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Abstract
In this research, we explored various state-of-the-art biomedical-specific pre-trained Bidirectional Encoder Representations from Transformers 
(BERT) models for the National Library of Medicine - Chemistry (NLM CHEM) and LitCovid tracks in the BioCreative VII Challenge, and propose a 
BERT-based ensemble learning approach to integrate the advantages of various models to improve the system’s performance. The experimental 
results of the NLM-CHEM track demonstrate that our method can achieve remarkable performance, with F1-scores of 85% and 91.8% in strict 
and approximate evaluations, respectively. Moreover, the proposed Medical Subject Headings identifier (MeSH ID) normalization algorithm is 
effective in entity normalization, which achieved a F1-score of about 80% in both strict and approximate evaluations. For the LitCovid track, the 
proposed method is also effective in detecting topics in the Coronavirus disease 2019 (COVID-19) literature, which outperformed the compared 
methods and achieve state-of-the-art performance in the LitCovid corpus.
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Introduction
Artificial intelligence (AI), one of the fastest-growing tech-
nologies in research, has garnered substantial investment in 
recent years. According to the ‘Artificial Intelligence Index 
Report 2021’ (1), medical fields have received more than USD 
13.8 billion in private AI investment, which is 4.5 times higher 
than in 2019. In particular, COVID-19 has had an impact 
on AI development, such as the adoption of machine learn-
ing techniques to accelerate COVID-related drug discovery. 
Furthermore, a vast amount of medical textual data exists in 
the public domain, such as on social media, online forums 
or in published articles, and this data includes patients’ clin-
ical notes and biological publications (2). These text-based 
data are growing rapidly and can offer valuable insights with 
the help of text mining (3). However, most text data exist as 
low-quality and unstructured data. For this reason, Natural 
Language Processing (NLP) is seen as a bridge between human 
language and computers, enabling machines to understand, 

process and analyze human language (4). NLP’s significance 
as a tool aiding comprehension of human-generated data is 
a logical consequence of the context-dependency of data. 
Data becomes more meaningful when its context is better 
understood, which makes text analysis and mining easier (5). 
Therefore, NLP methods aid in the examination of a large 
amount of unstructured and low-quality text and the discov-
ery of relevant insights (6), and NLP methods are frequently 
utilized for this purpose.

Taking the example of biomedical research, the number of 
publications in electronic format that can be accessed online 
is growing rapidly as a result of the swift advancement of 
technology. For instance, PubMed contains more than 33 mil-
lion articles and is growing by more than 1000 articles per 
day (7). With such rapid explosion of new information, it is 
impossible for readers to keep up-to-date with all the relevant 
research. As a result, automatic knowledge mining and dis-
tillation techniques of the biomedical literature have become 
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more prevalent. Biomedical literature mining (BLM), which 
uses NLP and/or text mining techniques, has gained promi-
nence consequentially. In view of the importance of BLM 
and the lack of common standards or shared evaluation cri-
teria to enable comparison among the different approaches, 
the BioCreative (http://www.biocreative.org/) (Critical Assess-
ment of Information Extraction in Biology) organization was 
established. This organization hosts an annual Challenge 
to evaluate text mining and information extraction systems 
that are applied to biological and biochemical domains. The 
Challenge and the accompanying BioCreative Workshops pro-
mote interactions between the text mining and biomedical 
communities and facilitate the development of new applica-
tions as well as improvements to existing text mining sys-
tems to satisfy key research needs. The results have been 
novel applications that can assist in the knowledge discovery 
process.

To efficiently extract knowledge from biomedical litera-
ture, we can perform two fundamental tasks: (i) biomed-
ical named entity recognition (BioNER) and normalization 
and (ii) biomedical literature classification. These tasks are 
explained in detail as follows. In this paper, we present 
a Bidirectional Encoder Representations from Transform-
ers (BERT)-based ensemble learning approach for Track 2 
and Track 5 in the BioCreative VII Challenge. For Track 2 
(NLM-CHEM track: Full-text Chemical Identification and 
Indexing in PubMed articles), we integrate different BERT 
models through ensemble learning for recognizing chemical 
entities. We also tackle the entity linking problem in chemi-
cal normalization using a dynamic programming algorithm. 
Our framework was shown to surpass benchmarks as well 
as the median of the compared methods. Furthermore, for 
Track 5 (LitCovid track: multi-label topic classification for 
COVID-19 literature annotation), our BERT-based ensemble 
learning method is effective in detecting topics in COVID-19 
literature, as shown by the evaluation results.

The remainder of this paper is organized as follows. In 
the next section, we review related works. The Methodology 
section introduces the structure of the proposed framework, 
and its system performance is evaluated in the Experiments 
section. Finally, the conclusions of this research are provided 
in the Concluding remarks.

Related works
The abovementioned BioNER task aims to recognize biomed-
ical entity boundaries and predict their entity kinds such 
as genes, proteins, compounds, drugs, mutations and dis-
eases from biomedical literature. However, there are major 
challenges to accurate identification and classification due to 
characteristics of biomedical nomenclature such as a lack 
of standardized naming conventions, frequent crossover in 
vocabulary, excessive use of abbreviations, synonyms, vari-
ants, complex morphology (from the use of unusual charac-
ters such as Greek letters), digits, punctuation and many more. 
Moreover, the biomedical domain is a rapidly evolving field in 
which new concepts and names are coined on a regular basis. 
As biomedical concepts are investigated in different disciplines 
of medicine with distinct naming conventions, new variations 
are always produced for already existing concepts (8). These 
new names and concepts make it difficult to extract, classify 
and comprehend the various formats of terms and often result 

in the misrecognition of relevant biological entities. Com-
pared with other proper names in generic texts, Biomedical 
Named Entities (BNEs) pose a greater challenge for existing 
computer systems.

In response, recent works have adopted advanced NLP 
technology for BioNER. For instance, Corbett et al. (9) 
presented word-level and character-level Bi-directional Long 
Short-Term Memory (BiLSTM) networks for chemical named 
entity recognition (NER) in the patent literature domain. 
Hong et al. (10) created a deep learning (DL) architec-
ture, DTranNER, a conditional random fields (CRF)-based 
framework incorporating a deep learning-based label-label 
transition model into BioNER, where DL is used to learn 
the label-label transition relations in an input sequence 
while considering the context. The DTranNER possesses two 
distinct DL-based networks: Unary-Network and Pairwise-
Network, in which the former is dedicated to individual 
labeling, while the latter is dedicated to determining the 
acceptability of label transitions. The CRF of the DL frame-
work is then inputted into these networks. Other models that 
combine word-level and character-level representations have 
been utilized in the past. These approaches combine word 
embeddings with LSTMs (or Bi-LSTMs) over a word’s char-
acters, then pass the representation through another sentence-
level Bi-LSTM, and finally predict the final tags using either a 
softmax or CRF layer.

For biomedical literature classification models, there are 
two typical categories: bio-entity relation extraction and rele-
vant topic recognition. In the previous decade, the bio-entity 
relation extraction in the field of Biomedical Natural Lan-
guage Processing (BioNLP) gained prominence due to the use-
fulness of identifying key inter-component relationships when 
summarizing essential knowledge. For instance, protein–
protein interaction (PPI) is an important topic in molecular 
biology because of the growing demand for automatic molec-
ular pathway and interaction discovery from literature. By 
identifying their participation in the PPI network or compar-
ing them to proteins with similar functionality, it is possible 
to anticipate the function of uncharacterized proteins. Cre-
ating networks of molecular interactions is useful for finding 
functional modules and discovering new gene-disease corre-
lations. Chang et al. (11) proposed a method that integrates 
linguistic patterns into a parse tree structure for the support 
vector machine (SVM) convolution tree kernel to enhance the 
performance of PPI identification. Another crucial arena in 
healthcare and other biomedical research is the extraction of 
chemical–disease relations (CDR) (12).

To encourage exploration, a pioneering challenge of auto-
matically distilling CDRs from the scientific literature was 
put forward by the BioCreative V organizers (13, 14). This 
challenge involved identifying chemical-induced disease (CID) 
linkages from PubMed articles. Prominent methods such as 
the LSTM network model in conjunction with an SVM model 
were proposed by Zhou et al. (15). More specifically, LSTM 
was employed to represent long-range relations in semantics, 
and the syntactic information was modeled by SVM. A Con-
volutional Neural Network (CNN) was also proposed by Gu 
et al. (16) to tackle the CID problem by building a more 
robust connection representation based on both sequential 
word order and non-linear dependency pathways, which may 
naturally reflect the relationships between chemical and illness 
categories.
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The second task of biomedical literature classification is 
to recognize the relevant topics behind the biomedical text, 
which can reduce the painstaking challenge of manually curat-
ing a huge amount of biomedical literature. This is especially 
important during the current COVID-19 pandemic, as a large 
number of clinical, epidemiological and laboratory researches 
have been conducted to provide policymakers with crucial 
insights into managing current and future medical and public 
health issues. This explosive growth of COVID-19 research 
work has resulted in an increase of around 10 000 research 
articles per month, with investigation of the disease, its causes 
and treatments, etc., comprising more than 187 206 articles in 
PubMed (17). This kind of information overload is a burden 
among scholars/physicians and can easily hamper efforts in 
acquiring the latest updates.

A solution to this problem is automated topic prediction, 
an emerging field in which NLP is used to handle COVID-19-
related literature (18). Wahbeh et al. (19), for example, used 
topic modeling skills to extract important unpublished clinical 
knowledge from physician social media posts. They uncov-
ered eight subjects, with actions and recommendations being 
the most prevalent, followed by fighting misinformation. Li 
et al. (20) used text categorization as well as topic models to 
quantify temporal variations of stress levels in tweets by users 
in the USA and identify the sources of stress. A substantial link 
between stress symptoms and an increase in COVID-19 cases 
in major US cities was discovered. Moreover, the stress was 
found to originate and shift from concerns of being infected 
and other clinical issues to financial worries. Moreover, in 
2021, LitCovid (21), an open COVID-19 literature database 
was developed. More than 100 000 articles have been updated 
to the database and have reached hundreds of institutions in 
academia, government and health organizations worldwide 
with user access of millions. Therefore, the daily maintenance 
of LitCovid can be burdensome, which includes the labeling of 

each article to one or more of the predetermined eight related 
topics, such as Treatment and Diagnosis. This poses a major 
challenge in the updating process.

Methodology
In this section, we introduce the proposed method for Track 
2 (NLM-CHEM) and Track 5 (LitCovid) in the BioCreative 
VII Challenge. The NLM-CHEM track aims to predict all 
mentioned chemicals in the full-text article and normalize 
them to a canonical form. We model it as a sequence label-
ing problem and define it like this: given a sentence S, which 
is composed of a sequence of words 𝑊 = {𝑤1,𝑤2,…,𝑤𝑘}, for 
each wr in W, there exists lr in 𝐿 = {𝑙1, 𝑙2,…, 𝑙𝑘} such that each 
item in W corresponds to its label in L. The purpose of our 
model is to predict the label of each word in the sequence, and 
to further identify the entity.

As for the LitCovid track, it involves tackling auto-
mated topic annotation for COVID-19 literature, which is 
a multi-label classification problem and can be formulated 
as follows. Let 𝐷 = {𝑑1,𝑑2,…,𝑑𝑛} be a set of documents,
𝑇 = {𝑡1, 𝑡2,…,𝑡𝑚} be a set of aspects, where for each topic, 
there can be one of two possible statuses, 𝑆 = {𝑠1,𝑠2} where 
𝑠1is relevant and 𝑠2 irrelevant. Thus, for each document 𝑑𝑙, 
and each topic 𝑡𝑗, our target is to determine the most suit-
able state 𝑠𝑖. Note that there can be more than one topic for 
a document.

For both tracks, we propose an ensembled BERT-based 
approach, as illustrated in Figure 1, that can predict topics 
and identify bio-entities in the biomedical literature. We first 
conducted linguistic preprocessing for the input corpus. After 
that, we adopted multiple pre-trained BERT models to pre-
dict topic labels and to identify bio-entities for Track 2 and 
Track 5, respectively. We further integrate multiple outcomes 

Figure 1. Illustration of the ensemble model in this work for the BioCreative VII challenges.



through an ensemble learning approach for the final output. 
The following paragraphs describe the design of each layer.

BERT model for the NLM-CHEM and LitCovid tracks
Input layer—preprocessing and text representation
Preprocessing is crucial in the efficient building of machine 
learning models. This stage consists of converting all words 
to lower case characters and removing stop words as well as 
punctuations. The WordPiece (22) toolkit to represent words 
by a sequence of smaller tokens is used, and positional embed-
ding tokens (23) were also included. Next, the inputted text 
sequence is converted to the corresponding sequence format 
for both tracks respectively.

The NLM-CHEM track facilitates the development of 
algorithms that can accurately predict chemical entities in 
biomedical literature and determine which of these chemi-
cal entities should be cataloged, and therefore, the track can 
be considered a NER task. In this track, we need to predict 
all chemical entities mentioned in the NLM-Chem corpus, in 
addition to 50 full-text articles that were published in Spring 
2021. In light of this, we converted the input text sequence 
to a labeling sequence. We adopted the BIOE format as the 
tagging scheme, that is, the word labeled ‘B’ (Begin) and ‘I’ 
(Inside) means that it is the first and middle or last word of 
a chemical entity, respectively; the word labeled ‘O’ (Outside) 
indicates that it does not belong to any chemical entity.

On the other hand, for the LitCovid track, each article can 
be assigned one or more labels from a set of seven topics 
(mechanism, transmission, diagnosis, treatment, prevention, 
case report or epidemic forecasting). Enhancing the accuracy 
of automated topic prediction in COVID-19-related material 
is beneficial to researchers worldwide in overcoming informa-
tion overload. As article titles and abstracts are primarily used 
to annotate topics, we formulate the topic classification task 
as a sentence pair classification problem and concatenated the 
contents of the title and abstract from an article as input text. 
Finally, the special token ‘[CLS]’ is inserted at the beginning 
of the sequence, so as to follow the common practice of using 
pre-trained BERT models for classification tasks.

Multi-head attention layer
The multi-head attention layer as proposed by Vaswani et al.
(23), is used in this model. Essentially, the attention layers 
learn to map each and every one of the input vectors to a 
weighted sum of all the vectors in the input. Let matrices 
𝑄,𝐾,𝑉 ∈ 𝑅𝑑𝑎  denote the parameters of query, key and value, 
respectively. The attention score of an input can be obtained 
through Eq. 1. Another common improvement of employ-
ing multiple heads in the attention layer was utilized in this 
model too. Multi-head attention works by combining infor-
mation from a variety of representation subspaces (23). In 
other words, it is using a separate focus for each attention 
head that considers the whole input sentence. The pre-trained 
BERT has the following hyperparameters: 12 Transformer 
layers with hidden dimensions H = 768 and 12 heads. 

Output layer—sequence labeling and multi-label 
classification
In addition to the pre-trained layers, the last layer of our 
model consists of a fully connected network with output 

dimensions of 3 and 7 for NLM-CHEM and LitCovid, respec-
tively. For the output of the NLM-CHEM track, in order to 
compute the spans in the final evaluation, we take the out-
put of models and rematch them with the original text of the 
‘context’ sentence after the output generation has taken place. 
First, the hidden vectors of the BERT final layer are fed to the 
output layer with a dropout ratio of 0.3. Then, the Softmax 
function is applied to the output to obtain a probability 
distribution for the BIO format labels. The NLM-Chem data 
has many sub-token entities that are sub-strings of a token 
rather than the whole string. For example, Gly104Cys has two 
sub-token entities ‘Gly’ and ‘Cys’. In the objective evaluation, 
models are supposed to predict the sub-token entities, and not 
the whole tokens. The majority of sub-token entities occur 
within mutation names. Approximately 90% of sub-token 
entities can be treated with simple regular expressions. Con-
sequently, we perform post-processing on sub-token entities, 
which enhances the performance considerably in the official 
assessment.

For the LitCovid track, since we considered the LitCovid 
track to be a multi-label classification problem, we formu-
lated a 7-dim 1D vector, which means that there are seven 
topics and each topic label is a binary classification of rele-
vant or irrelevant. We used the BCEWithLogitsLoss (https://
pytorch.org/docs/stable/generated/torch.nn.BCEWithLogits
Loss.html) as the loss function to alleviate the problem of 
multi-label. This loss function combines a Sigmoid layer and 
the binary cross-entropy loss (BCELoss) in one single layer. 
As a result, it is more stable numerically than a plain Sig-
moid layer followed by a BCELoss. By combining the oper-
ations into one layer, one takes advantage of the log-sum-exp 
trick (24) for numerical stability. Applying weighted (In this 
research, we utilized a widely used heuristic approach which 
has been included in the scikit-learn package for setting class 
weight. Please see Appendix A for more detail) BCEWith-
LogitsLoss can alleviate the problem of data imbalance, and 
therefore, it has already been popularized in recent research 
(25–27). More specifically, we employed this loss function to 
calculate the probability for each topic, and we took the aver-
age of losses from all topics as the final loss during model 
training. The outputs are the topic labels with a class (relevant 
or irrelevant) and seven possible output states are depicted.

Applying an ensemble learning mechanism to 
boost model performance
Ensemble learning is accomplished by thresholding the aver-
age zero-one decisions of each model per considered label 
(9). This technique mixes many individual models to improve 
generalization performance, and the deep learning models 
with multilayer processing architecture currently outperform 
shallow or traditional classification models. This inspired us 
to combine the benefits of both deep learning and ensemble 
learning and this resulted in a model with improved general-
ization performance (10). We employed an ensemble learning 
approach to efficiently solve both tracks. We therefore built 
a general ensemble learning framework that fuses multiple 
classifiers created from different pre-trained language models. 
Since every feature representation is biased and volatile, any 
single model would be considered a poor classifier in ensemble 
learning theory (11, 12, 14). Therefore, we trained sev-
eral different weak classifiers as a group and then combined 
them for better results. We selected many state-of-the-art pre-
trained models as the initialization for the classifier due to 

https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html
https://pytorch.org/docs/stable/generated/torch.nn.BCEWithLogitsLoss.html


Table 1. Ensemble biomedical-based BERT models for the NLM-CHEM and LitCovid tracks

 Ensembled models for Track

Explanation Pre-trained BERT NLM-CHEM LitCovid

BioBERT: This is the first biomedical-specific BERT model and was proposed by Lee 
et al. (28). They adopted BERT for the initialized weights and it was pre-trained on 
large-scale biomedical corpora, PubMed abstracts and PMC full-text articles. It per-
forms well in a variety of biomedical text mining tasks. For the LitCovid track, we use 
BioBERT v1.2 (https://huggingface.co/dmis-lab/biobert-base-cased-v1.2), which follows 
the training process of BioBERT v1.1 but includes an LM head, which can be useful for 
probing.

biobert-base-cased-
v1.2

✕ ✓

PubMedBERT: Gu et al. (29) pre-trained this model from scratch using PubMed 
abstracts with a high batch size (8192), and it showed substantial gains over con-
tinual pre-training of general-domain BERT. PubMedBERT achieves state-of-the-art 
performance on several biomedical NLP tasks, as shown on the Biomedical Language 
Understanding and Reasoning Benchmark (BLURB) (13). In this research, we adopted 
PubMedBERT (https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-
uncased-abstract) for both NLM-CHEM and LitCovid tracks.

PubMedBERT ✓ ✓

BioM-Transformers: Alrowili and Shanker (17) pre-trained several large biomed-
ical language models using the original implementation of BERT (30), ALBERT 
(31) and ELECTRA (18). For both NLM-CHEM and LitCovid tracks, we adopted 
two kinds of BioM-ELECTRA. One is BioM-ELECTRA-Large-Discriminator 
(https://huggingface.co/sultan/BioM-ELECTRA-Large-Discriminator), which was 
pre-trained on PubMed abstracts only with a biomedical domain vocabulary of 
434 K steps and a batch size of 4096. The other is BioM-ELECTRA-Large-SQuAD2 
(https://huggingface.co/sultan/BioM-ELECTRA-Large-SQuAD2), which fine-tuned 
BioM-ELECTRA-Large on the SQuAD2.0 dataset.

ELECTRA-Large-
Discriminator

ELECTRA-Large-
SQuAD2

✓
✓

✓
✓

Bioformer: Chen et al. (32) pre-trained Bioformer on all PubMed abstracts (as of Jan 
2021) and 1 million randomly-sampled PubMed Central full-text articles. This model 
achieved the best performance for the LitCovid track in the BioCreative VII Challenge. 
In this paper, we adopted bioformer-cased-v1.0 (https://huggingface.co/bioform-
ers/bioformer-cased-v1.0) for both NLM-CHEM and LitCovid tracks. In addition, 
we used bioformer-cased-v1.0-bc2gm (https://huggingface.co/bioformers/bioformer-
cased-v1.0-bc2gm), which was fine-tuned on the BC2GM (33) dataset and is suitable 
for recognizing entities of genes and proteins.

bioformer-cased-
v1.0

bioformer-cased-
v1.0-bc2gm

✓
✓

✓
✕

consideration of their superior performance in the biomedi-
cal domain. By aggregating weak classifiers, the system can 
effectively minimize the bias and variance of such weak learn-
ers, which results in stronger learners with a higher accuracy 
and more resilient performance.

For the purpose of selecting the most suitable pre-trained 
model to build our ensemble, we performed 10-fold cross-
validation experiments using a variety of BERT models. In 
the end, we retained BioBERT, PubMedBERT, Sultan and 
Bioformer for the ensemble. We take the mean of predicted 
probabilities of each individual classifier and use argmax to 
obtain the class label. To balance out the individual weak-
nesses of the five pre-trained BERT models, we also performed 
more experiments which combined Bioformers, BioBERT, 
BioM-D, BioM-S and PubmedBERT ensemble models into a 
single ensemble. We experimented by combining the models 
into pairs, and all five models using the ensemble method to 
combine their predictions. The final output of the ensemble 
was calculated by taking the mean of the predictions from 
a combination of selected models. Detailed descriptions are 
shown in Table 1. 

An edit distance-based entity linking approach for 
chemical name normalization
In this research, we employ the edit distance algorithm to 
address the entity linking problem in chemical normaliza-
tion. At the outset, a collection of MeSH ID and identifi-
cations from the dataset were compiled into a knowledge 

base (dictionary). During prediction, we search for pre-
dicted chemical named entities in the dictionary in order to 
find the correct mapping. In the case of missing entities, 
we calculated the Levenshtein Distance (34) with a 90% 
similarity level to obtain the most similar terms and their 
ID. Finally, if the above process yields no return, we des-
ignate the term with a null value. Practically, we imple-
ment this with thefuzz (https://github.com/seatgeek/thefuzz) 
and python-Levenshtein (https://github.com/ztane/python-
Levenshtein/) python packages. The chemical named entity 
normalization algorithm is presented as follows:

MeSH ID Normalization Algorithm
INPUT: E = {e1„ ec}—a set of all predicted chemical named enti-
ties; K = {k1:v1„ km:vm}—a set of key-value pairs in the MeSH 
ID dictionary
BEGIN
1: FOR EACH PREDICTED ENTITY er:
2: FOR i = 1 TO m
3: IF er == ki
4: RETURN vi AS MeSH ID
5: ELSE
6: calculate dist = Levenshtein Distance(er, ki)
7: IF dist ≥ 90
8: RETURN vi AS MeSH ID
9: ELSE
10: RETURN ‘-’ AS empty value
11: END FOR
12: END FOR EACH PREDICTED ENTITY
END
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Table 2. The data distribution of the NLM-CHEM and LitCovid tracks in the BioCreative VII Challenge

Training Development Test

NLM-CHEM200 Corpus
# of Articles 100 50 54
# of Chemical NE (those with a MeSH ID) 26 567 (26 339) 11 772 (11 660) 22 942 (22 777)

LitCovid Corpus
# of Articles 24 960 6239 2500
# of Prevention 11 102 (44.48%) 2750 (44.08%) 1035 (41.4%)
# of Treatment 8717 (34.2%) 2207 (35.37%) 722 (28.88%)
# of Diagnosis 6193 (24.81%) 1546 (24.78%) 926 (37.04%)
# of Mechanism 4438 (17.78%) 1073 (17.2%) 567 (22.68%)
# of Case report 2063 (8.27%) 482 (7.72%) 128 (5.12%)
# of Transmission 1088 (4.35%) 256 (4.1%) 41 (1.64%)
# of Epidemic forecasting 645 (2.58%) 192 (3.08%) 197 (7.88%)

There are a set of predicted chemical named entities (𝐸) 
to map a set of key-value pairs in the MeSH ID (𝐾) over 
several commits (𝑛), and a total of (𝐸 ⋅ 𝐾) × 𝑛 processes are 
performed. We employed parallel threading to speed up the 
search process. The total search time was reduced to within an 
hour using 20 CPU cores. The current framework was shown 
to achieve remarkable performance, surpassing baseline as 
well as the median of all compared methods.

Experiments
Dataset & setting
The NLM-CHEM track uses the NLM-CHEM corpus (35) 
for the training and development sets. This corpus includes 
150 full-text articles with about 5000 unique chemical named 
entities that are mapped to approximately 2000 MeSH iden-
tifiers. The test set is a collection of 50 recently published 
full-text articles on PubMed, planned to be indexed manu-
ally in the year 2021. More specifically, there are 3740 unique 
chemical strings and 1352 unique MeSH IDs in the test set. 
The average number of Chemical Annotations per article is 
300.4 terms, but there is a minimum of 2 terms and a maxi-
mum of 1318 terms The distribution of the number of unique 
MeSH IDs per article is also similar, with a minimum of 1 and 
an average of 41, but the largest number of unique MeSH IDs 
in an article is 127.

The LitCovid track employs the LitCovid corpus (21) for 
multi-label topic classification of the COVID-19 literature. 
The training and development sets contain more than 30 000 
COVID-19 related articles and the evaluation dataset includes 
2500 manually reviewed articles. The abstract and title of an 
article along with other meta-information, such as DOI, jour-
nal name and keywords, may contain one or more labels. The 
labels include Treatment, Diagnosis, Prevention, Mechanisms, 
Transmission, Epidemiological Prediction and Case Report-
ing. Detailed information of the corpora used in both tracks 
is listed in Table 2. 

The metrics used to evaluate the prediction performance of 
the NLM-CHEM track are precision, recall and F1-score (in 
‘strict’ and ‘approximate’ evaluation settings), as well as the 
micro-average used for comparing the overall performance. 
Specifically, for both NER and normalization tasks, the ‘strict’ 
setting expects an exact match between two spans, i.e. the pre-
dicted span of an entity/MeSH ID and the correctly annotated 
span/ID. On the other hand, the ‘approximate’ metric for the 
NER task considers a span as correct if it overlaps with the 
gold span.

As for the LitCovid track, the two most widely utilized 
metrics for multi-label categorization are label-based and 
instance-based assessment measures (36). Label-based evalu-
ation independently judges each label, with associated mea-
sures calculating each label’s performance before aggregating 
the results for all labels. Instance-based measures, on the other 
hand, treat every instance as a separate entity. Similar to 
the NLM-CHEM track, this track also evaluates the preci-
sion, recall and F1-score of instance-based results. The macro- 
and micro-averages were further adopted for estimating the 
performance of label-based matching.

The proposed model was implemented using PyTorch 
(https://pytorch.org/), a Python deep learning library. We 
adopted the common settings of optimizer and hyper-
parameters for fine-tuning, i.e. 10 epochs of training time 
with the AdamW optimizer (37) using a learning rate of 2e-5. 
However, the weight decay was set to 1e-3 to improve sta-
bility during training. The batch size of 16 and 64 were 
set for the NLM-CHEM and LitCovid tracks, respectively.
The maximum sequence length was 512 tokens, with padding 
or truncating at the end of the sequence. We ran the proposed 
model on two NVIDIA GeForce RTX 3090 GPUs.

Results and discussion
To conduct a comprehensive evaluation, we listed the bench-
marks (BlueBERT (38) for NLM-CHEM; ML-Net (39) for 
LitCovid), median performance of the participating teams 
(MPT), and the top one system (T1S (40) for NLM-
CHEM; Bioformer (41) for LitCovid), from both tracks 
as comparisons. Moreover, we also selected a collection of
BERT variants that were used in our ensemble learn-
ing approach: BioBERT, PubMedBERT, BioM-ELECTRA-
Large-Discriminator (BioM-D), BioM-ELECTRA-Large-
SQuAD2 (BioM-S), bioformer-cased-v1.0 (Bioformer) for 
both tracks; and bioformer-cased-v1.0-bc2gm (Bioformer-B) 
for the LitCovid track, as comparisons.

Table 3 presents the performance of the Bioformer and 
the results of incrementally applying different pre-trained 
BERT models in the NLM-CHEM track. The performance 
can be further improved by integrating different BERT mod-
els incrementally under the ensemble learning framework. 
Consequently, applying them altogether achieves the best per-
formance. In addition, we investigated the impact of different 
data sizes as shown in Table 4. In general, our system perfor-
mance is not significantly affected by data size. The impact 
is relatively large only when there is only 10% of the data, 

https://pytorch.org/


Table 3. Incremental contribution of different BERT models for ensemble learning in the NLM-CHEM track

 Chemical mention recognition  Chemical normalization to MeSH IDs

Strict Approximate Strict Approximate

Systems  Precision/Recall/F1-score

Bioformer 0.8156/0.8576/0.8361 0.8846/0.9236/0.9037 0.7570/0.8294/0.7915 0.7130/0.8596/0.7756
+Bioformer-B 0.8140/0.8558/0.8344 0.8847/0.9249/0.9044 0.7652/0.8306/0.7965 0.7162/0.8635/0.7796
+BioM-D 0.8299/0.8419/0.8469 0.9216/0.9052/0.9133 0.7707/0.8312/0.7988 0.7271/0.8616/0.7856
+BioM-S 0.8294/0.8627/0.8457 0.8969/0.9276/0.9120 0.7697/0.8303/0.7988 0.7247/0.8588/0.7826
+PubMedBERT 0.8535/0.8622/0.8578 0.9201/0.9237/0.9219 0.7835/0.8303/0.8062 0.7448/0.8570/0.7933

Table 4. The impact of different data sizes in the NLM-CHEM track

 Chemical mention recognition  Chemical normalization to MeSH IDs

Strict Approximate Strict Approximate

Data size  Precision/Recall/F1-score

10% 0.7029/0.7247/0.7136 0.8296/0.8239/0.8268 0.6726/0.7414/0.7053 0.6425/0.7957/0.7061
20% 0.7679/0.8355/0.8003 0.8498/0.9138/0.8806 0.7276/0.8045/0.7641 0.6782/0.8438/0.7487
50% 0.8018/0.8680/0.8336 0.8776/0.9420/0.9087 0.7494/0.8257/0.7857 0.7060/0.8583/0.7704
100% 0.8535/0.8622/0.8578 0.9201/0.9237/0.9219 0.7835/0.8303/0.8062 0.7448/0.8570/0.7933

Table 5. The performance results of the methods in the NLM-CHEM track

 Chemical mention recognition  Chemical normalization to MeSH IDs

Strict Approximate Strict Approximate

Systems  Precision/Recall/F1-score

BlueBERT 0.8440/0.7877/0.8149 0.9156/0.8492/0.8811 0.8151/0.7644/0.7899 0.7917/0.7889/0.7857
MPT 0.8476/0.8136/0.8373 0.9220/0.8682/0.8951 0.7120/0.7760/0.7749 0.6782/0.8402/0.7552
BioBERT 0.8010/0.7830/0.7919 0.8773/0.8528/0.8649 0.7582/0.8205/0.7881 0.7096/0.8497/0.7690
PubMedBERT 0.8488/0.8542/0.8515 0.9184/0.9171/0.9177 0.7788/0.8272/0.8023 0.7354/0.8586/0.7889
BioM-S 0.8583/0.8457/0.8520 0.9246/0.9055/0.9149 0.7816/0.8290/0.8046 0.7374/0.8613/0.7898
BioM-D 0.8520/0.8419/0.8469 0.9216/0.9052/0.9133 0.7840/0.8275/0.8052 0.7432/0.8566/0.7923
Bioformer 0.8156/0.8576/0.8361 0.8846/0.9236/0.9037 0.7570/0.8294/0.7915 0.7130/0.8596/0.7756
Bioformer-B 0.8140/0.8558/0.8344 0.8847/0.9249/0.9044 0.7652/0.8306/0.7965 0.7166/0.8626/0.7793
T1S 0.8759/0.8587/0.8672 0.9373/0.9161/0.9266 0.8621/0.7702/0.8136 0.8302/0.7867/0.8030
Our method 0.8535/0.8622/0.8578 0.9201/0.9237/0.9219 0.7835/0.8303/0.8062 0.7448/0.8570/0.7933

in which the performance is greatly reduced with more than 
10% reduction in the F1-scores. The results showed that the 
proposed method is robust and efficient in both tracks. 

Table 5 presents the performance comparisons in the 
NLM-CHEM track. The overall outcome of BioBERT is 
F1-scores of about 80% and 86% in strict and approximate 
evaluations, respectively, which is generally worse than all of 
the compared methods. This is most likely due to the fact that 
it is the first biomedical-specific BERT, and the scale of the 
training dataset is smaller than the other compared systems 
In contrast, BlueBERT pre-trained on the BLUE (Biomedi-
cal Language Understanding Evaluation) dataset (38), a much 
more complex corpus consisting of five tasks with ten datasets 
that covered both biomedical and clinical articles of various 
sizes and challenges. Hence, it surpassed BioBERT by about 
2% in terms of F1-score. Furthermore, the PubMedBERT, 
BioM and Bioformer employed more pre-training data, and 
therefore, achieved a more fine-tuned performance with 
F1-scores of 83% and 90% in the strict and approximate eval-
uations, respectively. Their performances significantly outper-
formed the BlueBERT, and they were even superior to the 
median performance of the participating teams in this track. It 
is noteworthy that the ensemble learning-based method, T1S, 

and our proposed method can further enhance the overall 
performances by 3%, therefore achieving F1-scores of 86% 
and 92% in the strict and approximate evaluations, respec-
tively. This indicates that integrating multiple BERT models 
can advance the performance for full-text chemical identifica-
tion significantly. It is interesting to note that T1S achieved 
the best precision, and the reason for this is that the tag-
ging consistency and entity coverage are improved through 
majority voting. The ensemble method of T1S focused on 
the inconsistent predictions in the same article, and it com-
puted the majority for model predictions and changed all the 
minority predictions to the majority label. In this way, the 
ensemble mechanism was the majority voting from all predic-
tions from individual models within an article. Our method 
thus achieved the best recall. We postulate that because our 
ensemble approach integrated multiple outputs from different 
BERT models, it obtained a better generalization of the textual 
structures of chemical entities. This, therefore, facilitated the 
learning of characteristics of chemical identification for each 
structural type, which in turn increased the recall rate. In addi-
tion, our proposed MeSH ID normalization algorithm is effec-
tive in chemical entity normalization, which achieved F1-score 
of about 80% in both strict and approximate evaluations. It is 



Table 6. Incremental contribution of different BERT models for ensemble learning in the LitCovid track

Label-based micro-avg. Label-based macro-avg. Instance-based

Systems  Precision/Recall/F1-score

Bioformer 0.9367/0.9002/0.9181 0.9038/0.8823/0.8875 0.9414/0.9256/0.9334
+BioBERT 0.9170/0.9165/0.9167 0.8815/0.8902/0.8818 0.9355/0.9367/0.9361
+BioM-S 0.9240/0.9140/0.9189 0.9001/0.8759/0.8858 0.9403/0.9357/0.9380
+PubMedBERT 0.9303/0.9076/0.9188 0.9128/0.8681/0.8865 0.9454/0.9321/0.9387
+BioM-D 0.9342/0.9062/0.9200 0.9155/0.8695/0.8881 0.9475/0.9311/0.9392

Table 7. The impact of different data sizes in the LitCovid track

Label-based micro-avg. Label-based macro-avg. Instance-based

Data size  Precision/Recall/F1-score

10% 0.9169/0.8908/0.9036 0.9087/0.8230/0.8537 0.9308/0.9179/0.9243
20% 0.9242/0.9002/0.9120 0.9089/0.8455/0.8690 0.9387/0.9255/0.9321
50% 0.9250/0.9137/0.9193 0.9114/0.8642/0.8826 0.9419/0.9354/0.9386
100% 0.9342/0.9062/0.9200 0.9155/0.8695/0.8881 0.9475/0.9311/0.9392

Table 8. The performance results of the methods in the LitCovid track

Label-based micro-avg. Label-based macro-avg. Instance-based

Systems  Precision/Recall/F1-score

ML-Net 0.8756/0.8142/0.8437 0.8364/0.7309/0.7655 0.8849/0.8514/0.8678
MPT 0.8967/0.8624/0.8778 0.8670/0.8012/0.8191 0.8985/0.8887/0.8931
BioBERT 0.9343/0.9010/0.9174 0.9214/0.8417/0.8725 0.9440/0.9254/0.9346
PubMedBERT 0.9243/0.8946/0.9092 0.8933/0.8681/0.8740 0.9363/0.9214/0.9288
BioM-S 0.9214/0.8985/0.9098 0.9123/0.8590/0.8822 0.9359/0.9240/0.9299
BioM-D 0.9288/0.8838/0.9058 0.8975/0.8461/0.8648 0.9427/0.9140/0.9281
Bioformer 0.9367/0.9002/0.9181 0.9038/0.8823/0.8875 0.9414/0.9256/0.9334
Our method 0.9342/0.9062/0.9200 0.9155/0.8695/0.8881 0.9475/0.9311/0.9392

observed that the strict and approximate scores do not differ 
much. This is possibly due to the short token length, which 
resulted in the efficient use of the edit distance-based method 
to partially match token sequences in search of the correct 
answer in the MeSH hierarchy. 

For the performance evaluation of the LitCovid track, 
Table 6 illustrates the incremental performance of utilizing 
different pre-trained BERT models, and Table 7 presents 
the impact on performance due to different data sizes. The 
results are identical to the NLM-CHEM track, in which 
integrating effective models altogether achieved the best per-
formance, and the proposed BERT-based ensemble approach 
is not only efficient but also robust due to its ability to 
achieve remarkable performance with different sizes of the 
dataset. Table 8 displays the performances of the compared 
systems on the multi-label topic classification in the LitCovid 
track. The baseline method, ML-Net, is a BiLSTM-based neu-
ral network. It had a mediocre performance with F1-scores 
of 76.6% and 86.8 on the label-based macro average and 
instance-based, respectively. The BERT-based models can sig-
nificantly improve the performance by about 10% in F1-score 
in both label-based and instance-based evaluations. Interest-
ingly, BioBERT outperformed almost all of the comparisons 
and is comparable to Bioformer, which differs from the per-
formance obtained in the NLM-CHEM track. The Bioformer
was pre-trained on the three different sources of abstracts 
from PubMed, full-text from one million PMC articles, and 
approximately 20 000 abstracts of COVID-19 publications. It 

thus achieved the best performance among the participating 
teams in the LitCovid track. In this paper, we used the Bio-
former to integrate the advantages of different BERT models 
by means of a majority voting mechanism. For this reason, 
the proposed method outperformed all of the comparisons 
and achieved the state-of-the-art performance on the LitCovid 
corpus.

Table 9 presents the classification errors of each topic type 
with the false positive rate (FPR) and false negative rate (FNR) 
of the proposed method. It is observed that a relatively high 
proportion of FPR occurred in ‘Treatment’. This is because 
more than 40% of data is related to ‘Treatment’, which 
causes the model to be biased towards the majority class. 
The imbalanced data issues also affect small classes, such 
as ‘Epidemic Forecasting’ and ‘Transmission’. Based on our 
further analysis, we observed that all positive instances of ‘Epi-
demic Forecasting’ only co-occur with the negative instances 
of ‘Treatment’. However, the co-occurrence of ‘Transmission’ 
and ‘Treatment’ is mixed, which causes the proposed model 
to be more affected by the imbalanced data problem, and 
therefore, a great portion of FNR occurred in ‘Transmission’.
Our error analysis shows that the performance improve-
ment in multi-label classification remains limited, although 
we have adopted the BCEWithLogitsLoss as the loss func-
tion to alleviate the problem of data imbalance. An effective 
loss function to decrease the impact of imbalanced data issues 
shall be the foremost issue to be addressed in our future
work. 



Table 9. Error distribution of the LitCovid track

LABEL (support) #FP #FN FPR FNR

Treatment (1035) 57 100 6.82% 5.50%
Diagnosis (722) 41 94 2.30% 13.01%
Prevention (926) 45 63 2.85% 6.80%
Machanism (567) 20 61 1.03% 9.82%
Transmission (128) 9 48 0.37% 37.50%
Epidemic forecasting (41) 10 5 0.40% 12.19%
Case report (197) 6 11 0.26% 5.58%

The COVID-19 pandemic has had a wide-ranging influence 
on society, causing increased death and morbidity, as well as 
interruptions in daily life and overall unease. Many of these 
issues are unique in terms of type, scope or cause, and one 
of the most effective methods to solve them is to have better 
information, that is, the right amount of precise data at the 
point where it can be implemented (42). However, the dif-
ficulty in locating credible and practical knowledge unique 
to a given context triggered a second epidemic: information 
overload, which was compounded by the disease’s evolving 
understanding and a wave of article retractions from even 
the most prestigious publications. Meanwhile, members of 
the public were subjected to severe psychological stress as 
a result of shifting public health policies, severe economic 
consequences and health uncertainties, all while dealing with 
their own information overload via news and social media, 
which was exacerbated by inconsistent messaging and deliber-
ate misinformation campaigns. However, many existing NLP 
tasks can directly address information requirements during 
the COVID-19 epidemic, and our proposed method showed 
the promising results just by improving on existing NLP tasks.

In addition, the establishment of COVID Moonshot and 
collaboration between COVID Moonshot and PostEra, a 
startup focusing on medicinal chemistry powered by machine 
learning, to deliver an antiviral drug for COVID, showcased 
the potential for drug discovery to be accelerated with the 
assistance from machine learning. This is beneficial to the 
world as more breakthroughs may be achieved for more dis-
eases in a shorter duration, bringing possible cures to more 
people.

Concluding remarks
BioNLP is gaining importance due to the huge yearly increases 
in the publication of biomedical literature that makes man-
ual curation very challenging. In this research, we intro-
duced a BERT-based ensemble learning approach for the 
NLM-CHEM and LitCovid tracks in the BioCreative VII 
Challenge. We explored various state-of-the-art biomedical-
specific pre-trained BERT models in both tracks. As the 
different BERT models have their own characteristics, they 
also had their distinct advantages which enabled them to 
perform well. Therefore, by combining them through ensem-
ble learning, the system’s performance can be improved. For 
the NLM-CHEM track, our model achieved remarkable per-
formance in chemical identification. We further proposed 
a MeSH ID normalization algorithm for the normalization 
of chemical entities. The experiment results demonstrated 
that the dynamic programming-based method is effective in 
normalizing chemical entities. As for the LitCovid track, 
our BERT-based ensemble approach achieved state-of-the-art 
performance in detecting topics in the COVID-19 literature. 

In addition, this study also explores the performance of var-
ious BERT-based models in the NLM-CHEM and LitCovid 
tasks. We have proved that the integration of BERT models 
using ensemble learning can further improve the system per-
formance. The results are able to contribute to future research 
while addressing both tasks.

In the future, deeper semantic information will be inte-
grated into the BERT architecture by exploring other aspects, 
such as the dependency construction in texts. We will also use 
relation extraction algorithms to recognize chemical relation 
passages and construct the relation network of chemicals.
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Appendix A
In this research, we have utilized a widely used heuristic 
approach for setting class weight. It is inspired by King and 
Zeng [43] and has been included in the scikit-learn package. 
In the training process, we gave more weight to the minor-
ity class in the loss function of the algorithm to enable the 
algorithm to focus on reducing the error of the minority class. 
In practice, we assigned class weights that are inversely pro-
portional to their respective frequencies using the following 
equation. 

where Wi is the weight of class i, N is the total number 
of data instances in the dataset, n_classes is the number of 
unique classes in the label and ni is the number of data 
instances of ci. Finally, the calculated class weights are then 
utilized by BCEWithLogitsLoss for learning of the LiCovid 
prediction. Moreover, we conducted an experiment to exam-
ine the impact when the weighted scheme is not applied, 
which as shown in the following Tables. The results demon-
strated that the recall of BERT-based models can be further 
improved by using the weighted scheme. Consequently, inte-
grating them together allows the model to achieve the best
performance.
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