Phase diagram. Solid line: DMFT; Dots indicate where the largest Lyapunov
exponent, Λ, changes sign in simulations (N = 32,000, K = 800, τsyn = 10 ms). Inset: Λ vs. J0. I0 = 2 (black), 4 (red), 6 (blue). Parameters used in Fig 1A, 1B
abd 1C are marked by ×, + and&, respectively. B: σ(τ) for I0 = 1, J0 = 15. Black: DMFT. Red and blue dots: Simulations for N = 32,000, K = 800, and
N = 256,000, K = 2000, respectively (results averaged over 8 network realizations).

doi:10.1371/journal.pcbi.1004266.g002
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predictions are in very good agreement. Moreover, simulations with increasing values of N and
K indicate that the small deviations from the DMFT predictions are due to finite N and K
effects; a detailed study of these effects is reported in S1 Text.

Fig 4A shows the bifurcation diagram of the PAC amplitude, σ0 − σ1. For J0 below the bifur-
cation point (BP) the PAC amplitude is zero, which corresponds to the fixed point state (solid
blue line). At the bifurcation the fixed point loses stability (dashed blue line) and a chaotic state
with a strictly positive PAC amplitude emerges (black line).

We studied analytically the critical behavior of the dynamics at the onset of chaos. We
solved perturbatively the DMFT equations for 0< δ = J0 − Jc� 1, as outlined in the Materials
and Methods section and in S2 Text. This yields (σ(τ) − σ1)/ δα/cosh2(τ/τdec), with α = 1 and
a decorrelation time scaling like τdec / δβ with β = −1/2. Therefore at the onset of chaos, the
PAC amplitude vanishes and the decorrelation time diverges. We show in the Materials and
Methods section that this critical behavior with exponents α = 1, β = −1/2, is in fact a general
property of the model, Eqs (3)–(4), whenever g(h) is twice differentiable. It should be noted
that in the SCS model the PAC also vanishes linearly at chaos onset. However, the critical expo-
nent of the decorrelation time is different (β = −1) [19].

The inset in Fig 4A compares the PAC amplitude obtained by numerically solving Eq (27)
(black line) with the corresponding perturbative result (red line) for small δ. The agreement is
excellent. In fact, the perturbative calculation provides a good estimate of the PAC even if δ is
as large as 0.2Jc (Fig 4A, main panel and Fig 4B). More generally, the PAC can be well fitted
with the function (σ0 − σ1) � cosh − 2(τ/τdec) (Fig 4C, inset) providing an estimate of the decorr-
elation time, τdec, for all values of J0. Fig 4C plots τdec vs. σ0 − σ1 for I0 = 1. It shows that the for-
mula tdec / 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s1

p
we derived perturbatively for small δ provides a good approximation

of the relationship between the PAC amplitude and the decorrelation time even far above the
bifurcation.

Fig 3. Spectrum of the matrixM=
ffiffiffiffi
N

p
for inhibitory population rate model with g(x) = ϕ(x). The matrix was diagonalized numerically for N = 10000,

K = 400, I0 = 1 and different values of J0. A: The bulk of the spectrum for J0 = 6 (blue) and for J0 = 1.12 (red). Left: The imaginary parts of the eigenvalues are
plotted vs. their real parts for one realization ofM. This indicates that the support of the spectrum is a disk of radius λmax. Right: Histograms of Neig/R (one
realization ofM) whereNeig is the number of eigenvalues with a modulus between R and R+ΔR (ΔR = 0.0428 (top), 0.0093 (bottom)) for J0 = 6 (top) and J0 =
1.12 (bottom). The distribution of eigenvalues is uniform throughout the spectrum support. B: The largest real part of the eigenvalues (black dots), λmax, is
compared with the conjecture, Eq (7) (solid line). The fixed point loses stability when λmax crosses 1.

doi:10.1371/journal.pcbi.1004266.g003
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Threshold power-law transfer function. We next consider the dynamics of the network
(Eqs (3)–(4)) with a transfer function

gðxÞ ¼ xg � HðxÞ ð9Þ

where γ> 0 and H(x) = 1 for x> 0 and 0 otherwise. Non-leaky integrate-and-fire neurons [40]
(see also S3 Text) and θ-neurons [41–44] correspond to γ = 1 and γ = 1/2, respectively. The
transfer functions of cortical neurons in-vivo can be well fitted by a power-law transfer function
with an exponent γ	 2 [45, 46].

Fig 5A plots the phase diagrams in the J0 − I0 parameter space by solving the DMFT equa-
tions (see S4 Text) for different values of γ> 1/2. For fixed I0, Jc varies non-monotonically as γ

decreases. This non-monotonicity is also clear in Fig 5B. When γ! (1/2)+, Jc! 0 as Jc 

�2logð2g� 1Þð Þ�1

4 as we show analytically in S4 Text. For γ< 1/2, the integral in the right
hand side of Eq (5) diverges. Equivalently, the elements of the stability matrix have infinite var-
iance. Therefore, the DMFT predicts a chaotic dynamics as soon as J0 > 0.

To compare these predictions with numerical simulations, we simulated different realiza-
tions of the network (N = 32000, K = 400, I0 = 1) for various values of J0. For each value of J0
and γ we determined whether the dynamics converge to a fixed point or to a time dependent
state as explained in the Materials and Methods section. This allowed us to compute the frac-
tion of networks for which the dynamics converge to a fixed point. The solid red line plotted in
Fig 5B corresponds to a fraction of 50% whereas the dotted red lines correspond to fractions of
5% (upper line) and 95% (lower line). We also estimated the Lyapunov exponent, Λ, for each
values of J0 and γ. The blue line in Fig 5B corresponds to the location where Λ changes sign
according to our estimates (see Materials and Methods for details).

Fig 4. DMFT for the inhibitory rate model with g(x) = ϕ(x), I0 = 1. A: The PAC amplitude, σ0 − σ1, is plotted against J0. At fixed point σ0 − σ1 = 0 (blue).
When J0 = Jc	 4.995 (black dot, BP) the chaotic state appears. For J0 > Jc, the fixed point is unstable (dashed blue) and the network settles in the chaotic
state (σ0 − σ1 > 0, black). Red: Perturbative solution in the limit J0 ! Jc (see S2 Text). Inset: σ0 − σ1 vanishes linearly when δ = J0 − Jc ! 0+. Black:
Numerical solution of the DMFT equations. Red: Perturbative solution at the leading order,O(δ). B: (σ − σ1)/δ is plotted for different values of δ > 0 showing
the convergence to the asymptotic form (Eq (11) in S2 Text) in the limit δ! 0. C: Blue dots: Decorrelation time, τdec vs. PAC amplitude. The PAC, σ(τ) − σ1,
was obtained by solving numerically the DMFT equations and τdec was estimated by fitting the result to the function A/cosh2(τ/τdec). Red: In the whole range,
J0 2 [5, 7] considered, τdec can be well approximated by tdec ¼ 4:97=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s1

p
. This relation becomes exact in the limit σ0 − σ1 ! 0. Inset: Numerical solution

of the DMFT equations for J0 = 6.65 (blue dots) and the fit to A/cosh2(τ/τdec) (red). The fit is very good although this is far from bifurcation.

doi:10.1371/journal.pcbi.1004266.g004
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For γ>	 0.6, the fraction of networks with an unstable fixed point varies sharply from 0 to
100% in the vicinity of the bifurcation line predicted by the DMFT. Moreover, for these values

of γ, the spectrum of the matrixM=
ffiffiffiffi
N

p
is homogeneously distributed in the disk of radius

λmax centered at the origin and the values of λmax agrees with Eq (7). This is shown in Fig 6A
for γ = 1. Finally, simulations indicate that the values of J0 where the largest Lyapunov Λ
becomes positive in numerical simulations (blue line in Fig 5B) are very close to the DMFT
bifurcation values.

However, as γ! (1/2)+, the discrepancies between DMFT and simulations become more
pronounced. Very close to γ = (1/2)+ there is a whole range of values of J0 for which the DMFT
predicts chaos whereas in numerical simulations the dynamics always converge to a fixed
point. This discrepancy can be understood by observing that the integral over the Gaussian
measure in Eq (5) corresponds to a population average over neurons. When γ! (1/2)+, the
region where z is just above� m

J0
ffiffi
q

p dominates the integral; in other words, the neurons with pos-

itive close-to-threshold net inputs are those that make the largest contribution to the destabili-
zation of the fixed point. On the other hand, the DMFT shows that these neurons become
extremely rare as γ! (1/2)+: in that limit μc increases sharply, thus shifting the center of the
Gaussian distribution to very large positive values. Therefore, we would need to simulate out-
rageously large networks to obtain a quantitative agreement with the DMFT predictions for the
locations of the bifurcation to chaos. Similar arguments explain why when γ< 1/2 we find a

transition from fixed point to chaos in numerical simulations for J0 <	 0.9 although according
to the DMFT the fixed point is always unstable since the integral in Eq (5) diverges.

Numerical diagonalization of Mffiffiffi
N

p shows that when γ<	 0.6 (i) the eigevalues in the bulk of

the spectrum are distributed in a disk centered at the origin and that this distribution is less
and less homogeneous as γ! (1/2)+ (ii) the eigenvalue λmax governing the instability exhibits
substantial deviations from Eq (7) especially for large J0 (Fig 6C) (iii) λmax exhibits large sample
to sample fluctuations (results not shown). We conjecture that these features are due to large
finite N and K effects and stem from the fact that the SD of the elements of Mffiffiffi

N
p diverges when γ

! (1/2)+.

Fig 5. Phase diagrams of inhibitory rate models with g(x) = xγH(x), K = 400. A: γ = 3 (gold), 1 (black), 0.7
(red), 0.51 (purple). B: Jc vs. γ for I0 = 1. Black: DMFT. Blue and red: Simulations with N = 32000, K = 400.
Blue: Zero-crossing of Λ. Red: The fraction of networks with stable fixed point is 50%, 5% and 95% on the
solid, bottom-dashed and top-dashed lines respectively.

doi:10.1371/journal.pcbi.1004266.g005
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We studied the dynamics in detail for γ = 1. The DMFT predicts that Jc ¼
ffiffiffi
2

p
for all I0 and

K (K large). As already mentioned, the simulations agree well with this result (Fig 5B). We
studied analytically the dynamics for J0 close to this transition (Fig 7A-7C). To this end, we
solved the self-consistent DMFT equations in the limit δ = J0 − Jc! 0+. The perturbative calcu-
lation, explained in S4 Text, is less straightforward than in the case of a sigmoid transfer func-
tion. This stems from the fact that at the threshold, the threshold-linear transfer function is
only differentiable once. It yields that σ − σ1 * δα σs(τ/δ

β) with α = 2, β = −1/2 and the func-
tion σs(x)) has to be determined numerically. The function σs is plotted in Fig 7B. It can be well
fitted to the function A[cosh(x/xdec)]

−1 with A = 12.11 and xdec = 2.84 (see Fig 7B, inset). In par-
ticular, for small δ, the amplitude and the decorrelation time of the PAC are related by τdec /
1/(σ0 − σ1)1/4. Note that the amplitude of the PAC vanishes more rapidly (α = 2) than for sig-
moidal transfer functions (α = 1) whereas the decorrelation time diverges with the same critical
exponent (β = −1/2) in the two cases.

Fig 6. Spectrum of the matrixM=
ffiffiffiffi
N

p
for inhibitory rate models with g(x) = xγH(x). A-B: γ = 1. The matrix was diagonalized numerically for N = 10000,

K = 400, I0 = 1 and different values of J0. A: The bulk of the spectrum (one realization). Left panel: Imaginary vs. real parts of the eigenvalues for one
realization ofM. Blue: J0 = 2.045. Red: J0 = 0.307. Right panel: Histograms (100 realizations) ofNeig/R whereNeig is the number of eigenvalues with modulus
between R and R+ΔR (ΔR = 0.0479 (top), 0.0122 (bottom)) for J0 = 2.045 (top) and J0 = 0.307 (bottom). The eigenvalues are almost uniformly distributed
throughout the disk of radius λmax (except very close to the boundary). B: The largest real part of the eigenvalues, λmax (one realization, black dots) is
compared with the conjecture Eq (7) (solid line). C,D: Same as in A, B, for γ = 0.55. Blue: J0 = 3.01, ΔR = 0.0491; red: J0 = 0.75, ΔR = 0.0246 (red). The
agreement with Eq (7) is good for J0 not too large but the eigenvalues distribution is non-uniform. Quantitatively similar results are found for N = 20000,
K = 400 as well as N = 40000, K = 600 (not shown).

doi:10.1371/journal.pcbi.1004266.g006
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Fig 7A-7C compares the results of the perturbative analysis to those of the numerical inte-
gration of the differential equation, Eq (27). Unlike what we found for the sigmoid transfer

function, δmust be very small (δ<	 0.03Jc) to achieve a good quantitative agreement. It should
be noted, however, that the quality of the fit of σ − σ1 to A[cosh(τ/τdec)]

−1 does not deteriorate
by much even far from the bifurcation (Fig 7C, inset; δ = 0.4), and that the relation tdec /
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s14

p
holds with good approximation even if δ is not small (Fig 7C, main panel).

Finally, Fig 7D compares DMFT and numerical simulations results for σ(τ) when J0 = 2.
The agreement is reasonably good but not perfect. We show in S1 Text that the discrepancy
between the two improves as the network size increases but that finite size effects are stronger
here than in the rate model with sigmoid transfer function.

Leaky integrate-and-fire (LIF) inhibitory networks. Our objective here is to obtain fur-
ther insights into the relevance of the chaotic behavior exhibited by rate dynamics, Eqs (3)–(4),

Fig 7. DMFT for the inhibitory rate model with threshold-linear transfer function. A: The PAC amplitude, σ0 − σ1, is plotted against J0. At fixed point σ0 −
σ1 = 0 (blue). When J0 ¼ Jc ¼

ffiffiffi
2

p
(black dot, BP) a bifurcation occurs and the chaotic state appears. For J0 > Jc, the fixed point is unstable (dashed blue) and

the network settles in the chaotic state (σ0 − σ1 > 0, black). Red: Perturbative solution in the limit J0 ! Jc (see S4 Text). Inset:
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s1

p
plotted against δ = J0

− Jc showing that σ0 − σ1 vanishes quadratically when δ! 0+. Black: Full numerical solution of the DMFT equations. Red: Perturbative solution at the
leading order,O(δ). B: (σ − σ1)/δ2 is plotted for different values of δ > 0 to show the convergence to the asymptotic function derived perturbatively in S4 Text.
Inset: The function (σ(τ) − σ1)/δ2 (black) can be well fitted to A/cosh(x/xdec) (red dots, A = 12.11, xdec = 2.84). C: Decorrelation time, τdec vs. PAC amplitude
(blue). The function σ(τ) − σ1 was obtained by integrating numerically Eq (29) and τdec was estimated by fitting this function to A/cosh(τ/τdec). Red: In the
whole range of J0 considered (J0 2 [1.4, 1.9] the relation between τdec and σ0 − σ1 can be well approximated by y ¼ 5:29=

ffiffiffi
x4

p
4. Inset: The PAC computed by

solving the DMFT equations for J0 = 1.81 (blue dots) and the fit to 0.93/cosh(τ/4.6). D: The PAC for J0 = 2 and K = 1200. Blue: Numerical integration of Eq
(29). Red: Numerical simulations for N = 256,000.

doi:10.1371/journal.pcbi.1004266.g007
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to understand spiking network dynamics. The dynamics of one population of LIF spiking neu-
rons reduces to Eqs (3)–(4) with the transfer function

gðxÞ ¼ � 1

tm
½ ln ð1� 1=xÞ��1 � Hðx � 1Þ ð10Þ

in the limit where the synapses are much slower than the cell membrane time constant, τm.
Our goal is twofold: 1) to study the emergence of chaos in this rate LIF rate model and 2) to
compare it to full spiking dynamics and characterize the range of values of the synaptic time
constant for which the two dynamics are quantitatively or at least qualitatively similar.

Figs 8, 9 depict typical patterns of neuronal activity in simulations of the inhibitory spiking
LIF model. For strong and fast synapses (τsyn = 3 ms, Fig 8A), neurons fire spikes irregularly
and asynchronously (Fig 8A). Fig 8B shows that when τsyn = 100 ms the population average fir-
ing rate remains essentially the same (* 14.1 Hz) and the network state stays asynchronous.
The spiking patterns, however, change dramatically: with large τsyn neurons fire irregular bursts
driven by slowly decorrelating input fluctuations (Fig 9A, blue). Fig 9B shows that reducing J0
increases the firing rate, reduces the amplitude of the fluctuations (Fig 9B, inset) and slows

Fig 8. Patterns of activity in simulations of the LIF inhibitory spiking network. N = 10000, K = 800, J0 = 2, I0 = 0.3. Voltage traces of single neurons (top),
spike trains of 12 neurons (middle) and population averaged firing rates (in 50 ms time bins, bottom) are plotted. A: τsyn = 3 ms. Neurons fire irregular spikes
asynchronously. B: τsyn = 100 ms. Neurons fire bursts of action potentials in an irregular and asynchronous manner.

doi:10.1371/journal.pcbi.1004266.g008
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down their temporal decorrelation. Eventually, for small enough J0, σ(τ) becomes flat and the
fluctuations are negligible.

Fig 10 compares the dynamics of the rate to those of the spiking LIF networks. Panels A,B
show that for J0 = 2, I0 = 0.3 and τsyn = 100 ms, σ(τ), the distributions of the time averages of
neuronal firing rates and net inputs, hrii and hhii, are essentially the same in the simulations of

the two networks. When reducing τsyn down to τsyn >	 15 ms, the function σ(τ/τsyn) measured
in the spiking network simulations, changes only slightly. In fact, this function is remarkably
similar to what is found for the corresponding function in the DMFT and in simulations of the
LIF rate model (Fig 11A). Fitting σ(τ) with the function B+A[cosh(τ/τdec)]

−1 yields τdec 	
2.45�τsyn.

How small can τsyn be for the two models to still behave in a quantitatively similar manner?
Simulations show that this value increases with the mean activity of the network (see examples
in Fig 11) but that for reasonable firing rates, fewer than several several tens of Hz, the fluctua-
tions have similar properties in the two models even for τsyn 	 20 ms.

Fig 9. Dependence of the dynamics on synaptic strength in the LIF inhibitory spiking model. Simulation results for N = 40,000, K = 800, I0 = 0.3, τsyn =
100 ms. From left to right: J0 = 2 (blue), 1.5 (red) and 1 (black). A: Examples of single neuron membrane voltages (top) and net inputs, h, (bottom). For the
three values of J0, the mean firing rate of the example neuron is 11 Hz. As J0 decreases, the temporal fluctuations in the net input become smaller whereas
the temporal average increases such that the firing rate remains nearly unchanged. B. Top: Population average firing rate increases like 100I0/J0 as implied
by the balance condition. Bottom: PAC (σ − σ1, bottom). The dots correspond to the fit of the PAC to (σ0−σ1)�[cosh(τ/τdec)]−1 which yields τdec/τsyn = 2.5
(blue), 3.0 (red), 3.8 (black) for the three values of J0. Inset in the right panel: σ0 − σ1 vs. J0.

doi:10.1371/journal.pcbi.1004266.g009
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Fig 11. PACs in inhibitory LIF spiking and rate models. All the results are from numerical simulations with N = 40,000, K = 800. A: J0 = 2, I0 = 0.3. B: J0 =
3, I0 = 0.3. C: J0 = 4, I0 = 0.6. D: J0 = 1, I0 = 0.3. In all four panels the PACs are plotted for the spiking network with τsyn = 10 (gray), 20 (red) and 40 (green) ms.
The results for the rate model are also plotted (black). The firing rates are* 15 Hz in A and C,* 10 Hz in B and* 30 Hz in D, in good agreement with the
prediction from the balance condition ([hri] = 100I0/J0 Hz). As the population firing rate increases, a larger τsyn is needed for good agreement between the
spiking and the rate model.

doi:10.1371/journal.pcbi.1004266.g011

Fig 10. Comparison of the inputs and firing rate statistics in the inhibitory LIF spiking and rate models (simulations and DMFT).N = 40,000, K = 800.
J0 = 2, I0 = 0.3, τsyn = 100 msec. A: σ(τ/τsyn). B: Distributions of neuronal mean firing rates, hrii, and net inputs, hhii, (inset) in the spiking network (black) and
rate model (red; dots: simulations, solid line: DMFT).

doi:10.1371/journal.pcbi.1004266.g010
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We conducted extensive numerical simulations of the inhibitory LIF rate and spiking mod-
els (N = 40000, K = 800) to compute their phase diagrams in the I0 − J0 parameter space. The
results for the rate model are plotted in Fig 12. For sufficiently small J0 the dynamics always
converge to a fixed point whereas for sufficiently large J0 the network always settles in a state in
which the activity of the neurons keeps fluctuating at large time. We show in S5 Text that in
this regime the maximum Lyapunov exponent is strictly positive, therefore the dynamics are
chaotic. Between these two regimes, whether the dynamics converge to a fixed point or to a
chaotic state depends on the specific realization of the connectivity matrix. The fraction of net-
works for which the convergence is to a fixed point depends on J0. The range of J0 where this
fraction varies from 95% to 5% is notably large as shown in Fig 12. Additional simulation
results on this issue are depicted in S5 Text. The counterpart of this behavior in the spiking net-
work is that when J0 is small, neurons fire regular spikes tonically whereas for sufficiently large
J0 they fire highly irregular bursts. The transition between the two regimes occurs for similar
values of J0 in the rate and in the spiking networks. In both networks this transition is driven
by the neurons with low firing rates; i.e., with larger numbers of recurrent inputs. These neu-
rons are the first to become bursty as J0 increases (see S6 Text).

In Fig 13A we plot the bifurcation diagram of the model as obtained in the numerical solu-
tion of the DMFT equations (black line) and as calculated in simulations of the rate model
(blue dots) and of the spiking network with τsyn = 25 ms (red ×’s) and τsyn = 7.5 ms (green ×’s).

The rate model simulations are in good agreement with DMFT for 0.8<	 J0 <	 2. For larger J0
the discrepancy becomes significant and increases with J0. This is because of finite K effects
that grow stronger as J0 increases as shown in the right inset in Fig 13A, for J0 = 3 (blue) and J0
= 4 (red). Fig 13A also shows that, as discussed above, the amplitude of the PACs obtained in
simulations of the LIF rate and spiking networks are barely different provided the synaptic
time constant is sufficiently large.

Fig 12. Phase diagram of the inhibitory LIF rate model. All the results are from numerical simulations with
N = 40,000, K = 800. Black: zero-crossing of the maximum Lyapunov exponent, Λ. The fraction of networks
for which the dynamics converge to a fixed point is 50%. 5% and 95% on the solid, top-dashed and bottom-
dashed red lines respectively. Insets: I0 = 0.3. Voltage traces of a neuron in the inhibitory LIF spiking model
for J0 = 2 (top inset), 0.3 (bottom inset) and τsyn = 100 ms.

doi:10.1371/journal.pcbi.1004266.g012
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Fig 13B shows the relation between the decorrelation time, τdec and the PAC amplitude. To
get these results, simulations of the rate and the spiking networks were performed for J0 2 [0.8,
3.5] and τdec was estimated by fitting the PACs with the function A�[cosh(τ/τdec)]−1. We also
solved the DMFT equations for the same values of J0 and computed the PAC that we fitted to
the same function. The results from the simulations (rate model: blue; spiking network: black)
and DMFT (red) agree fairly well. Note that τdec decreases more slowly as σ0 − σ1 increases
than in the models with a sigmoid or threshold-linear transfer function (compare to Figs 4C
and 7C).

Finally, according to the DMFT the fixed point should be always unstable since for the LIF
transfer function the elements of the stability matrix always have an infinite variance or, equiv-
alently, the integral in Eq (5) always diverges. This can be seen in the close-up in the left inset
of Fig 13A, indicating that the PAC amplitude is non-zero for small J0 and that it approaches 0
very slowly as J0 decreases. By contrast, in numerical simulations in the same range of J0, the
dynamics are not chaotic for most of the realizations of the network: they converge to a fixed
point, as shown in Fig 12. The explanation for this difference is as for the rate model with
threshold power-law transfer function with γ< 1/2 (see above).

Two asynchronous chaos mechanisms in excitatory-inhibitory recurrent
networks
We now consider EI spiking networks with recurrent feedback interactions between the two

populations. The synaptic strengths and time constants are Jab0 =
ffiffiffiffi
K

p
and ταβ (α, β 2 {E, I}).

Assuming slow synapses, the dynamics can be reduced to four sets of equations for the four
types of synaptic inputs, hi

abðtÞ (Materials and Methods, Eq (17)). The DMFT yields self-consis-

tent equations for the statistics of these inputs. These equations can be analyzed straightfor-
wardly for the fixed point state. In contrast to purely inhibitory networks where the fixed point
loses stability only via a bifurcation to chaos, it can now also lose stability via a Hopf bifurca-
tion. This depends on the synaptic time constants. When this happens the network develops

Fig 13. DMFT vs. numerical simulations in the one-population LIF rate model. All simulation results depicted here were obtained in networks with
N = 40,000, K = 800, I0 = 0.3. A: The PAC amplitude, σ0 − σ1, vs. inhibitory coupling, J0. Black: DMFT. Blue dots: Simulations of the rate model. Red ×’s:
Simulations of the spiking network with τsyn = 25 ms. Green ×: Spiking network with τsyn = 7.5 ms. Right inset: The difference between PAC amplitudes
obtained in simulations (Δσsim) and DMFT (Δσth) plotted against K (in log scale) for J0 = 3 (blue) and J0 = 4(red). Left inset: Closeup (J0 2 [0.2 0.5]) of the
numerical solution of the DMFT equations. B: PACs were fitted as explained in the text to estimate τdec. The estimated decorrelation time, τdec, is plotted vs.
the amplitude of the PAC for the rate (blue), spiking (black) networks and DMFT (red). Inset: The PAC in the rate model for J0 = 2 (black dots: simulation; red
line: fit).

doi:10.1371/journal.pcbi.1004266.g013
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synchronous oscillations which break the balance of excitation and inhibition (the oscillation
amplitude diverges for large K).

We focus here on instabilities which lead to chaos. Their locations in the 6 dimensional
parameter space (4 synaptic strengths, 2 external inputs) of the model can be derived for a gen-
eral transfer function (Eqs (54)–(55)). Differential equations for the PAC functions, σαβ(τ), can
also be derived in the chaotic regime. However, general analytical characterization of their
solutions is particularly difficult. Leaving such study for future work, we mostly focus below on
numerical simulations. Our key result is that in EI networks asynchronous chaos emerges in
two ways, one driven by I-I interactions (II mechanism) and the other by the EIE loop (EIE
mechanism).

EI network with threshold-linear transfer function. We first study a EI network in
which all the neuronal transfer functions are threshold-linear. Fig 14 plots for different K the
phase diagram of the DMFT of this model in the JIE0 � JII0 parameter space, when JEE0 ¼ 0 and IE
= II = 1, JEI0 ¼ 0:8.(The phase-diagram for a non-zero of value JEE0 , JEE0 ¼ 1:5, is plotted and
briefly discussed in S7 Text). On the lines, the dynamics bifurcate from fixed point (below the
lines) to chaos (above). As JII0 decreases the lines go to infinity. Numerical simulations indicate
the maximum Lyapunov exponent changes sign very close to these lines (compare red line and
red dots) in good agreement with DMFT. For any finite K, the instability line exhibits a re-

entrance, crossing the JII0 -axis at J
II
0 ¼ ffiffiffi

2
p

, where the instability occurs in a purely inhibitory
network; in this respect, the limit K!1 is singular. Solving the self-consistent equations for
the average firing rates, rE and rI, one finds that the two populations can have a comparable fir-
ing rate for large JII0 when JIE0 is not too large. As JII0 becomes small, the activity in the E popula-
tion becomes much lower than in the I population. In fact, for K!1, rE vanishes on the line

Fig 14. The phase diagram of the two-population rate model with threshold-linear transfer function.
JEE
0 ¼ 0, JEI

0 ¼ 0:8. The bifurcation lines predicted by the DMFT are plotted in the JIE
0 � JII

0 parameter space for
K = 400 (red), 103 (blue), 104 (black), and K!1 (green). Red dots: Zero-crossing of the largest Lyapunov
exponent (average over 5 network realizations) in numerical simulations for K = 400. Color code: Ratio of the
population average firing rate of the two populations (I/E) in log scale (right). White region: The activity of the
E population is very small for finite K and goes to zero in the limit K!1. The boundary to the right of that
region is given by: JII

0 ¼ JEI
0

II
IE
¼ 0:8.

doi:10.1371/journal.pcbi.1004266.g014
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JII0 ¼ II
IE
JEI0 ¼ 0:8 and is zero for JII0 < II

IE
JEI0 (white region in Fig 14). In other words, in the latter

case, inhibition is not balanced by excitation in the E population.
As shown above, in the single inhibitory population case with threshold-linear transfer

functions the transition to chaos occurs at J0 ¼
ffiffiffi
2

p
. Fig 14 shows that in the two population

network the chaotic regime extends below JII0 ¼ ffiffiffi
2

p
. This suggests that the EIE loop can also

play the key role in the emergence of chaos. To assess further the role of the II and of the EIE
interactions in generating chaotic activity, we simulated the network for different values of JII0
and ταβ. Traces of the synaptic inputs are displayed in Fig 15 for large (panel A) and small
(panel B) JII0 . The gray traces correspond to the case where all time constants are equal (10 ms,
reference case). Multiplying τIE by 10 (black) slows down the fluctuations in all inputs when JII0
is small, but when JII0 is large this happens only for hIE. By contrast, dividing τII by 10 (purple)
has very little effect when JII0 is small but the fluctuations of all the inputs are substantially faster
when JII0 is large.

Fig 15 also demonstrates the effect of changing ταβ on the PAC of the net inputs to the E
neurons, hi

EðtÞ ¼ IE þ hi
EEðtÞ � hi

EIðtÞ (corresponding results for the I population are shown in
S8 Text). The PAC in the reference case is plotted in gray. For large JII0 , a ten-fold increase in τII
causes the PAC width to become ten times larger and the PAC amplitude increases (Fig 15A,
blue; see also inset). For a ten-fold decrease in τII (purple) compared to reference, the width of
the PAC is smaller but by a smaller factor whereas its amplitude is greatly reduced. By contrast,
a ten-fold increase in τIE has no noticeable effect, either on the width or on the amplitude of
the PAC (black). Fig 15B plots the PAC of the total input to the E population for small JII0 .
Here, decreasing τII by a factor of 10 (purple line) weakly affects the width as well as the ampli-
tude of the PAC. In contrast, a ten-fold increase of τIE (black) widens the PAC by a comparable
factor (see also inset). A similar widening occurs if τEI is increased ten-fold (see S8 Text).

This phenomenology can be understood as follows. In the large JII0 regime, the II interactions
play the key role in the generation of chaos. Therefore, the time scale of the fluctuations in the
activity of the I neurons is essentially determined by τII. Thus if the latter is 10 times larger
than reference, the I inputs to the E neurons are slowed down by the same factor. At the same

Fig 15. The twomechanisms for asynchronous chaos in the two-population rate model with threshold-linear transfer function. Simulations were
performed for NE = NI = 8000, K = 400, IE = II = 1, JEE

0 ¼ 0, JEI
0 ¼ 0:8. A: II mechanism for JII

0 ¼ 6, JIE
0 ¼ 10. Left panels: Examples of traces of excitatory (hIE) and

inhibitory inputs (hEI, hII) into one neuron. Right: PAC of the net inputs to the E neurons. Gray: τIE = τEI = τII = 10 ms; Black: τIE = 100 ms, τEI = τII = 10 ms; Blue:
τII = 100 ms, τIE = τEI = 10 ms; Purple: τII = 1 ms, τEI = τIE = 10 ms. Inset: All PACs plotted vs. τ/τII. B: EIE mechanism for JII

0 ¼ 1, JIE
0 ¼ 15. Other parameters are

as in A. Inset: All PACs plotted vs. τ/τIE.

doi:10.1371/journal.pcbi.1004266.g015
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time, the filtering effect of the EI synapses becomes weaker and thus the amplitude of the PAC
of the net input in the E neurons increases. The effect of decreasing τII stems from the filtering
effect of the EI synapses which is now stronger than in the reference case. Finally, changing τIE
has no noticeable effect since the fluctuations are generated by the II interactions. By contrast,
when JII0 is small, II interactions are not sufficient to generate chaotic fluctuations. In this
regime, the EIE loop drives these fluctuations if JIE0 is sufficiently large. That is why the time
scale of the activity fluctuations depends primarily on τIE and to a much smaller extent on τII.

These results point to the existence of two mechanisms for chaos emergence in two popula-
tion networks; they differ by the type of the dominant interactions (EIE or II) and therefore on
the synaptic time constants which settle the time scale of the activity fluctuations. Another dif-
ference is that in the EIE mechanism, the E population is always significantly less active than
the I population. This is not the case in the II mechanism.

Two-population spiking LIF network. We ran a similar analysis for LIF networks.
Fig 16A, 16C plot the PACs of hi

EðtÞ for the LIF spiking and rate models (PACs of hi
IðtÞ are

shown in S9 Text). In all panels JEE0 ¼ 0, JIE0 ¼ 3, JEI0 ¼ 0:8 and τEI = 3 ms. For JII0 ¼ 4 (Fig
16A), increasing τII slows down the fluctuations. By contrast, changing τIE only has a very mild

Fig 16. The twomechanisms for asynchronous chaos in two-population LIF spiking and rate networks. Simulations were performed withNE = NI =
16000, K = 400, IE = 0.2, II = 0.1, JEE

0 ¼ 0, JEI
0 ¼ 0:8, JIE

0 ¼ 3. A: II mechanism. PACs of the net inputs in E neurons are plotted for JII
0 ¼ 4, τIE = 100 ms, τEI = 3

ms and τII = 3, (red), 10 (black), 40 (blue) and 100 ms (purple). Solid line: Spiking model. Dots: Rate model. Inset: All PACs (spiking network) are plotted vs. τ/
τII. B: Voltage of one E neuron for parameters as in A, purple. C: EIE mechanism. PACs of the net inputs in E neurons are plotted for JII

0 ¼ 1, τEI = τII = 3 ms
and τIE = 100, (green), 200 (red) and 400 ms (black). Solid line: Spiking model. Dots: Rate model. Inset: All PACs (spiking network) are plotted vs. τ/τIE. D:
Voltage of one E neuron in the spiking network with parameters as in C, green.

doi:10.1371/journal.pcbi.1004266.g016
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effect (S10 Text). This is because the fluctuations are essentially driven by the II interactions.

For τII >	 15 ms, the fluctuation statistics are quantitatively similar in the spiking and the rate
models: in both, the decorrelation time, τdec	 2τII (Fig 16A, inset). Moreover, simulations indi-
cate that the dynamics of the rate model are chaotic (Λ	 1.7/τII). The trace in Fig 16B shows
that with large τII (=100 ms) the spiking pattern is bursty. The membrane potential between
bursts exhibit slow fluctuations because they are generated by the slow II connections.

Fig 16C plots the PACs of hi
EðtÞ for JII0 ¼ 1. Here also, the LIF rate model operates in a cha-

otic regime (Λ	 120s−1). In the spiking model the PACs exhibit a slow time scale but also a
fast one (the sharp peak around τ = 0). These correspond to the slow and fast fluctuations
observable in the voltage traces in Fig 16D. Increasing τIE while keeping τEI = τII = 3 msec has a
substantial effect on the slow component but hardly affects the fast component. When plotted
vs. τ/τIE, the slow components of the PACs all collapse onto the same curve (Fig 16C, inset).
This indicates that the EIE loop is essential in generating the slow, but not the fast, fluctuations.
Fitting this slow component with the function A�[cosh(τ/τdec)]−1 yields τdec 	 2.4τIE. Further-
more, increasing τII suppresses the fast fluctuations and amplifies the slow ones. These two
effects saturate simultaneously when τII 	 10 ms (S11 Text). Thus, it can be inferred that fast
fluctuations are mostly generated by II interactions. Their amplitude is suppressed as τII is
increased because they become more filtered. Concomitantly, the slow fluctuations become
amplified. This is because fast fluctuations smooth the effective transfer function of the E neu-
rons in the low firing rate regime. Thus, their suppression increases the gain of this transfer
function. This explains the quantitative differences between the PACs in the spiking and the
rate LIF network when II synapses are fast and why these differences are lessened as τII
increases (S11 Text).

In the simulations reported in Fig 16 there is no recurrent excitation in the E population
(JEE0 ¼ 0). Moreover, all the excitatory synapses to the I population are slow. Both assumptions
were made to reduce the number of parameters in order to simplify the analysis. However, in
cortical networks in general, fast (AMPA) and slow (NMDA) excitation coexist (in fact AMPA
synapses are required to open the NMDA receptors). Moreover, recurrent excitation is thought
to be in general substantial (see however [47]). Results depicted in S12 Text show that the EIE
loop can induce slow rate fluctuations in our network when it combines slow and fast excit-
atory synapses and when substantial recurrent excitation is present in the E population.

Discussion
Networks of neurons operating in the so-called balanced regime exhibit spiking activity with
strong temporal variability and spatial heterogeneity. Previous theoretical studies have investi-
gated this regime assuming that excitatory and inhibitory synapses are sufficiently fast com-
pared to the neuronal dynamics. The nature of the balanced state is now fairly well understood
in this case. By contrast, here we focused on networks in which some of the synapses are slow.
To study the dynamics in these networks, we reduced them to a rate dynamics that we investi-
gated by combining Dynamical Mean-Field Theory and simulations. Our key result is that
when synaptic interactions are sufficiently strong and slow, chaotic fluctuations on the time
scales of the synaptic dynamics emerge naturally from the network collective behavior. More-
over, the nature of the transition to chaos and the behavior in the chaotic regime are deter-
mined only by the neuronal f − I curve and not by the details of the spike-generation
mechanism.

We identified two mechanisms for the emergence of asynchronous chaos in EI neuronal
networks. One mechanism relies on II interactions whereas in the other the EIE feedback loop
plays the key role. These mechanisms hold in rate models (Eq (3)) as well as in LIF spiking
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networks. By computing the maximum Lyapunov exponent, we provided direct evidence that
in rate models these states are indeed chaotic. For LIF spiking networks, we argued that when
the synapses are sufficiently slow, the observed activity fluctuations are chaotic since their sta-
tistics are quantitatively similar to those observed in the corresponding rate model. This simi-
larity persists for synaptic time constants as small as the membrane time constant. This is in
agreement with [33–35] which relied on numerical integration of the LIF model to compute
the Lyapunov spectra of networks of various sizes and increasing synaptic time constants. They
found that the LIF dynamics are chaotic only if the synapses are sufficiently slow.

In these two mechanisms, the dynamics of the synaptic currents play the key role whereas
dependence on the intrinsic properties of the neurons only occurs via their nonlinear instanta-
neous input-output transfer function. Since the synaptic currents are filtered versions of the
neuronal spike trains, and that the temporal fluctuations of the activity occur on the time scales
of the synaptic currents, it is natural to qualify the dynamical regime as rate chaos. Although
the features of the bifurcation to chaos may depend on the shape of the transfer function, as we
have shown, the qualitative features of the chaotic state are very general, provided that the syn-
aptic currents are sufficiently slow. Rate chaos is therefore a generic property of networks of
spiking neurons operating in the balanced regime. We show in S3 Text that rate chaos occurs
also in networks of non-leaky integrate-and-fire spiking neurons. In that case, the statistics of
the fluctuations are similar to those of the model in Eq (3) with a threshold-linear transfer
function. We also found rate chaos in biophysically more realistic network models in which the
dynamics of the neurons and of the synapses are conductance-based (results not shown). In
these cases, the dynamics of the synaptic conductances give rise to the chaotic fluctuations.

Quantitative mappings from spiking to rate models have been derived for networks in sta-
tionary asynchronous non chaotic states [38] or responding to external fluctuating inputs [48].
Spiking dynamics also share qualitative similarities with rate models for networks operating in
synchronous states [9–11, 38, 43]. To our knowledge, the current study is the first to report a
quantitative correspondance between spiking and rate model operating in chaotic states.

The SCS model [19] has been widely used to explore the physiological [22, 49] and compu-
tational significance of chaos in neuronal networks. Recent works have shown that because of
the richness of its chaotic dynamics, the SCS model has remarkable learning capabilities [15–
18]. Our work paves the way for an extension of these results to networks of spiking neurons
with a connectivity satisfying Dale’s law, which are biologically more realistic than the SCS
model.

Another interesting implication of our work is in the field of randommatrices. Given a
denseNxN random matrix, A, with i.i.d elements with zero mean and finite standard deviation

(SD), in the large N limit, the eigenvalue ofA=
ffiffiffiffi
N

p
with the largest real part is real, and it is

equal to SD [50, 51] (more generally, the eigenvalues ofA=
ffiffiffiffi
N

p
are uniformly distributed

within a disk of radius SD centered at the origin [50, 51]). Several results regarding the spectra
(bulk and outliers) of dense random matrices with structures reflecting Dale’s law have been
derived recently [52–54]. Less is known when the matrices are sparse. A byproduct of our
approach are two conjectures for the maximal eigenvalue of such sparse random matrices,
namely Eqs (7) and (62) that we verified numerically.

Neuronal spiking statistics (e.g., firing rate, spike counts, inter-spike intervals) exhibit a very
broad range of time scales during spontaneous or sensory evoked activity in-vivo (see e.g [55,
56]). Fluctuations on time scales larger than several 100s of millisecond can be accounted for
by neuromodulation which changes the global excitability of the cortical network or changes in
behavioral state. Very fast fluctuations are naturally explained in the framework of the standard
model of balance of excitation and inhibition [28–30]. By contrast, it is unclear how to explain
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modulations in the intermediate temporal range of a few 10s to several 100s of milliseconds. In
fact, the standard framework of balanced networks predicts that fluctuations on this time scale
are actively suppressed because the network state is very stable. Our work extends this frame-
work and shows two mechanisms by which modulations in this range can occur. In the II
mechanism, inhibitory synapses must be strong and slower than 10 − 20 ms. GABAA inhibition
may be too fast for this [57] (see however [58]), but GABAB[59] are sufficiently slow. In con-
trast, the EIE mechanism is achieved when inhibition in fast. It requires slow recurrent excita-
tion to inhibitory neurons, with a time constant of a few to several tens of ms, as is typically the
case for NMDA receptors (see e.g [60–62]). Hence, the combination of GABAA and NMDA
synapses can generate chaotic dynamics in the cortex and fluctuations in activity on a time
scale of several tens to a few hundreds of ms.

Note added in production: Following a request from the editors after formal acceptance of
our article, we note that a recent paper [63] claims that spiking networks with instantaneous
delayed synapses exhibit an asynchronous state similar to the chaotic state of the SCS model.
However, this claim is incorrect and has been shown to rely on flawed analysis [64].

Materials and Methods

Models

Two population leaky integrate-and-fire spiking network
The two population network of leaky integrate-and-fire (LIF) neurons considered in this work
consists of NE excitatory (E) and NI inhibitory neurons. The subthreshold dynamics of the
membrane potential, Va

i , of neuron i in population α (i = 1, . . ., Nα; α, β 2 {E, I}) obeys:

tm
dVa

i ðtÞ
dt

¼ �Va
i ðtÞ þ Ia þ JaE

X
j

CaE
ij S

aE
j ðtÞ �

X
j

JaICaI
ij S

aI
j ðtÞ ð11Þ

where τm is the membrane time constant (we take τm = 10 msec for both populations), Cab
ij and

Jαβ are respectively the connectivity matrix and the strength of the connections between the
(presynaptic) population β and (postsynaptic) population α and Iα the external feedforward
input to population α. For simplicity we take NE = NI = N. However, all the results described in
the paper are also valid when the number of neurons is different in the populations (provided

both numbers are large)., The variables Sabj , which describe the synapses connecting neuron j in

population β to population α, follow the dynamics:

tab
dSabj
dt

¼ �Sabj þ
X
tb
j

d t � tbj

	 

ð12Þ

where ταβ is the synaptic time constant and the sum is over all the spikes emitted at times

tbj < t.

Eqs (11), (12) are supplemented by a reset condition. If at time tsp, Va
i ðtspÞ ¼ 1, the neuron

emits a spike and Va
i ðtþspÞ ¼ 0. For simplicity we do not include the neuronal refractory period.

We assume that the connectivity is random with all the Cab
ij uncorrelated and such that

Cab
ij ¼ 1 with probability K/N and 0 otherwise. Hence each neuron is connected, on average, to

K neurons from its population as well as to K neurons from the other population. When vary-
ing the connectivity K we scale the interaction strength and the feedforward inputs according

to: Jab ¼ Jab0 =
ffiffiffiffi
K

p
and Ia ¼ Ia0

ffiffiffiffi
K

p
[29].
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Network of inhibitory leaky integrate-and-fire neurons
The dynamics of the network of the one-population spiking LIF neurons considered in the first
part of the paper are:

tm
dViðtÞ
dt

¼ �ViðtÞ þ I þ J
X

j

CijSjðtÞ ð13Þ

supplemented with the reset condition at threshold. The elements of the connectivity matrix,
Cij, are uncorrelated and such that Cij = 1 with probability K/N and 0 otherwise. All neurons
are inhibitory, thus J< 0.

The synaptic dynamics are:

tsyn
dSj
dt

¼ �Sj þ
X
tj

dðt � tjÞ ð14Þ

where τsyn is the synaptic time constant of the inhibition and the sum is over all the spikes emit-

ted at times tj < t. The interaction strength and the feedforward inputs scale with K as: J ¼
�J0=

ffiffiffiffi
K

p
and I ¼ I0

ffiffiffiffi
K

p
with J0 > 0.

Network of non-leaky integrate-and-fire neurons
We consider briefly this model in S3 Text. The network architecture as well as the synaptic
dynamics are as above. The single neuron dynamics of non-leaky integrate-and-fire (NLIF)
neurons are similar to those of LIF neurons except for the first terms on the right-hand side of
Eqs (11), (13) which are now omitted.

Rate dynamics for spiking networks with slow synapses
If the synapses are much slower than the membrane time constant, the full dynamics of a spik-
ing network can be approximated by the dynamics of the synapses driven by the instantaneous
firing rates of the neurons, namely:

tab
dSabi
dt

¼ �Sabi þ g JbE
X

j

CbE
ij S

bE
j � JbI

X
j

CbI
ij S

bI
j þ Ib

 !
ð15Þ

where g(x) is the transfer function of the neuron (the f − I curve) [20]. In particular, for the LIF
networks,

gðxÞ ¼ � 1

tm log ð1� 1=xÞHðx � 1Þ ð16Þ

withH(x) = 1 for x> 0 and H(x) = 0 otherwise. For the NLIF networks, the transfer function is
threshold-linear: g(x) = xH(x).

Defining hab
i ≜Jab

P
jC

ab
ij S

ab
j , the dynamics of hab

i are given by

tab
dhab

i

dt
¼ �hab

i þ
X

j

JabCab
ij g hbE

j ðtÞ � hbI
j ðtÞ þ Ib

	 

ð17Þ

We will denote by hb
i the total input into neuron i in population β: hb

i ¼ hbE
i � hbI

i þ Ib. For net-

works comprising only one population of inhibitory spiking neurons we will drop the
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superscript β = I and denote this input by hi. The dynamics then yield:

tsyn
dhi

dt
¼ �hi þ I � J

XN
j¼1

CijgðhjÞ ð18Þ

where τsyn is the inhibitory synaptic time constant.

Dynamical Mean-Field Theory of the Single Inhibitory Population
A Dynamical Mean-Field Theory (DMFT) can be developed to investigate the rate model, Eq
(17), for a general transfer function under the assumption, 1� K� N.

Here we provide a full analysis of a one-population network of inhibitory neurons whose

dynamics are given in Eq (18). We take I ¼ I0
ffiffiffiffi
K

p
as the external input and J ¼ J0=

ffiffiffiffi
K

p
as the

coupling strength. In this case, a functional integral derivation shows that these dynamics can
be written as:

tsyn
dhiðtÞ
dt

¼ �hiðtÞ þ ZiðtÞ; i ¼ 1; :::;N ð19Þ

where ηi(t) is a Gaussian noise:

ZiðtÞ ¼ mþ J0
ffiffiffi
q

p
zi þ xiðtÞ ð20Þ

with zi, i.i.d Gaussian quenched variables with zero mean and unit standard deviation (SD),
ξi(t) are Gaussian noises with hξi(t)it = 0, and hξi(t)ξj(t+τ)it = Cξ(τ)δi, j where h � it stands for
averaging over time. Therefore, in general, the inputs to the neurons display temporal as well
as quenched fluctuations.

The self-consistent equations that determine the mean, temporal correlations and quenched
fluctuations yield:

m ¼ ffiffiffiffi
K

p ðI0 � J0½hgðhiðtÞÞi�Þ ð21Þ

q ¼ ½hgðhÞi2� ð22Þ

CxðtÞ ¼ J0
2ð½hgðhðtÞÞgðhðt þ tÞi� � qÞ ð23Þ

where h � i and [�] stand for averaging over noise and quenched disorder, respectively. Thus the
quantities q and μ obey:

q ¼
Z1
�1

Z1
�1

g mþ J0
ffiffiffi
q

p
z þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � J0

2q
q

x
� �

Dx

2
4

3
5

2

Dz ð24Þ

and:

1

J0
I0 �

mffiffiffiffi
K

p
� �

¼
Z1
�1

g mþ ffiffiffiffiffi
s0

p
z

� �
Dz ð25Þ

where σ(τ) = [hh(t)h(t+τ)i] − μ2 is the population-averaged autocovariance (PAC) of the input

to the neurons and we define: σ0 = σ(0) andDx ¼ e
�x2

2ffiffiffiffi
2p

p dx. In the limit K!1, μmust remain

finite. This implies that the population averaged firing rate, [hg(h)i] = I0/J0 does not depend on
the specifics of the transfer function of the neurons and varies linearly with I0. This is a key
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outcome of the balance between the feedforward excitatory and the recurrent inhibitory inputs
to the neurons.

To express Cξ(τ) in terms of σ, we note that the vector (h(t), h(t+τ))T is a bivariate Gaussian,
so in fact we need to calculate E[g(μ+x)g(μ+y)] where (x, y)T has zero mean and a covariance
matrix

Sxy ¼
s0 s

s s0

 !

and E[�] stands for averaging over temporal noise and quenched disorder. Defining

x

y

" #
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsjp

0
ffiffiffiffiffiffijsjp

0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsjp

signðsÞ � ffiffiffiffiffiffijsjp
2
4

3
5 �

x

y

z

2
6664
3
7775

where ξ, θ and z are independent Gaussian variables with zero mean and unit variance yields

E½gðmþ xÞgðmþ yÞ� ¼
¼ E E gðmþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s0 � jsjp
xþ ffiffiffiffiffiffijsjp

zÞjz�E½gðmþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsjp

yþ signðsÞ � ffiffiffiffiffiffijsjp
zÞjz

h ih i
¼

¼
Z1
�1

Z1
�1

gðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsj

q
xþ

ffiffiffiffiffiffi
jsj

p
zÞDx �

Z1
�1

gðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsj

q
yþ signðsÞ �

ffiffiffiffiffiffi
jsj

p
zÞDy

2
4

3
5Dz

ð26Þ

A straightforward derivation shows that σ(τ) obeys:

tsyn
2
d2s
dt2

¼

¼ s� J0
2

Z1
�1

Z1
�1

Z1
�1

gðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsj

q
xþ

ffiffiffiffiffiffi
jsj

p
zÞgðmþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsj

q
yþ signðsÞ �

ffiffiffiffiffiffi
jsj

p
zÞDxDyDz

ð27Þ

with initial conditions:

sð0Þ ¼ s0 ;
ds
dt

ð0Þ ¼ 0 ð28Þ

where the last condition results from σ(τ) = σ(−τ).
Eq (27) can be rewritten as:

t2syn
d2s
dt2

¼ � @Vðs; s0Þ
@s

ð29Þ

where the “potential” V(σ;σ0) which depends parametrically on σ0 is:

Vðs; s0Þ ¼

¼ � s2

2
þ J0

2

Z1
�1

Z1
�1

Z1
�1

G mþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsj

q
xþ

ffiffiffiffiffiffi
jsj

p
z

� �
G mþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � jsj

q
yþ signðsÞ �

ffiffiffiffiffiffi
jsj

p
z

� �
DxDyDz

ð30Þ
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with G(x) =
R
g(x)dx. Note that for positive σ this equation yields

Vðs; s0Þ ¼ � s2

2
þ J0

2

Z1
�1

Z1
�1

Gðmþ ffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s

p
xþ ffiffiffi

s
p

zÞDx
2
4

3
5

2

Dz ð31Þ

Therefore the quantity

E ¼ 1

2
tsyn

ds
dt

� �2

þ Vðs; s0Þ ð32Þ

is conserved under the dynamics, Eq (29). Hence:

1

2
tsyn

ds
dt

� �2

þ Vðs; s0Þ ¼ Vðs0; s0Þ ð33Þ

To simplify notations, we drop the parameter σ0 and denote the potential by V(σ). The first,
second and third order derivatives of the potential with respect to σ are denoted V0(σ), V00(σ)
and V000(σ).

For illustrative purpose, we consider a sigmoid transfer function,

gðxÞ ¼ �ðxÞ≜ 1
2
1þ erf xffiffi

2
p
	 
h i

. In this case we have

GðxÞ ¼ FðxÞ≜ x
2

1þ erf
xffiffiffi
2

p
� �� �

þ e�
x2
2ffiffiffiffiffiffi
2p

p

Using the identities:

Z1
�1

�ðaþ bzÞDz ¼ �
affiffiffiffiffiffiffiffiffiffiffiffiffi

1þ b2
p
� �

and

Z1
�1

�ðaþ bzÞzDz ¼ bffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ b2

p e
� a2

2ð1þb2Þffiffiffiffiffiffi
2p

p

the potential V(σ) can be written as:

VðsÞ ¼ �s2

2
þ J0

2

Z1
�1

ð1þ s0 � jsjÞF mþ ffiffiffiffiffiffijsjp
zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ s0 � jsjp
 !

F
mþ signðsÞ � ffiffiffiffiffiffijsjp

zffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ s0 � jsjp

 !
Dz

Fig 17A1–3 plots V for σ 2 (−σ0, σ0) for J0 = 4, fixed I0 = 1 and different values of σ0. When V0
(σ0)> 0 (Fig 17A1), the solution to Eq (29), σ(τ), decreases monotonically from σ0 to −σ0 that it
reaches in finite time with a strictly negative velocity; this solution does not correspond to an

autocovariance function. For σ0 such that V0(σ0) = 0 (Fig 17A2) the solution is σ(τ) = σ0. It cor-
responds to a fixed point of the dynamics, Eq (18) in which all the inputs to the neurons are
constant in time, hiðtÞ ¼ h0

i , and h
0
i has a Gaussian distribution. Finally, for σ0 such that V0(σ0)

< 0 (Fig 17A3), there is no solution to Eq (33) with σ(0) = σ0.
Fig 17B1–3 plots V for J0 = 15. For small σ0, the solution Eq (33) does not correspond to an

autocovariance function. As σ0 increases, V(σ) becomes non-monotonic in the vicinity of σ =
σ0 with local maxima and minima at σ = σmax and σ = σmin, respectively (Fig 17B2). However,
here also the solution for σ(τ) does not correspond to an autocovariance because σ0 is the global
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maximum in the range σ 2 [−σ0, σ0]. For s0 ¼ s�
0, such that Vðsmax; s

�
0Þ ¼ Vðs�

0; s
�
0Þ (Fig 17B3)

an acceptable solution appears, in which σ decays monotonically from s�
0 and converges to

σmax as τ!1, i.e. σmax = σ1. This solution corresponds to a chaotic state of the network. If σ0
is further increased beyond s�

0, V(σmax, σ0)> V(σ0) (Fig 17B4), and the solution exhibits oscilla-
tions around σmin. For σ0 	 11.77, V0(σ0) = 0, and the solution corresponds to a fixed point
(Fig 17B5). Finally, for σ0 larger, V0(σ0) is negative (Fig 17B6) and there is no solution to Eq (18)
with σ(0) = σ0.

A bifurcation between these behaviors occurs at some critical value, Jc, such that for J0 < Jc
the self-consistent solutions of Eq (29) are either oscillatory or constant as a function of τ,
whereas for J0 > Jc they are either oscillatory or decay monotonically. A stability analysis of
these different solutions is beyond the scope of this paper; instead, we rely on numerical simu-
lations of the full dynamics. They indicate that the network dynamics always reach a fixed
point for sufficiently small J0. For sufficiently large J0 the fixed point is unstable and the net-
work settles in a state in which σ(τ) decays monotonically with τ. Simulations also show that
the maximum Lyapunov exponent in these cases is positive (see below); i.e. the network is in a

Fig 17. Dynamical mean-field theory for the one-population inhibitory rate model with g(x) = ϕ(x). The potential, V(σ, σ0) is plotted for different values of
σ0 as a function of σ. A1–3: J0 = 4 < Jc (=4.995). B1–5: J0 = 15 > Jc.

doi:10.1371/journal.pcbi.1004266.g017

Asynchronous Rate Chaos in Spiking Neuronal Circuits

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004266 July 31, 2015 27 / 38



chaotic state. For values of J0 in between these two regimes, the network displays oscillatory
patterns of activity. However, for increasing network sizes, N, the range of J0 in which oscilla-
tions are observed vanishes (not shown). Therefore for large N the bifurcation between a fixed
point and chaos occurs abruptly at some critical value Jc. A similar phenomenology occurs for
other non-linear positive monotonically increasing transfer functions.

In summary, for a fixed feedforward input, I0, there are two regimes in the large N limit:

1. for J0 < Jc: the stable state is a fixed point. The distribution of the inputs to the neurons is a
Gaussian whose mean, μ, and variance, σ are determined by the self-consistent mean-field
equations:

m ¼ ffiffiffiffi
K

p
I0 � J0

Z1
�1

gðmþ ffiffiffi
s

p
zÞDz

0
@

1
A ð34Þ

s ¼ J0
2

Z1
�1

½gðmþ ffiffiffi
s

p
zÞ�2Dz ð35Þ

For a transfer function, g(x), which is zero when x is smaller than some threshold T (func-
tions without threshold correspond to T = −1), the distribution of the neuronal firing rates,
ri, in this state is given by:

pmðxÞ ¼
d
dx

Pr ri � xð Þ½ � ¼

¼ 1ffiffiffiffiffiffiffiffi
2ps

p e�
m2

2s � dðx � TÞ þ 1ffiffiffiffiffiffiffiffi
2ps

p e�
ðg�1ðxÞ�mÞ2

2s � 1

g 0ðg�1ðxÞÞ � Hðx � TÞ
ð36Þ

2. for J0 > Jc: the stable state is chaotic. The distribution of time average inputs is Gaussian

with mean μ and variance s1 ¼ J02q and the autocovariance of the inputs is determined by
Eq (29) which depends on σ0. The quantities μ, σ0 and σ1 are determined by the self-consis-
tent equations:

s1 ¼ J0
2

Z1
�1

Z1
�1

gðmþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s1

p
xþ ffiffiffiffiffiffi

s1
p

zÞDx
2
4

3
5

2

Dz ð37Þ

and

s0
2 � s1

2

2
¼

¼ J0
2

Z1
�1

Gðmþ ffiffiffiffiffi
s0

p
zÞ2Dz�

� J0
2

Z1
�1

Z1
�1

Gðmþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0 � s1

p
xþ ffiffiffiffiffiffi

s1
p

zÞDx
2
4

3
5

2

Dz

ð38Þ

together with Eq (25).
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Two-population networks

Self-consistent DMFT equations
A DMFT approach can also be developed to investigate the dynamics of the two population
network model, Eq (17). To that end, the last term in Eq (17) is written as a Gaussian random
process with mean μαβ and autocorrelation function Cαβ(τ) and derives the self-consistent
equations that these quantities satisfy. The quantity μαβ is therefore

mab ¼ Jab0
ffiffiffiffi
K

p
E½gðhbÞ�

where:

hb
i ¼ hbE

i � hbI
i þ Ib ð39Þ

is the net input to neuron i in population β.

The synaptic inputs hab
i is also a Gaussian random process. We denote its mean over time

and over all the neurons in population α by μαβ = E[hαβ(t)] and its PAC by σαβ(τ) = E[hαβ(t)

hαβ(t+τ)]−(μαβ)2. Taking Ib ¼ Ib0 �
ffiffiffiffi
K

p
we can write the mean of hb

j as

mb ¼ mbE � mbI þ Ib ¼
¼ ffiffiffiffi

K
p

JaE0 E½gðhEÞ� � JaI0 E½gðhIÞ� þ Ib0
� � ð40Þ

The PAC of hb
j then reads:

sbðtÞ≜E½hbðtÞhbðt þ tÞ� � ðmbÞ2 ¼
¼ sbEðtÞ þ sbIðtÞ

We can now write the balance condition in the large K limit:

Ia0 þ JaE0 rE � JaI0 r
I ¼ maffiffiffiffi

K
p ð41Þ

where

rb ¼ E½gðhaÞ� ¼
Z1
�1

g ma þ
ffiffiffiffiffi
sb
0

q
z

� �
e�

z2
2ffiffiffiffiffiffi
2p

p dz ð42Þ

is the neuronal firing rate averaged over cells in population α. Here, sb
0 ¼ sbð0Þ.

We can also express Cαβ(τ) in terms of σα(τ) as:

CabðtÞ ¼ E
X

j

Jabij g hb
j ðtÞ

	 
X
j

Jabij g hb
j ðt þ tÞ

	 
" #
¼ ðJab0 Þ2 ~CbðsbðtÞÞ þ ðmabÞ2 ð43Þ

where:

~CbðsbÞ ¼

¼
Z1
�1

Z1
�1

Z1
�1

g mb þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb
0 � sb

q
xþ signðsbÞ

ffiffiffiffiffiffiffiffi
jsbj

p
z

� �
g mb þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb
0 � sb

q
yþ

ffiffiffiffiffiffiffiffi
jsbj

p
z

� �
DyDxDz

ð44Þ

Let us denote by Δαβ(τ) the autocorrelation of hαβ(t). We can express the relation between
Cαβ(τ) and Δαβ(τ) by their Fourier transforms as Δαβ(ω) =H(ω)H�(ω)Cαβ(ω), where H(ω) = 1/
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(1+iταβ ω). Transforming back to the time domain yields:

ðtabÞ2
d2Dab

dt2
¼ Dab � Cab ð45Þ

Since Δαβ = σαβ+(μαβ)2 we get:

ðtabÞ2
d2sab

dt2
¼ sab � ðJab0 Þ2 ~Cb ð46Þ

Thus we get a set of self-consistent equations for the four PACs σαβ. The relevant soutions
have to satisfy the four boundary conditions:

lim
t!1

dsabðtÞ
dt

¼ 0 ð47Þ

In general, these dynamical equations cannot be written like those of a particle in some
potential. This makes the study of their solutions substantially more difficult than in the one
population case.

Separation of time scales
A potential function can be written for the DMFT if the time scale of one type of synapses is
substantially larger than the others, which makes it possible to consider the latter as instanta-
neous. We carry out this analysis below assuming τIE � τEI, τEE, τII.

Setting all the synapses except those from E neurons to I neurons to be instantaneous
implies that except for σIE one has:

sab ¼ ðJab0 Þ2 ~Cb ð48Þ

where ~Cb is defined in Eq (44). Since τIE is now the only time scale we can take τIE = 1. Also,
σEE, σEI, σII and the potential V are now functions of a single variable, σIE. Therefore, the differ-
ential equation for σIE can be written as

d2sIE

dt2
¼ � dV

dsIE

where

dV
dsIE

¼ �sIE þ ðJIE0 Þ2 ~CEðsIEÞ ð49Þ

The instability of the fixed point occurs when, V0(σIE) and V00(σIE), the first and the second
derivatives of V with respect to σIE, vanishes. Using Eq (49) one has:

V 00ðsIEÞ ¼ �1þ ðJIE0 Þ2
d~CE

dsE
� ds

E

dsIE
ð50Þ

Since σα = σαE+σαI:

dsE

dsIE
¼ ðJEE0 Þ2 d

~CE

dsE
� ds

E

dsIE
þ ðJEI0 Þ2

d~CI

dsI
� ds

I

dsIE
ð51Þ

and

dsI

dsIE
¼ 1þ ðJII0 Þ2

d~CI

dsI
� ds

I

dsIE
ð52Þ
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where

d~Cb

dsb
¼
Z1
�1

Z1
�1

g 0 mb þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb
0 � sb

q
xþ

ffiffiffiffiffi
sb

p
z

� �
e�

x2
2ffiffiffiffiffiffi
2p

p dx

2
4

3
5

2

e�
z2
2ffiffiffiffiffiffi
2p

p dz

From Eqs (51)–(52) one gets:

dsE

dsIE
¼ ðJEI0 Þ2 d~CI

dsI

1� ðJEE0 Þ2 d~CE

dsE

� �ð1� ðJII0 Þ2 d~CI

dsI Þ

and:

V 00ðsIEÞ ¼ �1þ ðJIE0 Þ2
d~CE

dsE

ðJEI0 Þ2 d~CI

dlsI

1� ðJEE0 Þ2 d~CE

dsE

� �
1� ðJII0 Þ2 d~CI

dsI

� � ð53Þ

Thus at chaos onset, together with Eq (41), Jab0 , σα and μα obey:

sa ¼ ðJaE0 Þ2ĈðmE; sEÞ þ ðJaI0 Þ2ĈðmI ; sIÞ ð54Þ

1 ¼ ðJEE0 Þ2Ĉ 0ðmE; sEÞ þ ðJII0 Þ2Ĉ 0ðmI ; sIÞþ
þ½ðJEI0 JIE0 Þ2 � ðJEE0 JII0 Þ2�Ĉ 0ðmE; sEÞĈ 0ðmI ; sIÞ

ð55Þ

where:

Ĉðm; sÞ ¼
Z1
�1

gðmþ
ffiffiffiffiffiffi
jsj

p
zÞ

h i2 e�
z2
2ffiffiffiffiffiffi
2p

p dz

Ĉ 0ðm; sÞ ¼
Z1
�1

g 0ðmþ
ffiffiffiffiffiffi
jsj

p
zÞ

h i2 e�
z2
2ffiffiffiffiffiffi
2p

p dz

For instance for the threshold-linear transfer function we have

Ĉðm; sÞ ¼ F2ðm;
ffiffiffi
s

p Þ

Ĉ 0ðm; sÞ ¼ �
mffiffiffi
s

p
� �

and

ra ¼ F1ðma;
ffiffiffiffiffi
sa

p Þ

where Fi(a, b) are defined in Eq (28).
It should be noted that if the transition to chaos occurs for the same parameters for which

the fixed point loses stability and that this is controlled by a real eigenvalue crossing zero, the
location of the transition will not depend on the synaptic time constant. If this is the case, Eq
(54) will characterize the location of the transition to chaos in the parameter space of the net-
work in general and not only under the assumption of the separation of time scales under
which we have established this condition.
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On the stability of the fixed point

Let us denote the fixed point solution of the dynamics, Eq (17), by: habðtÞ ¼ �hab. Writing

habðtÞ ¼ �hab þ δhab with δhab � �hab, linearizing the dynamics and looking for solution of the
form δ h/ eλt) one gets:

ltEEdh
EE ¼ �dhEE þ JEE0 ~CEEðdhEE � dhEIÞ

ltIEdh
IE ¼ �dhIE þ JIE0 ~CIEðdhEE � dhEIÞ

ltEIdh
EI ¼ �dhEI � JEI0 ~CEIðdhIE � dhIIÞ

ltIIdh
II ¼ �dhII � JII0 ~CIIðdhIE � dhIIÞ

ð56Þ

where the ~Cab (α = E, I, β = E, I) are N×N sparse matrices with elements

~CEE
ij ¼ g 0ð�hEE

j � �hEI
j ÞCEE

ij

~CIE
ij ¼ g 0ð�hEE

j � �hEI
j ÞCIE

ij

~CEI
ij ¼ g 0ð�hIE

j � �hII
j ÞCEI

ij

~CII
ij ¼ g 0ð�hIE

j � �hII
j ÞCII

ij

ð57Þ

(Cαβ is the matrix of connectivity between populations β (presynaptic) and α). We are inter-
ested in instability onsets at which a real eigenvalue crosses 0.

Using Eq (56), it is straightforward to show that such an instability happens if the synaptic
strength are such that:

det I� JIE0 J
EI
0
~CIEðI� JEE0 ~CEEÞ�1 ~CEIðI� JII0 ~CIIÞ�1� � ¼ 0 ð58Þ

If JEE0 ¼ 0, one can rewrite Eq (58) as:

det½I�M� ¼ 0 ð59Þ

with:

M ¼ JII0 ~CII þ JIE0 J
EI
0
~CIE ~CEI ð60Þ

Let us assume that JII0 is fixed and such that for small enough JIE0 J
EI
0 the fixed point is stable.

When increasing, JIE0 J
EI
0 the fixed point loses stability when the value of JIE0 J

EI
0 is the smallest for

which Eq (59) is satisfied, that is for which the largest real eigenvalue, λmax of the matrixM
crosses 1. If this instability also corresponds to chaos onset, Eq (54), this would imply that the
condition λmax = 1 is equivalent to:

1 ¼ ðJII0 Þ2Ĉ 0ðmI ; sIÞ þ ðJEI0 JIE0 Þ2Ĉ 0ðmE; sEÞĈ 0ðmI; sIÞ ð61Þ

Interestingly, this condition means that the variance of the elements of the matrix
ffiffiffiffi
N

p
M is

equal to one leading us to conjecture that more generally the eigenvalue of the latter which has
the largest real part and is given by:

lmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðJII0 Þ2Ĉ 0ðmI ; sIÞ þ ðJEI0 JIE0 Þ2Ĉ 0ðmE; sEÞĈ 0ðmI; sIÞ

q
ð62Þ
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Numerical simulations

Integration of network dynamics and mean-field equation solutions
The integration of differential equations, Eq (15) and Eq (18) (Eq (3) in main text), was per-
formed with a C code using the Euler method with fixed Δt = τsyn/20 (the validity of the results
was verified using smaller values of Δt).

Simulations of the LIF spiking networks were done using a second-order Runge-Kutta inte-
gration scheme supplemented by interpolation of spike times as detailed in [65]. In all the spik-
ing network simulations the time step was Δt = 0.1 ms.

Self-consistent mean-field equations were solved with MATLAB function fsolve, which
implements a ‘trust-region-dogleg’ algorithm or the Levenberg-Marquardt algorithm for non-
square systems. Numerical calculations of integrals was done with MATLAB function trapz.

Population-averaged autocovariance
The population average autocovariance (PAC) functions of neuronal quantities fi(t) (i = 1. . .N)
were computed as

sðtÞ ¼ sðkDtÞ ¼

¼ 1

N

XN
i¼1

1

Nt � jkj
XNt�1

n¼0

fiðnDtÞf ððnþ kÞDtÞ � 1

N
1

Nt

XN
i¼1

XNt�1

n¼0

fiðnDtÞ
" #2

where Nt is the number of time samples for the calculation of the PAC. In all figures fi(t) = hi(t)
except in Fig 16 where fiðtÞ ¼ Ia þ haE

i ðtÞ � haI
i ðtÞ. All PACs of spiking networks were calcu-

lated over 163.84 sec, and averaged over 10 realizations of the connectivity. For models Eq (15)
and Eq (18), PACs were calculated over 2048τsyn after discarding 200τsyn of transient dynamics
and averaged over 8 realizations.

Largest Lyapunov exponents
To calculate the maximal Lyapunov exponent, Λ, of the inhibitory network, Eq (3), we simu-
lated the system for a sufficiently long duration (200τsyn) so that it settled on the attractor of

the dynamics. Denoting by~h� the network state at that time, we then ran two copies of the

dynamics, one with initial conditions~h1ðt ¼ 0Þ ¼~h� and the other with slightly perturbed ini-

tial conditions,~h2ðt ¼ 0Þ ¼~h� þ �=
ffiffiffiffi
N

p
(jj~h1ð0Þ �~h2ðð0Þ jj¼ �, where jj�jj is the l2 norm).

Monitoring the difference,~dðtÞ ¼~h1ðtÞ �~h2ðtÞ we computed T ð1Þ
reset ¼ minðargðjj ~dðtÞ jj¼

DmaxÞ;TmaxÞ and Dð1Þ
reset ¼jj ~dðT ð1Þ

resetÞ jj. We then reinitialized the dynamics of the second network

copy to~h2ðT ð1Þ
resetÞ þ

~d T
ð1Þ
resetð Þ

jj~d T
ð1Þ
resetð Þjj � �. We iterated the process n times and estimate the Lyapunov

exponent according to:

L ¼

Pn
i¼1 ln

DðiÞ
reset

�

 !
Pn

i¼1 T
ðiÞ
reset

A similar method was used for two population networks, Eq (15), the only difference being

that the vector~h now had dimension 4N. Throughout the article we take n = 100, Tmax = 5τsyn,
Dmax = 10−3 and � = 10−6. The Lyapunov exponent values reported in this article are averages
over 5 realizations of the networks.
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Fraction of networks with a stable fixed point in rate dynamics
Fig 10D in the main text plots the lines in the J0 − I0 phase diagrams of the threshold-power
law rate model, for which 5%,50%,95% of randomly chosen networks have dynamics which
converge to a fixed point. To compute these lines we simulated, for each value of γ and J0, 100
realizations of the network. For each realization, we computed the population average of the
temporal variance the synaptic inputs, ρ:

r ¼ 1

N

XN
i¼1

1

Ntot

XNtot�1

k¼0

hiðkDtÞ2 �
1

Ntot

XNtot�1

k¼0

hiðkDtÞ
 !2" #

where Ntot is the total number of time steps of the simulations after discarding a transient with
a duration of 256τsyn. The fixed point was considered to be unstable if ρ> 10−9. The fraction of
unstable networks, Fu, was fitted with a logistic function: Fu(J0) = 100[1+exp(−(J0 − Jm)/ΔJ)]

−1.
The thick red line and red dots plot the values of Jm vs. γ, and the dashed lines are the values of
J0 for which Fu = 95 and Fu = 5.
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