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Abstract Glycosyltransferases (GTs) are prevalent across the tree of life and regulate nearly all

aspects of cellular functions. The evolutionary basis for their complex and diverse modes of

catalytic functions remain enigmatic. Here, based on deep mining of over half million GT-A fold

sequences, we define a minimal core component shared among functionally diverse enzymes. We

find that variations in the common core and emergence of hypervariable loops extending from the

core contributed to GT-A diversity. We provide a phylogenetic framework relating diverse GT-A

fold families for the first time and show that inverting and retaining mechanisms emerged multiple

times independently during evolution. Using evolutionary information encoded in primary

sequences, we trained a machine learning classifier to predict donor specificity with nearly 90%

accuracy and deployed it for the annotation of understudied GTs. Our studies provide an

evolutionary framework for investigating complex relationships connecting GT-A fold sequence,

structure, function and regulation.

Introduction
Complex carbohydrates make up a large bulk of the biomass of any living cell and play essential

roles in biological processes ranging from cellular interactions, pathogenesis, immunity, quality con-

trol of protein folding and structural stability (Varki and Gagneux, 2019). Biosynthesis of complex

carbohydrates in most organisms is carried out by a large and diverse family of Glycosyltransferases

(GTs) that transfer sugars from activated donors such as nucleotide diphosphate and monophos-

phate sugars or lipid linked sugars to a wide range of acceptors that include saccharides, lipids,

nucleic acids and metabolites. Nearly 1% of protein coding genes in the human genome, and more

than 2% of the Arabidopsis genome, are estimated to be GTs. GTs have undergone extensive varia-

tion in primary sequence and three-dimensional structure to catalyze the formation of glycosidic

bonds between diverse donor and acceptor substrates. However, an incomplete understanding of

the relationships connecting sequence, structure, function and regulation presents a major bottle-

neck in understanding pathogenicity, metabolic and neurodegenerative diseases associated with

abnormal GT functions (Ryan et al., 2019; Day et al., 2012).

Structurally, GTs adopt one of three folds (GT-A, -B or -C) with the GT-A Rossmann like fold

being the most common (Figure 1, Figure 1—source data 1). The GT-A fold is characterized by

alternating b-sheets and a-helices (a/b/a sandwich) found in most nucleotide binding proteins

(Breton et al., 2012). The majority of GT-A fold enzymes are metal dependent and conserve a DxD

motif in the active site that helps coordinate the metal ion and the nucleotide sugar. Currently, 110
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GT families have been catalogued in the Carbohydrates Active Enzymes (CAZy) database (accessed

in February 2020) (Lombard et al., 2014). These families can be broadly classified into two catego-

ries based on their mechanism of action and the anomeric configuration of the glycosidic product

relative to the sugar donor, namely, inverting or retaining (Figure 1). Inverting GTs generally employ

an SN2 single displacement reaction mechanism that results in inversion of anomeric configuration

for the product. In contrast, retaining GTs are believed to employ a dissociative SNi-type mechanism,

where the anomeric configuration of the product is retained (Moremen and Haltiwanger, 2019;

Lairson et al., 2008). While the sequence basis for inverting and retaining mechanisms is not well

understood, most inverting GT-As have a conserved Asp or Glu within a xED motif that serves as the

catalytic base to deprotonate the incoming nucleophile of the acceptor, and initiate nucleophilic

attack with direct displacement of the phosphate leaving group (Lairson et al., 2008; Glos-

ter, 2014). Retaining GT-As bind the sugar donor similarly to the inverting enzymes, but shift the

position of the acceptor nucleophile to attack the anomeric carbon from an obtuse angle using a

phosphate oxygen of the sugar donor as the catalytic base and employ a dissociative mechanism

that retains the anomeric linkage for the resulting glycosidic product (Moremen and Haltiwanger,

2019). Such mechanistic diversity of GTs is further illustrated by recent crystal structures of GTs

bound to acceptor and donor substrates which show that different acceptors are accommodated in

the active site through variable loop regions emanating from the catalytic core (Moremen and Halti-

wanger, 2019; Ramakrishnan and Qasba, 2010a; Kadirvelraj et al., 2018; Gordon et al., 2006).

However, whether these observations hold for the entire super-family is not known because of the

lack of structural information for the vast number of GTs.

The wealth of sequence data available on GTs provides an opportunity to infer underlying mecha-

nisms through deep mining of large sequence datasets. In this regard, the CAZY database serves as

a valuable resource (Lombard et al., 2014) for generating new functional hypotheses by classifying

GT enzymes into individual families based on overall sequence similarity. However, a broader under-

standing of how these enzymes evolved to recognize diverse donor and acceptor substrates requires

a global comparison of diverse GT-A fold enzymes. Such comparisons are currently a challenge due

eLife digest Carbohydrates are one of the major groups of large biological molecules that

regulate nearly all aspects of life. Yet, unlike DNA or proteins, carbohydrates are made without a

template to follow. Instead, these molecules are built from a set of sugar-based building blocks by

the intricate activities of a large and diverse family of enzymes known as glycosyltransferases.

An incomplete understanding of how glycosyltransferases recognize and build diverse

carbohydrates presents a major bottleneck in developing therapeutic strategies for diseases

associated with abnormalities in these enzymes. It also limits efforts to engineer these enzymes for

biotechnology applications and biofuel production.

Taujale et al. have now used evolutionary approaches to map the evolution of a major subset of

glycosyltransferases from species across the tree of life to understand how these enzymes evolved

such precise mechanisms to build diverse carbohydrates. First, a minimal structural unit was defined

based on being shared among a group of over half a million unique glycosyltransferase enzymes

with different activities. Further analysis then showed that the diverse activities of these enzymes

evolved through the accumulation of mutations within this structural unit, as well as in much more

variable regions in the enzyme that extend from the minimal unit.

Taujale et al. then built an extended family tree for this collection of glycosyltransferases and

details of the evolutionary relationships between the enzymes helped them to create a machine

learning framework that could predict which sugar-containing molecules were the raw materials for a

given glycosyltransferase. This framework could make predictions with nearly 90% accuracy based

only on information that can be deciphered from the gene for that enzyme.

These findings will provide scientists with new hypotheses for investigating the complex

relationships connecting the genetic information about glycosyltransferases with their structures and

activities. Further refinement of the machine learning framework may eventually enable the design

of enzymes with properties that are desirable for applications in biotechnology.
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to limited sequence similarity between families and the lack of a phylogenetic framework to detect

evolutionary events associated with GT functional specialization. Previous efforts to investigate GT

evolution have largely focused on individual families or pathways (Taujale and Yin, 2015; Lom-

bard, 2016) and have not explicitly addressed the challenge of mapping the evolution of functional

diversity across families.

Here through deep mining of over half a million GT-A fold-related sequences from diverse organ-

isms, and application of specialized computational tools developed for the study of large gene fami-

lies (Kannan et al., 2007; Kwon et al., 2019), we define a common core shared among diverse

GT-A fold enzymes. Using the common core features, we generate a phylogenetic framework for

relating functionally diverse enzymes and show that inverting and retaining mechanisms emerged

independently multiple times during evolution. We identify convergent modes of substrate recogni-

tion in evolutionarily divergent families and pinpoint sequence and structural features associated

with functional specialization. Finally, based on the evolutionary and structural features gleaned from

a broad analysis of diverse GT-A fold enzymes, we develop a machine learning (ML) framework for

predicting donor specificity with nearly 90% accuracy. We predict donor specificity for uncharacter-

ized GT-A enzymes in diverse model organisms and provide testable hypotheses for investigating

the relationships connecting GT-A fold structure, function and evolution.

membrane
GT-A GT-B GT-C

S
N
2 inverting S

N
i retainig

Figure 1. Glycosyltransferase (GT) folds and mechanisms. Top: The three representative structural folds of GTs. The GT-A fold is characterized by a

single globular domain that contains a a/b/a Rossmann nucleotide binding domain (shown 2rj7;GT6). The GT-B fold enzymes are usually metal

independent and contain two a/b/a domains separated by a flexible linker region with the substrate binding cleft in between (shown 1jg7;GT63). The

GT-C fold enzymes are hydrophobic integral membrane proteins, generally use lipid phosphate linked sugar donors and have multiple transmembrane

helices (shown 6gxc; GT66). Bottom: The mechanism of sugar transfer employed by GTs. Inverting GTs follow a direct displacement SN-2-like

mechanism that results in an inverted anomeric configuration. The mechanism for retaining GTs is still under debate although recently a same side SNi-

type reaction has been proposed where the donor phosphate oxygen acts as a catalytic base and deprotonates the acceptor hydroxyl facilitating a

same side attack, that results in the retention of anomeric configuration. The enzyme and catalytic base B are shown in orange. A generic hexose with

a-linkage to a nucleoside diphosphate is used. Other mechanisms possibly employed by GTs is discussed in detail in M.

The online version of this article includes the following source data for figure 1:

Source data 1. List of CAZy GT families.

Taujale et al. eLife 2020;9:e54532. DOI: https://doi.org/10.7554/eLife.54532 3 of 24

Research article Computational and Systems Biology Evolutionary Biology

https://doi.org/10.7554/eLife.54532


Results

An ancient common core shared among diverse GT-A fold enzymes
To define common features shared among diverse GT-A fold enzymes, we generated a multiple

sequence alignment of over 600,000 GT-A fold related sequences in the non-redundant (NR)

sequence database (Pruitt et al., 2007) using curated multiple-aligned profiles of diverse GTs. The

alignment profiles were curated using available crystal structures (Materials and methods) (Neu-

wald, 2009). The resulting alignment revealed a GT-A common core consisting of 231 aligned posi-

tions. These aligned positions are referred to throughout this analysis and are mapped to

representative structures in Supplementary file 2. The common core is defined by eight b sheets

and six a helices, including three b sheets and a helices from the N-terminal Rossmann fold

(Figure 2A,B).

Quantification of the evolutionary constraints imposed on the common core reveal twenty resi-

dues shared among diverse GT-A fold families. These include the DxD and the xED motif residues
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Figure 2. The GT-A common core and its elements. (A) Plot showing the schematics of the GT-A common core with 231 aligned positions. Conserved

secondary structures (red a-helices, blue b-sheets, green loops) and hypervariable regions (HVs)(orange) are shown. Conservation score for each

aligned position is plotted in the line graph above the schematics. Evolutionarily constrained regions in the core: the hydrophobic positions (yellow)

and the active site residues (DxD: Cyan, xED: Magenta, G-loop: green, C-His: olive) are highlighted above the positions. (B) The conserved secondary

structures and the location of HVs are shown in the N-terminal GT2 domain of the multidomain chondroitin polymerase structure fromE. coli(PDB: 2z87)

that is used as a prototype as it displays closest similarity to the common core consensus. (C) Active site residues of the prototypic GT-A structure.

Metal ion and donor substrate are shown as a brown sphere and sticks, respectively. (D) Architecture of the hydrophobic core (Yellow: core conserved

in all Rossmann fold containing enzymes, Red: core elements present only in the GT-A fold). Residues are labeled based on their aligned positions.

Numbers within parentheses indicate their position in the prototypic (PDB: 2z87) structure.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Structure based sequence alignment showing the hydrophobic residue positions present across a collection of Rossmann fold

like enzymes.

Figure supplement 2. Changes in the extended hydrophobic core residues in selected retaining families.

Figure supplement 3. Comparison of structures for HV regions across GT-A families.
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involved in catalytic functions, and other residues not typically associated with catalysis (Figure 2A)

such as the conserved glycine at aligned position 151 (G335 in 2z87) in the flexible G-loop and a his-

tidine residue (H386 in 2z87) in the C-terminal tail at aligned position 207, henceforth referred to as

the C-His. Residues from the G-loop in some families, such as the blood ABOs (GT6) and glucosyl-3-

phosphoglycerate synthases (GpgS; GT81), contribute to donor binding (Patenaude et al., 2002;

Empadinhas et al., 2011). The C-His, likewise, coordinates with the metal ion and contributes to

catalysis in a subset of GTs, such as polypeptide N-acetylgalactosaminyl transferases (ppGalNAcTs;

GT27) and lipopolysaccharyl-a�1,4-galactosyltransferase C (LgtC; GT8) (Fritz et al., 2004;

Persson et al., 2001). The conservation of these residues across diverse GT-A fold enzymes suggest

that they likely perform similar functional roles in other families as well.

The remaining core conserved residues include fourteen hydrophobic residues that are dispersed

in sequence, but spatially cluster to connect the catalytic site and the Rossmann fold. Eleven out of

the fourteen residues (highlighted in yellow in Figure 2D) are shared by other Rossmann fold pro-

teins (Figure 2—figure supplement 1) suggesting a role for these residues in maintaining the overall

fold. Three hydrophobic residues (V249, F340, F365; shown in red surface in Figure 2D), however,

are unique to GT-A fold enzymes, and structurally bridge the aF helix (containing the xED motif), the

aD helix and the Rossmann fold domain. Although the functional significance of this hydrophobic

coupling is not evident from crystal structures, in some families (GT15 and GT55) the hydrophobic

coupling between aF and the Rossmann fold domain is replaced by charged interactions (Figure 2—

figure supplement 2). The structural and functional significance of these family specific variations

are discussed below.

Our broad evolutionary analysis also reveals three hypervariable regions (HVs) extending from the

common core. These include an extended loop segment connecting b3 strand and aC helix (HV1), a

segment longer than 28 amino acids connecting b6 and b7 strand (HV2) and a C-terminal tail extend-

ing from the b8 strand (HV3) in the common core. These HVs, while conserved within families, dis-

play significant conformational and sequence variability across families (Figure 2A, Figure 2—figure

supplement 3) and encode family-specific motifs that contribute to acceptor specificity in individual

families, as discussed below.

A phylogenetic framework relating diverse GT-A fold families
Having delineated the common core, we next sought to generate a phylogenetic tree relating

diverse GT-A fold families using the core alignment. Because of the inherent challenges in the gener-

ation and visualization of large trees (Sanderson and Driskell, 2003), we used a representative set

of GT-A fold sequences for phylogenetic analysis by first clustering the ~600,000 sequences into

functional categories using a Bayesian Partitioning with Pattern Selection (BPPS) method (Neu-

wald, 2014). The BPPS method partitions sequences in a multiple sequence alignment into hierarchi-

cal sub-groups based on correlated residue patterns characteristic of each sub-group

(Materials and methods). This revealed 99 sub-groups with distinctive patterns. Representative

sequences across diverse phyla from these sub-groups (993 sequences, Figure 3—source data 2)

were then used to generate a phylogenetic tree (Figure 3). Based on the phylogenetic placement of

these sequences, we broadly define fifty-three major sub-groups, thirty-one of which correspond to

CAZy-defined families (Figure 3—source data 1). The remaining sub-groups correspond to sub-fam-

ilies within larger CAZy families. In particular, we sub-classified the largest GT family in the CAZy

database, GT2, into ten phylogenetically distinct sub-families. Likewise, GT8 and GT31 were classi-

fied into seven and five sub-families, respectively. These sub-families are not explicitly captured in

CAZy and are annotated based on overall sequence similarity to functionally characterized members.

For example, ‘GT2-LpsRelated’ corresponds to a sub-family within GT2 most closely related to the

bacterial b�1–4-glucosyltransferases (lgtF) involved in Lipopolysaccharide biosynthesis (Figure 3,

Figure 3—figure supplement 1). Such a hierarchical classification captures the evolutionary relation-

ships between GT-A fold families/sub-families while keeping the nomenclature consistent with CAZy.

GT-A fold families and sub-families can be further grouped into clades based on shared sequence

features and placement in the phylogenetic tree (Figure 3). For example, clade one groups four

GT2 sub-families (GT2-CeS, GT2-CWR, GT2-Chitin-HAS and GT2-Bre3) with GT84 and GT21 with

high confidence, as determined by bootstrap values (see Figure 3 legends). Members of these six

families are all involved in either polysaccharide or glycosphingolipid biosynthesis. Additionally, the

pattern-based classification identified a conserved [QR]XXRW motif in the C-terminal HV3
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Figure 3. Phylogenetic tree highlighting the 53 major GT-A fold subfamilies. Tips in this tree represent GT-A sub-families condensed from the original

tree for illustration. Support values are indicated using different circles. Circles at the tips indicate bootstrap support for the GT-A family clade

represented by that tip. Tips missing the circles represent GT-A families that do not form a single monophyletic clade. Nodes missing circles have a

bootstrap support less than 50% and are unresolved. Icon labels indicate the taxonomic diversity of that sub clade. Colors indicate the mechanism for

the families (blue: Inverting, red: Retaining). This condensed tree was generated by collapsing clades to the deepest node that includes sequences

from the same family. For GT-A families that did not form a monophyletic clade, the clade that included the most sequences from that family was

chosen. Branch lengths may approximate the original distances, but are not drawn to scale. Detailed tree with support values, expanded nodes and

scaled branch lengths are provided in Figure 3—figure supplement 1 and in Newick format in Figure 3—source data 4. The family names are

described in Figure 3—source data 1.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. List of GT-A fold families and subfamilies.

Source data 2. The 993 representative GT-A domain sequences included in the phylogenetic analysis.

Source data 3. The trimmed FASTA alignment of the 231 positions of the GT-A core used for phylogeny.

Source data 4. The phylogenetic tree file for the 993 GT-A fold sequences in Newick format.

Figure supplement 1. Complete phylogenetic tree of 993 representative GT-A sequences.

Figure supplement 2. Clade specific conserved features in the HVs.

Figure supplement 3. Sankey diagram comparing topologies of phylogenetic tree with pdb and hmm based clustering of GT-A families.
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(Figure 3—figure supplement 2) which is unique to members of this clade. The [QR]XXRW motif

residues coordinate with the donor and acceptor in a bacterial cellulose synthase (from GT2-CeS

family) (Morgan et al., 2013) and mutation of these residues in bacterial cyclic b�1,2-glucan synthe-

tase (Cgs, GT84) abrogates activity (Ciocchini et al., 2006), suggesting a critical role of this motif in

functional specialization of clade 1 GT-As.

The GT8 sub-families form sub-clades within the larger clade 9. For example, GT8 sequences

involved in the biosynthesis of pectin components group together in the GT8-GAUT and GT8-GATL

families (Figure 3). The human LARGE1 and LARGE2 GTs are multi-domain enzymes with two tan-

dem GT-A domains. Their N-terminal GT-A domains fall into the GT8-Lrg subfamily that groups

closely with GT8-xylosyltransferase (GT8-XylT) subfamily enzymes and places all the GT8 xylosyltrans-

ferases into a single well supported sub clade. The lipopolysaccharide a-glucosyltransferases (GT8-

LpsGlt) group with the glucosyltransferases of the GT24 family, suggesting a common ancestor asso-

ciated with glucose donor specificity. On the other hand, the GT8-Glycogenin sub family, which also

includes members that transfer a glucose, is placed in a separate sub-clade, possibly indicating an

early divergence for its unique ability to add glucose units to itself (Alonso et al., 1995). Clade nine

members also share common sequence features associated with substrate binding that includes a

lysine residue within the commonly shared KPW motif in HV3 that coordinates with the phosphate

group of the donor (e.g. bacterial LgtC GT8-LpsGlt and other structures of clade nine

members) (Figure 3—figure supplement 2).

We noticed that three out of four MGAT GT-A families responsible for the branching of N-glycans

(GT13 MGAT1, GT16 MGAT2 and GT54 MGAT4) fall in the same clade (clade 6), as expected (Fig-

ure 3). In contrast, the fourth family, GT17 MGAT3, which adds a bisecting GlcNAc to a core b-man-

nose with a b�1,4 linkage, is placed in a separate clade with GT14 and GT82 (clade 7), while a fifth

MGAT member creating b�1,6-GlcNAc linkages (GT18 MGAT5) is a GT-B fold enzyme

(Nagae et al., 2018).

We further note that fifteen out of fifty-three GT-A families are found in both prokaryotes and

eukaryotes. These fifteen families fall on different clades throughout the tree. GT-A families present

only in prokaryotes, like GT81, GT82 and GT88, are also spread out in different clades (Figure 3).

Similarly, other GT-A families that are present within restricted subsets of taxonomic groups (like

GT40 and GT60 present only in prokaryotes and protists) are also scattered throughout the tree.

These observations suggest that the divergence of most GT-A families predates the separation of

prokaryotes and eukaryotes.

Multiple evolutionary lineages for inverting and retaining mechanisms
To obtain insights into the evolution of catalytic mechanism, we annotated the phylogenetic tree

based on known mechanisms of action (inverting or retaining). Inverting GTs are colored in blue in

the phylogenetic tree, while retaining GTs are colored in red (Figure 3). The dispersion of inverting

and retaining families in multiple clades suggests that these catalytic mechanisms emerged indepen-

dently multiple times during GT-A fold evolution. We find that natural perturbations in the catalytic

base residue, an important distinction between the inverting and retaining mechanisms, correlates

well with these multiple emergences across the tree. The residue that acts as a catalytic base for

inverting GTs (aspartate within the xED motif, xED-Asp) is variable across the retaining families con-

sistent with its lack of role in the retaining SNi mechanism (Moremen and Haltiwanger, 2019). In

the inverting families, the xED-Asp is nearly always conserved and appropriately positioned to func-

tion as a catalytic base (Figure 4A), though some exceptions have been noted (Moremen and Halti-

wanger, 2019; Gandini et al., 2017). Out of the five clades grouping inverting and retaining

families, inverting families in three of these clades do not conserve the xED-Asp (GT2-DPs, GT2-

LpsRelated and GT43). The heterogeneous nature of this residue in these families suggests that

change of the catalytic base residue could be a key event in the transition between inverting and

retaining mechanisms. Unlike families that conserve the xED-Asp, these families achieve inversion of

stereochemistry through alternative modes that may relieve the constraints necessary to conserve

the xED-Asp. For example, in GT43, the Asp base is replaced by a glutamate residue, which shifts

the reaction center by one carbon bond (Moremen and Haltiwanger, 2019). Further, the dolichol

phosphate transferases (DPMs and DPGs) in the GT2-DP family, which lack the xED-Asp entirely,

transfer sugars to a negatively charged acceptor substrate (a phosphate group) and thus do not

need a catalytic base to initiate nucleophilic attack (Gandini et al., 2017). Other GT-A inverting
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Figure 4. Variations in the GT-A conserved core. (A) Weblogo depicting the conservation of active site residues in the common core are shown for

each of the GT-A families. Residues are colored based on their physiochemical properties. (B) Variations in the C-His is compensated either using a

water molecule (red sphere) or other charged residues (olive sticks) to conserve its interactions. The metal ion is shown as a purple sphere. The donor

substrate is shown as brown lines. Interactions between the residues, metal ion and the donor are shown using dotted lines.
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families lacking the xED-Asp (GT12, GT14, GT17, GT49 and GT82) are grouped into separate mono-

phyletic clades segregating them from inverting families with the conserved xED-Asp (Figure 3).

Out of these, only GT14 has representative crystal structures where a glutamate serves as the cata-

lytic base (Briggs and Hohenester, 2018). For other inverting families with a non-conserved xED-

Asp, residues from other structural regions may serve as a catalytic base. On the other hand, retain-

ing families like GT64 conserve the xED-Asp, yet do not use it as a catalytic base. Thus, there may

be multiple ways in which inverting and retaining mechanisms diverge, with one path being mutation

of the xED-Asp catalytic base.

One strongly supported clade that includes both inverting and retaining families is clade two that

groups inverting GT-A family members that transfer sugars to phosphate acceptors (GT2-DPs) with

three retaining GT-A families that also have phosphate-linked acceptors (GT55, GT78 and GT81).

This placement is further supported by the observation that these families share structurally equiva-

lent conserved residues in the HV2 region that coordinate the phosphate group of the acceptor. In

the GT2-DP subfamily, R117, R131 and S135 (Figure 5A) in HV2 coordinate with the acceptor phos-

phate groups. The conservation of these residues in GT55 and GT81 suggests that they likely per-

form similar interactions in these latter subclades. Indeed, in the crystal structure of M. tuberculosis

GpgS (GT81), HV2 adopts a conformation similar to GT2-DPs and the shared residues G184, R185

and T187 (equivalent to R117, R131 and S135) form similar interactions with the phosphate group of

the acceptor (Figure 3—figure supplement 2).

Clade five places the inverting GT7 and GT2-CHS with the retaining GT27 and GT60 families (Fig-

ure 3). This supports the evolution of these families from a close common ancestor through gene

R117

R131

S135

D154

R181

Y193

H289

R293

R198

H221

E224

HV1

HV3
HV2

HV1

HV3

HV2

HV1

HV3

HV2

HV2

HV1

HV2 HV3

A.

C.

B.

Figure 5. Family specific conserved features in the HV regions correlate with acceptor recognition and specificity. Conserved residues in A) HV2 of the

DPM1 sequences in the GT2-DP subfamily coordinate the phosphate group of the acceptor. (B) HV1 of GT16 MGAT1 provide acceptor specificity. (C)

HV2 and HV3 of EXTL GT64 family (C-terminal GT domain of the multidomain sequences) coordinate the acceptor. Left: Alignments highlighting the

constrained residues are shown for each family. The family specific conserved residues are shown using black dots above the alignment. Red bars

above these dots indicate the significance of conservation (Higher bar corresponds to more significantly conserved position). Right: Representative pdb

structures are shown for each family (GT2-DP:5mm1, GT16:5vcs, GT64:1on8); Donor substrates are colored brown. Acceptors are colored purple. HVs

are highlighted in orange. The position of the conserved DxD and xED motif for each structure is shown as cyan and magenta circles respectively.
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duplication and divergence, which has been suggested through structural similarities between GT7

and GT27 (Ramakrishnan and Qasba, 2010b). After this initial divergence in mechanism within

clade 5, the subclades group the b�1,4-GalNAc transferase domains of bacterial and protist chon-

droitin polymerases (involved in the elongation of glycosaminoglycan chondroitin)(GT2-CHS) with

the GT7 family. The GT7 family includes the higher organism counterparts of the b�1,4-GalNAc

transferase domains of chondroitin synthases, along with b�1,4-Gal transferases. The close place-

ment of GT60 and GT27 families in this clade is also directly supported by previous literature indicat-

ing that these families share a conserved mode of polypeptide Ser/Thr O-glycosylation (Heise et al.,

2009). Clade five thus consolidates previous independent findings and suggests a shared ancestor,

potentially extending the common ancestry of GT2-CHS and GT7 to include GT27 and GT60, with

an ancestral divergence in mechanism.

Variations in the core and hypervariable regions contribute to unique
modes of substrate specificity
Analysis of the patterns of conservation and variation in the common core indicates that each resi-

due position within the core has been mutated in some context during the course of evolution,

highlighting the tolerance of the GT-A fold to extensive sequence variation. While some of these var-

iations are confined to specific clades or families, such as replacement of DxD motif with DxH motif

in GT27 and GT60, other variations are found independently across distal clades (Figure 4A). For

example, GT14 and prokaryotic members of GT6 that fall on different clades, have independently

lost the DxD motif and no longer require a metal ion for activity (Briggs and Hohenester, 2018;

Pham et al., 2014).

The C-His is also lost independently in multiple clades (Figure 4A). In order to investigate how

the loss of metal binding C-His is compensated, we analyzed the C-His-metal ion interactions across

all available crystal structures. Structural alignment of GT-A families lacking the C-His such as GT13,

GT6 and GT64 families revealed a water molecule coordinating the metal ion in a manner similar to

the C-His sidechain (Figure 4B). In other families, such as GT24, we found that the C-His is substi-

tuted by an aspartate (D1427), which coordinates with the metal ion similar to C-His (Figure 4B, bot-

tom panel). Likewise, the conserved hydrophobic coupling between aF helix and the Rossmann

domain is replaced by charged interactions (R388 and E274, respectively) in some retaining GTs

such as GT15 and GT55 (Figure 2—figure supplement 2). These substitutions point to the ability of

GT-As to accommodate changes, even in conserved positions at the core, through compensatory

mechanisms.

The HV regions show significant variability across GT-A families and extend from the common

core to perform various roles from substrate binding to large conformational changes that position

the donor and acceptor substrates for the enzymatic reaction (Jamaluddin et al., 2007;

Tsutsui et al., 2013; Albesa-Jové et al., 2017). Mutations within these HV regions, for example, at

aligned position 126 in the HV2 region (Y177A,G in 4lw6, GT7), have also been shown to induce a

shift in acceptor specificity (Tsutsui et al., 2013). Despite significant sequence variability, we find

that these HV regions in fact conserve family specific residues that contribute to acceptor specificity.

For example, a distinctive arginine (R117) and aspartate (D154) along with R131 and serine S135

within the HV2 of DPM1 (GT2-DP sub-family) contribute to specificity towards a dolichol phosphate

acceptor by creating a charged binding pocket for the phosphate group (Figure 5A). Likewise, fam-

ily-specific residues (R198, H221 and E224 in 5vcm) within the HV1 of MGAT2 (GT16) form a unique

scaffold for recognizing the terminal GlcNAc of the N-glycan acceptor (Figure 5B). Similarly, the

C-terminal GT64 domain of the multidomain EXTLs contain specific residues in HV2 (R181 and Y193)

and HV3 (H289 and R293) that form a unique binding pocket for the tetrasaccharide linker acceptor

used to synthesize glycosaminoglycans (Figure 5C). Together these examples illustrate the ability of

HVs to evolve family specific motifs to recognize different acceptors.

ML to predict the donor specificity of GT-A sequences
As discussed above, the conserved catalytic residues dictate the mechanism of sugar transfer and

metal binding while the extended HVs use family specific motifs to dictate acceptor specificity. We

also find some clade specific features (such as the conserved Lys in clade 9, and QXXRW in clade 1)

and G-loop residues involved in donor binding, however, the overall framework that dictates donor
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sugar specificity in GTs is largely unknown. Sequence homology alone is insufficient to predict donor

specificity because evolutionarily divergent families can bind to common substrates, and sometimes

even two closely related sequences bind to different donors (Figure 6—figure supplement

1; Patenaude et al., 2002). For a subset of GT-B fold families, ML methods have been successfully

applied towards predicting substrate specificities (Yang et al., 2018). Our global analysis provides a

comparative basis to expand such methods and contrast sequences that bind different donors across

all GT-A families. To test whether evolutionary features gleaned from this global analysis can be

used to better predict donor substrate specificity, we employed a ML framework that learns from

the specificity-determining residues of functionally characterized enzymes to predict specificity of

understudied sequences. In brief, using an alignment of a well curated set of 713 GT-A sequences

(Figure 6—source data 1, Figure 6—figure supplement 2—source data 1, Figure 6—figure sup-

plement 2) with known donor sugars, we derived five amino acid properties (hydrophobicity, polar-

ity, charge, side chain volume and accessible surface area) from each aligned position within the

common core. These properties were then used as features to train multiple ML models. Among the

seven methods used, the gradient-boosted regression tree (GDBT) model achieved the best predic-

tion performance (accuracy ~90%) based on a 10-fold cross validation (CV) using 239 contributing

features (Figure 6A,B, Figure 7—source data 1). This model adds an ensemble boosting to tree

based learners used for predicting GT1 substrate specificities (Yang et al., 2018). To further validate

the model, we tested its performance on a validation set of 64 sequences that were not used to train

the ML model but have known sugar specificities. The GDBT classifier correctly predicted donor sub-

strates for 92% of these sequences, 89% of which were predicted with high confidence (blue rows in

Figure 6—source data 2).

The GDBT model was then used to predict donor sugars for GT-A domains with unknown specif-

icities from five organisms: H. sapiens, C. elegans, D. melanogaster, A. thaliana and S.cerevisiae (Fig-

ure 6—source data 2). Each prediction is associated with a confidence level derived from the

probability for each of the six donor classes (Materials and methods). Nearly 77% of the predictions

have high and moderate confidence levels and present good candidates for further investigation

(Figure 6D). The remaining 23% of the predictions are low confidence. This likely reflects their pro-

miscuity for donor preferences, as seen across many GT-As (Empadinhas et al., 2011; Blixt et al.,

1999), or non-catalytic GT-As like C1GALT1C1 (Cosmc) (Aryal et al., 2012).

Our predictions assign putative donors for 10 uncharacterized human GT-A domains (Figure 6—

source data 2). B3GNT9 is predicted to employ UDP-GlcNAc with high confidence like other GT31

b�3-N-acetylglucosaminyltransferases (B3GNTs) in humans (Togayachi et al., 2010). The two pro-

collagen galactosyltransferases in humans (COLGALT1 and COLGALT2) are multidomain proteins

with two tandem GT-A domains. While their respective C-terminal domains catalyze b-Gal addition

to hydroxylysine side-chains in collagen (Schegg et al., 2009), our predictions assign a putative

GlcNAc and Glc transferase role for their N-terminal GT domains, respectively. More interestingly,

GLT8D1, a GT8 GT with an unknown function implicated in neurodegenerative diseases (Cooper-

Knock et al., 2019), is predicted to have a glucosyltransferase specificity. In other organisms, the

GT2 sequences in A. thaliana (mostly involved in plant cell wall biosynthesis) are predicted to bind

glucose and mannose substrates, the primary components of the plant cell wall (Figure 6—source

data 2). We also identify a novel N-acetylglucosyltransferase function for a GT25 enzyme in C. ele-

gans. These predictions can guide characterization of new GT sequences with unknown functions.

We next sought to identify features that contribute most to substrate (donor) prediction. To do

this, we rank ordered the 239 features based on their contribution to predicting a donor subtype

using a six way classification (six donors) (Materials and methods). This revealed that the most con-

tributing features of the GDBT model also contribute significantly to at least one specific donor type

prediction, thereby enabling new inferences to be drawn between residue properties and donor

sugar specificity (Figure 7A, Figure 7—source data 1). As expected, some of the most contributing

features include residues directly involved in substrate binding and catalytic functions such as the

Asp within the DxD motif, residues in the G-loop, the catalytic base and the C-His (Patenaude et al.,

2002; Empadinhas et al., 2011; Gandini et al., 2017). Additionally, multiple residues from the

alpha-C helix (aligned position 65–72; Y217-N224 in 2z87) immediately following HV1 are also identi-

fied as key specificity determining residues. The C-helix is positioned close to the donor sugar bind-

ing pocket and many residues from this region have been shown to play roles in donor binding

(Gagnon et al., 2018; Schuman et al., 2010; McArthur and Chen, 2016). For example,
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Ramakrishnan et. al. showed that mutation of a single residue at position 67 in bovine b�1,4-galac-

tosyltransferase T1 (R228K in 1o0r, GT7) resulted in relocation of the catalytic base and a change of

donor specificity from Gal to Glc (Figure 7B; Ramakrishnan et al., 2005; Hancock et al., 2006).

Our analysis identifies volume, polarity and accessible surface area of the residue at position 67 as

an important contributor to donor specificity (Figure 7). In addition, our analysis identifies residue

volume at position 149 as an important determinant of Gal specificity. Consistent with this observa-

tion, mutation of Y289 (position 149 in the consensus sequence) by a leucine broadens the specificity

from Gal to GalNAc by creating additional space for accommodating the N-acetyl moiety

(Hancock et al., 2006; Ramakrishnan and Qasba, 2002).

While some of the highly ranked features are directly involved in donor binding, many others

(such as aligned position 77, 88, 155 and 159, green sticks in Figure 7B,D) are distal from the donor

binding site and are not directly involved in donor binding. An example of allostery has been

observed in the human GT6 blood ABO a�1,3-galactosyltransfearse where mutation of a proline at

position 117 (P234S in 5c4c) results in an alternative conformation of a methionine at position 150

(M266 in 5c4c) allowing for the accommodation of GalNAc instead of Gal (Hancock et al., 2006;
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Figure 6. Machine learning (ML) approach for predicting donor class. (A) Brief pipeline of the ML analysis. Training set input into the pipeline are

shown in green boxes. Steps of the ML analysis in purple boxes are associated with different panels of the figure. (B) Percent accuracy based on 10-fold

cross validation (CV) for each of the trained ML models. (C) Confusion matrix from the best model (GDBT using 239 features). (D) Scatter plot showing

the probability scores assigned for each predicted sequence by the predicted donor type. Colors indicate the confidence level of the prediction based

on probability of assignment to a given donor class as well as confidence intervals of the predicted class i.e. difference in probability values between

the 1st prediction class and the 2nd prediction class. (Figure 6—source data 2).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. List of the 713 training dataset sequences used for machine learning.

Source data 2. Results for donor prediction using the GDBT ML model for GT-A sequences from five model organisms.

Figure supplement 1. Sequence homology-based network of all the experimentally characterized sequences form the GT-A fold families.

Figure supplement 2. Distribution of training and prediction datasets used in machine learning.

Figure supplement 2—source data 1. Distribution of sequences across different families.
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Marcus et al., 2003). Further, a Random forest model trained using features from only the donor

binding residues performs with an accuracy of only 75%, indicating the importance of features other

than those directly involved in donor binding. Thus, despite only a few residues being directly

involved in donor interactions, additional contributions to donor specificity come from residues

more distal from the active site. Contributions from these peripheral secondary shell features sur-

rounding the donor binding site (Figure 7B–E) highlight the potential role of higher order (allosteric)

interactions in determining donor substrate specificity.

Discussion
Prior studies on the evolution of GTs have generally focused either on distinct GT subfamilies or bio-

synthetic pathways with additional structural classifications of GTs into one of three distinct protein

fold superfamilies (Moremen and Haltiwanger, 2019; Taujale and Yin, 2015; Lombard, 2016). In

our present work we focused on the analysis of the largest of the GT superfamilies, those that com-

prise a GT-A protein fold characterized by an extended Rossmann domain with associated con-

served helical segments. These enzymes generally employ the Rossmann domain for nucleotide

sugar donor interactions and extended loop regions for acceptor glycan interactions (Moremen and

Haltiwanger, 2019). Using an unbiased profile search strategy, we assembled a total of over

600,000 GT-A fold related sequences from all domains of life for deep evolutionary analysis. To sup-

port this profile-based assembly, we leveraged structural alignments on GT-A fold enzymes in PDB
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Figure 7. Top Contributing features from the GDBT model associated with sugar donor specificity. (A) Heatmap showing the contributions of

representative features. Features are ordered based on their importance for the final GDBT model along the vertical axis. The heatmap colors indicate

how important each feature is for a given sugar donor type with red indicating ranks 1–10 (highly important) (M). (B–E) Contributing features important

for individual donor types are mapped onto representative structures. The amino acids at the feature positions are shown in yellow sticks and labelled.

Feature positions distal from the donor binding site are shown in green sticks. Labels include the amino acid code, aligned residue position and the

amino acid position in the crystal structure within parentheses. Donor substrate with the sugar is shown in lines with surface bounds. Divalent metal ions

are shown as spheres. The aC helix is shown. (B) Gal features mapped to a bovine b�1,4 Gal transferase (PDB ID: 1o0r). (C) GalNAc features mapped

to a human UDP-GalNAc: polypeptide alpha-N-acetylgalactosaminyltransferase (PDB ID: 2d7i). (D) GlcNAc features mapped to a rabbit

N-acetylglucosaminyltransferase I (PDB ID: 1foa). (E) Man features mapped to a bacterial Mannosyl-3-Phosphoglycerate Synthase (PDB ID: 2wvl).

The online version of this article includes the following source data for figure 7:

Source data 1. Feature Importance comparison for the full GDBT model with its importance for each sugar donor type.
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and secondary structure predictions when no crystal structures were available. The resulting align-

ment allowed the definition of a common structural core shared among the diverse GT-A fold

enzymes and defined positions where hypervariable loop insertions were elaborated to provide

additional functional diversification (Figure 2). In cases where data was available for enzyme-accep-

tor complexes these latter loop insertions generally contribute to unique, family specific acceptor

interactions. Thus, a structural framework is presented for GT-A fold enzyme evolution. Since the

common core is present across all kingdoms of life, it presumably represents the minimal ancestral

structural unit for GT-A fold catalytic function by defining donor substrate interactions and minimal

elements for acceptor recognition and catalysis. In fact, we find several archaeal and bacterial

sequences that closely resemble this common core consensus sequence (Supplementary file 3).

Based on our studies, we propose a progressive diversification of GT function through evolution of

donor specificity by accumulation of mutations in the common core region and divergence in accep-

tor recognition through expansion of the hypervariable loop regions. Consistent with this view, we

find conserved family-specific motifs within the hypervariable regions that confer unique acceptor

specificities in various families. These expansions likely contributed to the evolution of new GT func-

tions and catalyzed new glycan diversification observed in all domains of life.

A surprising finding from our studies is the dispersion of inverting and retaining catalytic mecha-

nisms among families in the GT-A fold evolutionary tree (Figure 3). Recent models indicate that dis-

tinctions between inverting and retaining catalytic mechanisms arise from differences in the angle of

nucleophilic attack by the acceptor toward the anomeric center of the donor sugar (Moremen and

Haltiwanger, 2019). Inverting mechanisms require an in-line attack and direct displacement by the

nucleophile relative to the departing nucleotide diphosphate of the sugar donor and a conserved

placement of the xED-Asp carboxyl group as catalytic base at the beginning of the aF helix. In con-

trast, retaining enzymes generally alter the angle of nucleophilic attack by the acceptor, use a donor

phosphate oxygen as catalytic base, and employ a dissociative mechanism for sugar transfer

(Moremen and Haltiwanger, 2019). The fundamental differences in these catalytic strategies would

suggest an early divergence of enzymes employing these respective mechanisms. However, the

GT-A fold phylogenetic tree strongly suggests that inverting and retaining mechanisms evolved

independently at multiple points in the evolution of GT-A families (Figure 3). Since the main differ-

ence in these mechanisms is the change in position of the nucleophilic hydroxyl and catalytic base,

substitutions at the catalytic base may have served as a catalyzing event in switching between mech-

anisms. The xED-Asp carboxyl group is highly conserved in the inverting enzymes and is appropri-

ately placed for acceptor deprotonation. Variants of this motif either lack the residue entirely, as

seen in many retaining enzymes, or use compensatory modes to accommodate changes at this posi-

tion, as seen for the inverting enzymes in GT43, GT2-DPs, and GT2-LPSRelated. In fact, in each of

the latter cases the respective inverting GT family is clustered with closely related GT families

employing a retaining catalytic mechanism. Thus, inverting enzyme variants that accommodate

changes to the xED motif group may represent examples of transitional phases in evolution between

inverting and retaining catalytic mechanisms. Other inverting enzymes harboring variants in the xED

motif segregate into separate clades and could represent outlier families that have developed alter-

native ways to compensate for the loss of xED-Asp. This ability to evolve distinct catalytic strategies,

in some cases through presumed convergent evolution, could allow each family to evolve indepen-

dent capabilities for donor and acceptor interactions as well as for anomeric linkage of sugar trans-

fer, while retaining other essential aspects of protein structural integrity through the use of a

conserved and stable Rossmann fold core.

In an effort to define the sequence constraints for the respective catalytic mechanisms we also

employed a ML framework for prediction of the mechanism for unknown sequences and were able

to assign the donor sugar nucleotide for a test set of enzymes with high accuracy. Our model

expands on the approaches used in previous ML efforts focused on the GT1 family of GT-B fold GTs

(Yang et al., 2018). The phylogenetic and comparative framework presented here enables expan-

sion of such models across all GT-A fold families with improved prediction accuracies. As additional

functional data on GTs become available, the proposed ML framework can be extended to predict

acceptor specificity and catalytic mechanisms, as described for the GT1 family. Surprisingly, the con-

tributing features for accurate donor prediction include residues involved in donor binding as well as

positions that are distal to the active site that likely contribute through secondary shell effects or

allosteric interactions. Due to their indirect involvement, such positions are generally difficult to
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pinpoint using structural studies alone emphasizing the need for complementary ML-based

approaches in investigating GT functional specialization.

Numerous additional insights into GT function were also revealed through inspection of the

aligned sequences and the phylogenetic tree. For example, the clustering of mammalian N-glycan

GlcNAc branching enzymes (MGAT1 (GT13), MGAT2 (GT16), and MGAT4 (GT54)) in the same clade

suggests a common origin for these enzymes, while placement of MGAT3 (GT17) in a separate clade

could point to its unique role in adding a bisecting GlcNAc to the N-glycan core thereby regulating

N-glycan extension (Ikeda et al., 2014). In contrast, MGAT5 (GT18) involved in N-glycan b1,6-

GlcNAc branching is a GT-B fold enzyme with a clearly distinct evolutionary origin. While most

clades are well resolved, bootstrap support values for nodes at the base of the tree are low and

need to be interpreted with caution. This low resolution results from high divergence between fami-

lies and possibly other events like horizontal gene transfer and convergent evolution. However, trees

generated using alternative strategies support the overall topology (Figure 3—figure supplement

3) and clades are congruent with clusters obtained using an orthogonal Bayesian classification

scheme, which adds confidence to the phylogeny (Figure 3—source data 1).

For some GT-A fold enzymes variations in the catalytic site can also be accommodated by other

compensatory changes. An example is the use of the C-His motif for coordination of the divalent cat-

ion in most GT-A fold enzymes in contrast with enzyme variants that employ water molecules to

compensate for the loss of this residue (Figure 4B). Similarly, some inverting GTs dispense with the

use of the divalent cation and the DxD motif and substitute interactions with the sugar donor

through use of basic side chains (e.g. GT14). A further extreme is the duplication, divergence and

pseudogenization within the GT31 family. Human C1GALT1C1 (GT31, COSMC) shares a high

sequence similarity to another GT31 member, C1GALT1 (T-synthase), yet COSMC has lost both the

DxD and the xED motifs and has no catalytic activity. Instead, COSMC acts as an important scaffold

and chaperone for the proper assembly and catalytic function of T-synthase (Aryal et al., 2012). The

ability of GT-As to harbor such structural variations that allow them to develop new functions make

them well-suited to evolve rapidly and facilitate the synthesis of a diverse repertoire of glycans

across all living organisms.

Our unbiased, top-down sequence-based analysis suggests new and unanticipated evolutionary

relationships among the GT-A fold enzymes. Prior suggestions of such relationships have been

inferred by the clustering of GT sequences into families in the CAZy database. However, the CAZy

database of GT sequences does not provide access to the broader sequence relationships among

the GT-A fold enzymes or how a general model of a core conserved GT-A fold scaffold can serve as

a progenitor catalytic platform for binding sugar donors and facilitating glycan extension. The

sequence assembly, phylogenetic tree, and placement within the framework of known GT-A fold

structures in the present studies provide key insights into conserved elements of the hydrophobic

core, linkage to the DxD motif for cation and sugar donor interactions, and the conserved aF helix

harboring the xED catalytic base. Additional hypervariable extensions at defined positions from this

conserved core were then progressively recruited to confer unique modes of acceptor interactions

to develop new specificities and evolve new functions. Thus, the core of the protein scaffold can be

maintained to facilitate protein stability while rapid evolution of the hypervariable loops can develop

new glycan synthetic functionalities through presentation of novel acceptors to the catalytic site. Var-

iation in the location of the acceptor hydroxyl nucleophile relative to the donor sugar anomeric cen-

ter presents the opportunity for distinctions in catalytic mechanism and anomeric outcome for sugar

transfer. The result is a rapidly evolving set of GT enzymatic templates as the biosynthetic machinery

for diverse glycan extension on cell surface and secreted glycoproteins and glycolipids. In such con-

texts the resulting glycoconjugates confer potential functional selective advantages at the cell sur-

face, but also act as ligands and pathogen entry points for negative evolutionary pressure. These

positive and negative selective pressures which force organisms to constantly adapt to an ever-

changing environment is known as the Red Queen Hypothesis. These red queen effects on glycan

synthesis have led to the remarkable diversity in GT enzymes and their resulting glycan structural

products. We anticipate that the sequence and structural principles that drive GT-A fold evolution

will also likely extend to GT-B and GT-C fold enzymes and represent a common theme for the elabo-

ration of diverse glycan structures in all domains of life.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Software,
algorithm

CAZy database doi:
10.1093/nar/gkt1178

CAZy- Carbohydrate
Active Enzyme,
RRID:SCR_012909

Software,
algorithm

mapgaps doi:
10.1093/bioinformatics/btp342

Software,
algorithm

omcBPPS doi:
10.1089/cmb.2013.0099

Software,
algorithm

GT-A family
classification
and sequences

This paper doi:
10.5061/dryad.v15dv41sh

Software,
algorithm

MAFFT v7.3 doi:
10.1093/molbev/mst010

MAFFT,
RRID:SCR_011811

Software,
algorithm

Expresso from the
t-coffee suite

doi:
10.1093/nar/gkl092

T-Coffee,
RRID:SCR_011818

Software,
algorithm

IQTree v1.6.1 doi:
10.1093/molbev/msu300

Software,
algorithm

PyMOL v2.0.6 Schrödinger PyMOL,
RRID:SCR_000305

Software,
algorithm

Python v3 with
package scikitlearn

Pedregosa, 2011 scikit-learn,
RRID:SCR_002577

Software,
algorithm

R package
‘randomForest’

Liaw and Wiener, 2002 RandomForest
Package in R,
RRID:SCR_015718

Software,
algorithm

WEKA version 3.8.3 Witten et al., 2016 Weka,
RRID:SCR_001214

Generation of GT-A profiles and alignment
Building the GT-A profiles
Multiple alignments for 34 CAZy GT-A families, as determined based on literature (Breton et al.,

2012; Lombard et al., 2014; Liu and Mushegian, 2003; Breton et al., 2006), were collected from

the Conserved Domain Database (CDD) (Marchler-Bauer et al., 2017) or were manually built using

MAFFT v7.3 (Katoh and Standley, 2013) from sequences curated at the CAZy database

(Supplementary file 1). Multiple separate alignments were generated for large families such as GT2

and GT8 to capture the diversity within these families. These alignments made up the seed profiles

for the GT-A families. These seed profiles were then multiply aligned using the mapgaps scheme

(Neuwald, 2009) guided by a structure based sequence alignments of all available pdb structures

using Expresso (Armougom et al., 2006) and MAFFT to generate the GT-A profiles. Representative

pdb structures described in this study are listed and cited in Supplementary file 2. Alignments for

families with no representative crystal structures were guided using secondary structure predictions

performed using PCI-SS (Green et al., 2009). Finally, the alignment of secondary structures and con-

served motifs were manually examined and corrected, where necessary. Very divergent GT-A fami-

lies, such as GT29 and GT42 sialyltransferases, lack nearly all canonical GT-A motifs and do not align

well with other GT-A families. Thus, they are noted as atypical GT-A fold families and not included in

this analysis.

Sequence alignment and defining the GT-A common core
The GT-A profiles were then used for a sequence similarity search using mapgaps to identify and

align ~600,000 GT-A domain sequences from the NCBI non redundant database. This alignment was

filtered for fragmentary sequences and false hits. This filtered alignment was then used to define the

boundaries of the GT-A common core that extends from the first beta sheet of the Rossmann fold to

a C-terminal helix with family specific motifs. This conserved alignment spanned 231 aligned
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positions. Sequences with multiple GT-A domains (like the GT8 and GT49 LARGE domains) or other

accessory domains (like the GT27 and lectin domains) were separated into individual catalytic GT-A

domains and treated separately throughout the analyses.

Structural alignment of Rossmann fold proteins
A select representative set of structures were collected from all Rossmann-fold containing protein

domains using the SCOP database (Andreeva et al., 2014). mTM-align (Dong et al., 2018) was

used to align these structures with a subset of GT-A structures (Figure 2—figure supplement 1).

Bayesian statistical analyses
A representative subset of 24,650 GT-A sequences were generated from the ~600,000 putative

GT-A sequences by using a family-wise sequence similarity filtering (only keep <70% similar sequen-

ces;<50% for GT2 and GT8 families). This sequence set was then used to apply the Optimal multi-

ple-category Bayesian Partitioning with Pattern Selection (omcBPPS) scheme (Neuwald, 2014).

omcBPPS identifies patterns of column-wise amino acid conservation and variation in the multiple

sequence alignment. The resulting family specific positions were then used as statistical measures to

classify the GT-As into 99 unique sets that correspond to the 53 families described in this study (Fig-

ure 3—source data 1). omcBPPS also identified aligned positions that are conserved across all GT-A

fold families. This revealed the 20 conserved positions within the core component, that were also

verified by calculating conservation scores using the Jensen-Shannon divergence score as described

and implemented by Capra and Singh (2007) (used in Figure 2A).

Phylogenetic analysis
Selection of sequences for phylogenetic analysis
A smaller subset of 993 sequences were used for phylogenetic reconstruction of the GT-A families

(Figure 3—source data 2). This set includes all the identified GT-A sequences from five model

organisms: H. sapiens (human), C. elegans (worm), D. melanogaster (fly), A. thaliana (dicot plant) and

S. cerevisiae (yeast) along with select sequences representing the diverse taxonomic group in each

family. These representative sequences were selected by finding the union of top hits for every taxo-

nomic group present within each of the 99 sets and the seed alignments for the 34 CAZy GT-A fami-

lies. This selection criteria maximized the phylogenetic and taxonomic diversity while keeping the

number of sequences to a minimum.

Details of the phylogenetic inference
The alignment for these 993 sequences was trimmed to remove the insert positions and keep only

the 231 aligned positions described above. This trimmed alignment was used to build a phyloge-

netic consensus tree using IQTree v1.6.1 (Nguyen et al., 2015) with the following options: -nt AUTO

-st AA -m MFP+MERGE -alrt 1000 -bb 1000 -wbt -nm 1000 -bnni. This implements ModelFinder

(Kalyaanamoorthy et al., 2017) to select the best fit model based on Bayesian Information Criterion

(BIC). Clade support for this tree was evaluated using bootstrapping which reports support values

based on the number of times the same clade was observed on 1000 trees built using resampled

alignment. Clades with bootstrap support values over 90% are well supported while values over 75%

are moderately supported. Clades with bootstrap values less than 50% are considered unresolved in

our analysis.

Orthogonal support for the phylogenetic tree
Further support for the phylogenetic tree was collected by comparing its topology to trees gener-

ated using orthogonal methods like Hidden Markov Model (HMM) distances and structural similari-

ties, that have been used in previous studies (Huo et al., 2017; Hashimoto et al., 2010; Figure 3—

figure supplement 3). The HMM-distance based phylogenetic tree was built using pHMM-Tree

(Huo et al., 2017). Briefly, hmm profiles were built for each of the 53 sub-families identified in our

analyses. Pairwise distances between these profiles were calculated and the resulting distance matrix

was used to build a neighbor joining tree. All trees were visualized using the interactive Tree of Life

(iTOL) online tool (Letunic and Bork, 2019). For the structural similarity based clustering, pairwise

root mean square distances (RMSD) were calculated for 50 unique representative GT-A structures
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using the cealign algorithm in PyMol v2.0.6 (Schrödinger, LLC, 2017) to build a distance matrix.

Only the defined GT-A catalytic domain spanning the 231 aligned positions along with insertions

were used for the RMSD calculations. This RMSD matrix was then used for clustering using the

‘ward’ method in python which resulted in a structural distance based hierarchical clustering of the

pdb structures. The hierarchical topology obtained from the HMM distance-based method and the

RMSD distance based clustering were then compared to the tree topology in Figure 3 (Figure 3—

figure supplement 3). Non-overlapping connections show consistently placed families.

Defining the GT-A families and sub-families
The GT-A sequences were first classified into pattern-based groups using omcBPPS. Based on the

placement of representative sequences from these groups in the phylogenetic tree, they were

merged into GT-A families and sub-families. The correspondence between the 53 GT-A families and

subfamilies with the 99 pattern-based groups are provided in Figure 3—source data 1. Sequences

from some families did not form any distinct pattern-based groups due to either a low number of

sequences for a statistically significant grouping (GT78) or a lack of distinguishing patterns within the

aligned positions (GT25, GT88). Representative sequences for these families were collected from the

seed alignments for these families as described above. We also identified the N-terminal GT2

domain of the multidomain chondroitin polymerase structure from E. coli (Pdb Id: 2z87) as the proto-

typic GT-A structure to use as a comparative basis for structural analyses. This sequence was

selected based on the lowest E-value and highest similarity score of a BLAST search of all pdb struc-

tures against the GT-A consensus sequences. Weblogos for the conserved active site residues were

derived for each GT-A subfamily using Weblogo 3.6.0 (Crooks et al., 2004).

ML analysis
Gathering the training and validation dataset
In order to train an ML model for GT-A donor substrate prediction, we first curated a training data-

set by mining the ‘characterized’ tab of the CAZy GT database and the UniProt database

(UniProt Consortium, 2019) to find 713 GT-A domain sequences with known donor sugars. The

donor sugar information for these sequences were extracted from their assigned protein names.

Based on the availability of training sequences, six major donor type classes were defined: Glc,

GlcNAc, Gal, GalNAc, Man, and ‘Others’ with each class having more than 70 sequences in the train-

ing dataset. The ‘Others’ category merged the least represented donor types with less than 50 train-

ing sequences each (Ara, Fuc, GalF, GlcA, ManNAc, Rham, and Xyl). An alignment of the 713

sequences was generated and then used to derive five amino acid properties (charge, polarity,

hydrophobicity, average accessible surface area, and side chain volume) (Kawashima et al., 1999)

for each aligned position. These properties were used as features for ML. We first removed highly

gapped positions (>15% gaps) and implemented correlation-based feature selection (CFS)

(Hall, 1999) with 5-fold CV by using WEKA version 3.8.3 (67) under default settings to select 239

informative features for building multiple multiclass classification models. In addition, we also

curated 64 GT-A sequences with known donor sugars for five model organisms (H. sapiens, C. ele-

gans, D. melanogaster, A. thaliana and S.cerevisiae). These sequences were not used to train the ML

model but set aside to be used as validation dataset to test the performance of the model (Fig-

ure 6—source data 2).

ML model training
We first trained random forest models by using an R package ‘randomForest’ (Liaw and Wiener,

2002) with limited number of trees (ntree = 300) and limited maximum number of terminal nodes

(maxnodes = 100) to avoid unrestricted tree expansion and potential overfitting. Two separate mod-

els were trained where the first one was trained with the larger set of 239 features and the second

model was provided only 25 features coming from the donor binding residues. We used the Gra-

dientBoostingClassifier function of the sklearn package in python (Pedregosa, 2011) to train the

gradient boost regression tree (GDBT) model on the 239 features. This model was trained with the

following parameters: learning_rate = 0.1, n_estimators = 1600, min_samples_split = 25, min_sam-

ples_leaf = 7, max_depth = 4, max_features = 18, subsample = 0.75 and random_state = 10. These

parameters were chosen based on a grid search to fine tune the trade-off between the complexity
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of the model and the metrics on the testing data, thus ensuring meaningful predictions and avoiding

overfitting. The importance of each feature used in the GDBT model was measured based on the rel-

ative rank of the features in the decision nodes of a tree. To compare the performance of these

models, we also trained Support Vector Machine (SVM), multilayer perceptron, Bayesian network,

logistic regression, naive Bayes classifier, and decision tree models by using WEKA with 10-fold CV

under default settings. 10-fold CV evaluates the ML models by iteratively training on 90% of the

data selected at random and testing the prediction on the unseen 10% of the data. This is repeated

10 times and the results on the testing dataset are summarized into an accuracy measure. The GDBT

model trained with 239 features had the highest accuracy and overall performance and thus was

selected as the model of choice for predicting donor sugar substrates for GT-A enzymes.

Evaluating the confidence of predictions
Confidence scores were assigned for each prediction based on the probability for each of the six

donor classes. The class with the highest probability represents the predicted donor sugar. As such,

larger differences in probability between the first and second predicted class result in more reliable

predictions. To interpret this difference in score easily, we derive a three-category confidence level.

If the probability for the first class is more than four times the probability of the second predicted

class, then it is considered a high confidence prediction. If the difference is less than four times but

more than double the probability by random chance (2*1/6 for a six class classification), it is consid-

ered a moderate confidence prediction. If it is neither, then it is a low confidence prediction (Fig-

ure 6—source data 2).

Determining feature contributions for each donor sugar specificity
Feature importance for the GDBT model was first assessed using the relative rank of the features in

the decision tree. Then, six separate GDBT models were trained as binary classifiers (Gal Vs every-

thing else, Glc Vs everything else and so on for the six donor types). For each of these six classifiers,

the features were rank ordered in the same way by assessing their rank in the decision tree nodes.

This provided the contributions of each of the 239 features toward a specific donor specificity which

was then compared to its rank in the full GDBT model (Figure 7—source data 1).

Construction of the sequence similarity network
A sequence similarity network was generated to evaluate the general predictability of a donor sub-

strate based on sequence homology alone. Using an Edge-Weighted Spring Embedded Layout

(Kamada and Kawai, 1989) in Cytoscape (Shannon et al., 2003) with the same sequence dataset as

the ML data, we produced a series of homologous networks constrained by an E-value cut-off of

0.05.

Selection of ancient archaeal and bacterial GT-A domain sequences in
Supplementary file 3
The ancient archaeal and bacterial GT-A domain sequences listed in Supplementary file 3 represent

sequences with the minimal GT-A domains (no long inserts, no additional domains) in prokaryotic

organisms. These sequences could represent the most ancient progenitors of the GT-A fold families.

These were selected based on closest homology to a consensus sequence derived from the GT-A

profile alignments. First, a BLAST (Altschul et al., 1990) search was conducted with the consensus

sequence on the NCBI nr database. The 500 hits with an e-value better than 1e-10 were selected.

These hits were then aligned to the GT-A profiles using mapgaps. Using this alignment, these

sequences were further filtered to include hits that had a) more than 140 aligned positions to

remove fragmentary hits, b) less than 20 insert positions throughout the GT-A domain alignment, c)

no more than 100 amino acids in the N-terminal region and d) no more than 200 amino acids in the

C-terminal region.
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