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RNA processing converts primary transcript RNA into mature RNA. Altered RNA
processing drives tumor initiation and maintenance, and may generate novel
therapeutic opportunities. However, the role of RNA processing factors in gastric
cancer (GC) has not been clearly elucidated. This study presents a comprehensive
analysis exploring the clinical, molecular, immune, and drug response features
underlying the RNA processing factors in GC. This study included 1079 GC cases from
The Cancer Genome Atlas (TCGA, training set), our hospital cohort, and two other
external validation sets (GSE15459, GSE62254). We developed an RNA processing-
related prognostic signature using Cox regression with the least absolute shrinkage and
selection operator (LASSO) penalty. The prognostic value of the signature was evaluated
using a multiple-method approach. The genetic variants, pathway activation, immune
heterogeneity, drug response, and splicing features associated with the risk signature
were explored using bioinformatics methods. Among the tested 819 RNA processing
genes, we identified five distinct RNA processing patterns with specific clinical outcomes
and biological features. A 10-gene RNA processing-related prognostic signature,
involving ZBTB7A, METTL2B, CACTIN, TRUB2, POLDIP3, TSEN54, SUGP1, RBMS1,
TGFB1, and PWP2, was further identified. The signature was a powerful and robust
prognosis factor in both the training and validation datasets. Notably, it could stratify the
survival of patients with GC in specific tumor-node-metastasis (TNM) classification
subgroups. We constructed a composite prognostic nomogram to facilitate clinical
practice by integrating this signature with other clinical variables (TNM stage, age).
Patients with low-risk scores were characterized with good clinical outcomes,
proliferation, and metabolism hallmarks. Conversely, poor clinical outcome, invasion,
and metastasis hallmarks were enriched in the high-risk group. The RNA processing
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signature was also involved in tumor microenvironment reprogramming and regulating
alternative splicing, causing different drug response features between the two risk groups.
The low-risk subgroup was characterized by high genomic instability, high alternative
splicing and might benefit from the immunotherapy. Our findings highlight the prognostic
value of RNA processing factors for patients with GC and provide insights into the specific
clinical and molecular features underlying the RNA processing-related signature, which
may be important for patient management and targeting treatment.
Keywords: RNA processing factors, alternative splicing event, drug response, prognostic model, immune
heterogeneity, gastric cancer
INTRODUCTION

Gastric cancer (GC) is the third leading cause of cancer-related
mortality and the fifth most frequently diagnosed malignancy
worldwide (1), with almost 1,000,000 estimated new cases and
800,000 deaths each year (1, 2). Due to the lack of early
symptoms, most patients with GC are usually diagnosed at an
advanced stage (3). Despite effective treatment, relapse and
metastasis are common in advanced GC, causing a fairly low
5-year survival rate (<20%) (4). To date, the tumor-node-
metastasis (TNM) staging system remains the gold standard
for predicting prognosis and guiding GC treatment decisions (5).
However, the high heterogeneity leads to different outcomes
among patients with the same TNM stage and treatments (6).
Therefore, it is imperative to investigate the in-depth molecular
mechanisms involved in GC occurrence and development to
identify novel prognostic biomarkers and potential
therapeutic targets.

RNA processing, connecting genotype to phenotype, is a
process that converts the primary transcript RNA into mature
RNA (7). RNA processing regulates activities as diverse as tissue-
specific gene expression, apoptosis, and maturation of the immune
response, among many others (8). Altered RNA processing
functionally drives tumor initiation and maintenance, and may
generate novel therapeutic opportunities (9). Given that
dysregulated expression of RNA processing factors can
contribute to abnormalities in a series of RNA processing
phases, such as mRNA transport, editing, and decay (9),
systematic examination of the role of RNA processing factors in
GC is necessary.

RNA processing factors also function in intron removal and
regulate alternative splicing events (ASEs) of individual genes
(10). Aberrant selective RNA processing, especially alternative
splicing, could cause a series of consequences, from changing the
stability to adding or deleting structural domains and modifying
the interactive relationship between proteins (11). Recently, we
demonstrated that aberrant ASEs play an essential role in GC
occurrence and development (12, 13). However, to date, the
relationship between the dysregulated RNA processing factors
and the aberrant ASEs has not been clearly elucidated.

In the present study, we systematically explored the
expression profile of RNA processing factors and their
prognostic values in 1079 patients with GC. We used three
org 2
different GC cohorts, including RNA sequencing (RNA-seq)
data and microarray data, to construct and validate the RNA
processing-related prognostic signature. We constructed a
composite prognostic nomogram to facilitate clinical practice
by integrating this RNA processing-related signature with age
and tumor stage. Then, we analyzed the association between the
signature and clinical outcomes, genetic variants, pathway
activation, immune heterogeneity, and drug response features.
Besides, we profiled the ASEs underlying GC stratified by this
risk signature and identified the corresponding functions.
MATERIALS AND METHODS

Gastric Cancer Dataset Source
We obtained 214 fresh frozen tumor specimens and clinical data
from patients with GC who underwent gastrectomy as primary
treatment at the Harbin Medical University (HMU) Cancer
Hospital to construct the HMU-GC cohort. All samples were
collected after written informed consent had been obtained from
the patients. The study was approved by the HMU Cancer
Hospital Institutional Review Board. RNA isolation, library
construction, and mRNA sequencing were performed by
Novogene (Beijing, China). The data were deposited in the
Gene Expression Omnibus (GEO) repository (PRJNA718168).

We also systematically searched public gene expression data
and complete clinical annotation in GEO and The Cancer
Genome Atlas (TCGA) database. GC cohorts that: 1) had <150
patients; 2) lacked raw CEL files; 3) lacked basic clinical
information (sex, age, TNM stage); or 4) lacked survival
information were removed from further evaluation. Finally,
four eligible GC cohorts, our HMU-GC cohort and three
public datasets (GSE15459, GSE62254, TCGA-STAD), were
included in the study for further analysis.

Data Preprocessing
For microarray data from the GEO database, the raw CEL files
were downloaded. To calculate absolute mRNA expression
levels, we used the RMA (Robust Multi-array Average) method
provided through the affy package to obtain background-
adjusted, quantile-normalized, and probe-level data-
summarized values for all probe sets (14, 15). For high-
throughput sequencing data from the HMU-GC and TCGA-
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STAD datasets, raw read count values were transformed into
transcripts per kilobase million (TPM) values, which are more
similar to those generated from microarrays and are more
comparable between samples (16). Batch effects from non-
biological technical biases were corrected using the ComBat
algorithm in the sva package (17).

The Affymetrix probe ID from the microarray data was
annotated to gene symbols according to the GPL570 platform.
For multiple probes that mapped to one gene, the mean
expression value was considered. The Ensembl ID for mRNAs
from high-throughput sequencing data was transformed to gene
symbols via the biomaRt package (18). The mRNAs with TPM
values of <1 in over 90% of samples were considered
transcriptional noise and filtered out.

Collection of RNA Processing Factors
RNA processing factors, defined as genes that participate in any
process involved in the conversion of ≥1 primary RNA
transcripts into ≥1 mature RNA molecules, were first collected
from the gene ontology (GO) term (GO:0006396) in the AmiGO
database (19). RNA processing factors with sufficiently reliable
expression, shared among the eligible GC cohorts, were retained
for further analyses.

Unsupervised Clustering for RNA
Processing Factors
Unsupervised clustering analysis was performed via hierarchical
consensus clustering to identify the distinct RNA processing
patterns based on the expression of RNA processing factors to
classify patients for further analysis. The optimal number of
clusters and their stability were determined by the consensus
clustering algorithm. The above steps were performed using the
ConsensusClusterPlus package, and 1000 repetitions were
conducted to guarantee the stability of classification (20).

Gene set variation analysis (GSVA) was performed with the
GSVA package (21), using the hallmark gene sets downloaded
from MSigDB (22) to generate enrichment scores for each
pathway per sample. Subsequently, we compared the GSVA
enrichment score to explore the differences in biological
functions and pathways among the distinct clusters. The
overall survival (OS) of patients in the different RNA
processing clusters was compared with Kaplan-Meier survival
analysis with log-rank testing.

Identification of the RNA Processing-
Related Prognostic Signature
Univariate Cox proportional hazards regression analysis was first
performed on the expression matrix of RNA processing factors
to estimate the relationship between RNA processing factors and
prognosis (OS) in the TCGA-STAD cohort. RNA processing
factors with p-value < 0.1 were selected as the potential
prognosis-related RNA processing factors.

As the discovery cohort, the TCGA-STAD cohort was
randomized into two subsets based on 5-fold sampling to
enhance the robustness of this prognostic signature. The
training set included 4-fold GC samples, and the internal
Frontiers in Immunology | www.frontiersin.org 3
testing set included the remaining 1-fold GC samples. The
least absolute shrinkage and selection operator (LASSO)
penalty was performed in the discovery cohort to build an
optimal prognostic signature with the minimum number of
RNA processing factors. Ten-fold cross-validation was
conducted to tune the optimal value of the penalty parameter
l, which yields the minimum partial likelihood deviance. Finally,
a set of RNA processing factors, the RNA processing-related
prognostic signature, and their non-zero coefficients
were identified.

The risk score for the signature was calculated for each sample
based on the following formula:

Risk Score =on
i=1Coefi � Ei :;

where Coefi is the coefficient and Ei is the normalized expression
value of each selected gene by log2 and z-score transformations.
Patients were dichotomized into high-risk and low-risk groups
using the cohort-specific median risk score as the cut-off. The
performance of risk groups determined by the risk score was
assessed based on the restricted mean survival (RMS) time
difference between the high-risk and low-risk groups (23).
Kaplan-Meier curves were generated for survival rates, with
difference detection based on log-rank testing.

Development and Verification of a
Composite RNA Processing–Clinical
Prognostic Nomogram
Based on the multivariate analyses results, we integrated age,
TNM stage, and the RNA processing-related prognostic
signature to generate a composite prognostic model by
applying a Cox proportional hazard regression in the TCGA-
STAD cohort. The corresponding coefficients derived from the
TCGA-STAD cohort were then used in the other two validation
sets (HMU and GEO) for further validation. The prognostic
value of the composite prognostic model was compared with the
TNM staging system in terms of the concordance index (C-
index), revealed by the RMS curve (24). The RMS represents the
life expectancy at 60 months for patients with different risk
scores. Finally, a nomogram was generated for model
visualization and clinical application. The performance of the
nomogram was evaluated by time-dependent receiver operator
characteristic (ROC) analysis, calibration curve, and decision
curve analysis (DCA) (25).

Construction of Regulatory Network
Between RNA Processing Factors
and ASEs
The corresponding alternative RNA splicing data of the TCGA-
STAD cohort were downloaded from the TCGA SpliceSeq
database (26). Splicing events in the dataset were divided into
seven categories: exon skip (ES), retained intron (RI), alternate
promoter (AP), alternate terminator (AT), alternate donor site
(AD), alternate acceptor site (AA), and mutually exclusive exons
(ME). To generate a reliable set of ASEs, we implemented a series
of stringent filters, which included “percentage of samples with
PSI value ≥ 75%” and “average PSI value ≥ 0.05”. Only ASEs
August 2021 | Volume 12 | Article 719628
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meeting the above criteria were included for further analysis.
Each splicing event was quantified by the percent spliced in (PSI)
value (27), representing the ratio of included transcript reads in
the total transcript reads.

To investigate the potential functions of RNA splicing, we
performed enrichment analysis for all differential spliced genes
in GC samples with lower risk (first quartile) and higher risk
(fourth quartile) scores. These differential spliced genes were
mapped to the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database to observe the protein–protein
interaction relationship (28). The protein interaction network
was constructed to explore the potential impact of RNA splicing
on protein-protein interactions in GC.

The potential association of the differential PSI values of ASEs
between GC samples with lower and higher risk scores were
predicted using RNA processing factors with significant
expression levels. We calculated the Pearson’s correlation for each
RNA processing factor-ASE pair. The RNA processing factor-ASE
pair with absolute correlation coefficients > 0.5 and Benjamini-
Hochberg adjusted p-value < 0.05 were considered significant. The
potential regulatory network was visualized with Cytoscape (29).

Immunohistochemical Analysis
Protein expression data were obtained from the Human Protein
Atlas (HPA) database, the largest and most comprehensive
database for evaluating protein distribution in human tissues
(30). The protein expression of the selected RNA processing
factors in normal and GC tissues was determined using the
immunohistochemical staining images.

Bioinformatics Analyses
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses were utilized for gene set
functional annotation. The functional enrichment of risk
score-associated genes was investigated in gene set enrichment
analysis (GSEA) using the clusterProfiler package (31, 32). We
also performed GSVA to determine the functional differences
between the risk groups. The mutation landscape was created
with the maftools package with the initial removal of 100 FLAGS
(frequently mutated genes) (33, 34). The presence of infiltrating
stromal and immune cells in tumors was estimated with
the estimate package (35). The population abundance of tissue-
infiltrating immune and stromal cell populations was assessed
with the MCPcounter package (36).

The gene module associated with the RNA processing-related
prognostic signature was identified using weighted correlation
network analysis (WGCNA) according to the protocol and
recommendations of the WGCNA package (37). A scale-free
topology fitting index (R2) > 0.85 was set as the threshold to
construct the weighted gene co-expression network. A minimum
cluster size of 30 and a merge threshold function of 0.25 were
chosen as the thresholds for identifying co-expressed gene
modules. A biweight midcorrelation coefficient (r) ≥ 0.3 and p-
value < 0.05 were set as the thresholds for determining gene
modules associated with the prognostic signature.

Based on three public drug sensitivity databases, GDSC
(Genomics of Drug Sensitivity in Cancer) (38), CTRP
Frontiers in Immunology | www.frontiersin.org 4
(Cancer Therapeutics Response Portal) (39), and PRISM
(40), the pRRophetic package was applied for predicting
chemotherapeutic response by using ridge regression to
estimate the area under the dose–response curve (AUC) value
for each sample (41, 42). The prediction accuracy was evaluated
by 10-fold cross-validation based on each training set. Lower
AUC values indicated increased sensitivity to treatment. Seven
common chemotherapeutic agents (5-fluorouracil, cisplatin,
oxaliplatin, capecitabine, paclitaxel, docetaxel, irinotecan) were
selected for predicting the chemotherapeutic response (43).
Furthermore, we predicted the relationship between the RNA
processing-related prognostic signature and immunotherapy
response using the Tumor Immune Dysfunction and Exclusion
(TIDE) web tool (http://tide.dfci.harvard.edu/) (44). Patients
with higher TIDE scores have a higher chance of antitumor
immune escape, thereby exhibiting a lower immunotherapy
response rate.

Statistical Analyses
All statistical tests were performed with R statistical software (v4.0.2)
using Mann-Whitney testing for continuous data and Fisher’s exact
testing for categorical data. Correlation between two continuous
variables was measured by Pearson’s correlation coefficient. The
hazard ratio (HR) and 95% confidence intervals (CI) were estimated
by a Cox regression model using the survival package. Survival
analysis was carried out using Kaplan–Meier methods. The
statistical significance of differences was determined using log-
rank testing. The RMS curve and RMS time difference were
estimated with the survRM2 package. The time-dependent AUC
was computed using the timeROC package. The C-index was
compared with the compareC packages. For all statistical analyses,
a two-tailed p-value < 0.05 was considered significant.
RESULTS

Overview of RNA Processing
Factors in GC
A total of 1079 patients diagnosed with GC from four independent
datasets (GSE15459, GSE62254, HMU-GC, TCGA-STAD) were
ultimately included in this study. First, 929 genes, annotated as RNA
processing factors in the GO term (GO:0006396), were acquired
from the AmiGO database (Supplementary Table 1). After low-
expression genes had been filtered out, 819 genes were present in all
datasets (Supplementary Table 2). The entire workflow of this
study, including the filtration of RNA processing factors,
development and validation of a prognostic signature, the
construction of a composite processing-clinical prognostic
nomogram and, the analyses of signature-associated alteration of
the ASEs and RNA expression profiles, are delineated in
Supplementary Figure 1.

Identification of the Five Distinct RNA
Processing Patterns
Patients with qualitatively different RNA processing patterns
were classified using a meta-cohort (GSE15459, GSE62254,
August 2021 | Volume 12 | Article 719628
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HMU-STAD, TCGA-STAD). Five distinct patterns were
eventually identified using unsupervised hierarchical clustering
(Figures 1A, B): 385 cases in cluster 1, 171 cases in cluster 2, 206
cases in cluster 3, 174 cases in cluster 4, and 143 cases in cluster 5.
Prognostic analysis of the five main RNA processing subtypes
showed significant survival differences (log-rank test, p < 0.01;
Figure 1C). Patients in clusters 2 and 3 had better prognosis than
those in clusters 1 and 5 (Figure 1C).

We performed GSVA to explore the biological processes
among these distinct RNA processing patterns. These five RNA
Frontiers in Immunology | www.frontiersin.org 5
processing subtypes showed significant enrichment of specific
biological processes (Figure 1D). Clusters 2 and 3, correlated
with good prognosis, were markedly enriched in the
proliferation-specific pathways, such as the activation of the
G2M checkpoint, E2F targets, and MYC targets pathway.
Cluster 4, characterized by moderate prognosis, represented
enriched pathways associated with metabolism activation,
including the xenobiotic metabolism, bile acid metabolism, and
estrogen response pathways. Clusters 1 and 5, associated with
poor prognosis, were prominently related to stromal activation
A

D

B

C

FIGURE 1 | Identification of the five distinct RNA processing patterns. (A) Heatmap showing consensus clustering analysis for the five defined RNA processing
patterns. (B) Scatter plots showing principal component analysis (PCA) of the five distinct RNA processing patterns. (C) Kaplan–Meier survival analysis of OS for
patients with the five distinct RNA processing patterns. (D) Heatmap showing GSVA scores of the hallmark gene sets for the five defined RNA processing patterns.
August 2021 | Volume 12 | Article 719628
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pathways, involving the epithelial–mesenchymal transition
(EMT), transforming growth factor (TGF)-beta, and
angiogenesis pathways. All these analyses suggest that RNA
processing factors play an important role in GC occurrence
and progression.

Identification of the RNA Processing-
Related Prognostic Signature
Of the 819 RNA processing factors, 105 were associated with OS
(Supplementary Table 3). Among these 105 factors, 51 factors
(HR >1) were considered risk-associated, while the remaining 54
Frontiers in Immunology | www.frontiersin.org 6
factors (HR <1) were considered protection-associated. We
performed KEGG and GO functional enrichment analyses to
study the more specific biological functions of these prognosis-
related RNA processing factors. The results indicated that these
factors were correlated with such key biological functions as
RNA modification, regulation of RNA splicing, RNA transport,
and spliceosome (Figure 2A).

To stratify the clinical outcomes of patients with the RNA
processing factors readily and efficiently, we applied the LASSO
Cox regression algorithm to the 105 factors in the TCGA training
set. A total of 10 factors with non-zero coefficients were identified
A

D E

F G

B C

FIGURE 2 | Identification of the RNA processing-related prognostic signature. (A) Scatter plots showing functional enrichment analyses for the 105 OS-related RNA
processing factors. (B, C) LASSO regression analysis of the 105 OS-related RNA processing factors. (D) The 10 genes included in the signature. Corresponding
coefficients and HRs are depicted by horizontal bars and dots, respectively. (E–G) Kaplan–Meier OS curves with difference detection by log-rank test for patients
from the training and validation datasets.
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(Figures 2B, C). These LASSO-selected features were used to
build the RNA processing-related signature (Figure 2D). The
corresponding risk scores were computed for both the training
and the validation datasets, according to the following formula:

Risk Score  =   − 0:111� ZBTB7A − 0:078�METTL2B − 0:037

� CACTIN − 0:033� TRUB2 − 0:027

� POLDIP3 − 0:018� TSEN54 − 0:003� SUGP1

+ 0:031� RBMS1 + 0:089� TGFB1 + 0:116

� PWP2

We divided patients in all three datasets into high-risk and low-
risk groups using their respective median risk score as the cutoff.
Kaplan-Meier survival analysis determined that patients with low-
risk scores had significantly longer OS than those with high-risk
scores (TCGA training set: p < 0.001, HR = 0.455, 95% CI: 0.324-
0.638; HMU validation set: p = 0.002, HR = 0.487, 95% CI: 0.304-
0.778; GEO validation set: p < 0.001, HR = 0.633, 95% CI: 0.491-
0.817; Figures 2E–G). Significant RMS time differences were also
observed between the low-risk and high-risk groups at different time
points; the RMS time differences increased as the follow-up duration
was extended (Table 1). For example, the RMST differences
between the two groups were 1 (TCGA), 4 (HMU), and 0 (GEO)
months for OS at the first year of follow-up, which reached 11
(TCGA), 9 (HMU), and 7 (GEO) months at the fifth year.

We performed univariate and multivariate Cox regression
analyses in the training and validation datasets to investigate the
prognostic value of the RNA processing-related signature. The
signature was the only prognostic factor in all three datasets
(univariate cox analysis: p < 0.05; Table 2). After adjusting for
other prognostic factors (age and TNM stage), the signature
remained a significant independent prognostic factor in the
HMU and TCGA cohorts (Table 2). Furthermore, we
performed subgroup analyses according to age, sex, and TNM
stage to explore the interaction effect between the signature and
clinical characteristics. Subgroup analyses showed no statistically
significant tests of interaction (Table 3), suggesting the
robustness of this signature for different clinical features.
Frontiers in Immunology | www.frontiersin.org 7
Identification of the Composite
Prognostic Nomogram
In addition to the RNA processing-related signature, clinical
characteristics, including age and TNM stage, might also be
independent prognostic factors, suggesting their complementary
value (Table 2). We integrated the signature with these significant
clinical variables to further improve the prognostic accuracy, using
the coefficients generated from the multivariate Cox regression
model in the discovery cohort (TCGA cohort) and derived a
composite prognostic model. A nomogram was then established
for model visualization and clinical application (Figure 3A). The
composite nomogram achieved significant improvement for
assessing survival relative to the clinical model involving age and
TNM stage (Figure 3B). The composite nomogram also performed
better than the RNA processing-related signature and the clinical
model for predicting GC prognosis (Figure 3C). The calibration
curve detected an optimal prediction between the nomogram
prediction and actual observations (Figure 3D).

Finally, we compared the clinical net benefit of the composite
nomogram with that of the other two models through DCA
curves. The composite nomogram demonstrated a larger net
benefit than the RNA processing-related signature and basic
clinical model within most of the above threshold probabilities
(Figure 3E), indicating that the nomogram had the best clinical
utility for predicting prognosis in patients with GC. All these
findings were verified in the HMU (Figures 3F–I) and GEO
validation datasets (Figures 3J–M), suggesting the reliability and
stability of our composite nomogram.

Function Analysis of Genes Correlated
With the RNA Processing-Related
Prognostic Signature
Given that RNA processing factors are the main factors controlling
the life cycle of RNAs in eukaryotes, we subsequently evaluated the
RNA expression profile influenced by the RNA processing-related
prognostic signature. In this case, we correlated the signature risk
score with all robustly expressed mRNAs, generating a pre-ranked
list sorted by the Pearson correlation coefficient, and further
performed GSEA. The results indicated that invasion, metastasis,
and immune hallmarks, such as EMT, myogenesis, angiogenesis,
TABLE 1 | RMS time (RMST) between the two risk groups at different time points.

Dataset Time point RMSTa RMST differenceb p-value

Low risk (95% CI) High risk (95% CI)

TCGA cohort (n = 373) 12 months 11.236 (10.881, 11.590) 10.206 (9.722, 10.69) 1.030 (0.430, 1.629) <0.001
36 months 28.138 (26.304, 29.972) 21.273 (19.167, 23.378) 6.865 (4.073, 9.658) <0.001
60 months 40.810 (36.656, 44.964) 29.399 (25.410, 33.387) 11.411 (5.652, 17.170) <0.001

HMU cohort (n = 214) 12 months 11.046 (10.594, 11.498) 11.072 (10.700, 11.444) -0.026 (-0.612, 0.559) 0.93
36 months 29.787 (27.582, 31.992) 25.915 (23.592, 28.237) 3.872 (0.670, 7.075) 0.018
60 months 43.591 (39.832, 47.350) 34.980 (30.935, 39.025) 8.611 (3.089, 14.133) 0.002

GEO cohort (n = 492) 12 months 11.242 (10.965, 11.519) 11.115 (10.852, 11.377) 0.127 (-0.255, 0.509) 0.514
36 months 28.479 (27.011, 29.948) 25.578 (24.070, 27.085) 2.901 (0.797, 5.006) 0.007
60 months 42.934 (40.076, 45.792) 36.224 (33.359, 39.089) 6.710 (2.663, 10.757) 0.001
A
ugust 2021 | Volume 12 | Article
aRMST, months.
bRMST difference = RMSTlow risk – RMSThigh risk.

The bold value means the outcome is statistically significant.
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hypoxia, inflammatory response, interferon-gamma response, and
complement, were significantly enriched in GC samples with higher
risk scores. In contrast, proliferation and metabolism hallmarks,
such as G2M checkpoint, MYC targets, oxidative phosphorylation,
Frontiers in Immunology | www.frontiersin.org 8
fatty acid metabolism, and glycolysis, were significantly enriched in
GC samples with lower risk scores (Figure 4A).

Furthermore, we used WGCNA to obtain the signature-related
modules according to the approximate scale-free features. The top
TABLE 3 | Subgroup analysis of the RNA processing-related signature.

Data set Factor Subgroup analysis p-value for interaction

Samples HR (95% CI) p-value

TCGA cohort
(n = 373)

Sex
Female 133.000 12.071 (3.737, 38.996) <0.001 0.651
Male 240.000 8.271 (3.611, 18.945) <0.001

Age
≤60 120.000 18.021 (4.949, 65.616) <0.001 0.268
> 60 249.000 7.543 (3.498, 16.267) <0.001

Stage
Early (I and II) 164.000 7.482 (2.349, 23.831) 0.001 0.660
Advanced (III and IV) 186.000 11.097 (4.527, 27.202) <0.001

HMU cohort
(n = 214)

Sex
Female 77.000 2.162 (0.315, 14.849) 0.433 0.666
Male 136.000 3.372 (1.037, 10.971) 0.043

Age
≤60 118.000 2.369 (0.563, 9.977) 0.240 0.691
> 60 96.000 3.509 (0.883, 13.943) 0.075

Stage
Early (I and II) 67.000 1.243 (0.213, 7.264) 0.809 0.260
Advanced (III and IV) 147.000 4.149 (1.234, 13.947) 0.021

GEO cohort
(n = 492)

Sex
Female 168.000 6.633 (2.354, 18.691) <0.001 0.113
Male 324.000 2.651 (1.290, 5.447) 0.008

Age
≤60 178.000 8.792 (3.039, 25.438) <0.001 0.065
> 60 314.000 2.583 (1.260, 5.291) 0.010

Stage
Early (I and II) 187.000 2.796 (0.784, 9.976) 0.113 0.312
Advanced (III and IV) 305.000 1.331 (0.654, 2.708) 0.431
August 2021 | Vol
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TABLE 2 | Univariate and multivariate Cox analyses of the RNA processing-related signature.

Dataset Factor Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value

TCGA cohort
(n = 373)

Risk score (increasing values) 9.280 (4.746, 18.148) <0.001 9.918 (4.926,
19.968)

<0.001

Age
(increasing years)

1.021 (1.005, 1.037) 0.012 1.027 (1.010, 1.045) 0.002

Sex
(male vs. female)

1.333 (0.936, 1.899) 0.112

TNM stage
(III + IV vs. I + II)

1.891 (1.325, 2.698) <0.001 2.101 (1.464, 3.015) <0.001

HMU cohort
(n = 214)

Risk score (increasing values) 2.819 (1.041, 7.637) 0.041 2.819 (1.041, 7.637) 0.041
Age
(increasing years)

1.009 (0.992, 1.027) 0.284

Sex
(male vs. female)

0.984 (0.615, 1.574) 0.947

TNM stage
(III + IV vs. I + II)

1.165 (0.710, 1.911) 0.545

GEO cohort
(n = 492)

Risk score (increasing values) 3.601 (2.002, 6.474) <0.001 1.632 (0.879, 3.029) 0.121
Age
(increasing years)

1.006 (0.995, 1.018) 0.254

Sex
(male vs. female)

1.056 (0.810, 1.377) 0.686

TNM stage
(III + IV vs. I + II)

4.245 (3.097, 5.817) <0.001 3.983 (2.878, 5.511) <0.001
ume 12 | Article
The bold value means the outcome is statistically significant.
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5000 most variant genes, measured by the median absolute
deviation (MAD), were selected for the WGCNA. We chose nine
as the optimal soft threshold power to calculate the adjacency
matrix, which was the lowest threshold to enable the scale-free R2

to reach 0.85 (Supplementary Figure 2). We constructed a cluster
dendrogram with the adjacency matrix; five color modules (blue,
brown, turquoise, yellow, grey) were identified (Figure 4B). Genes
that could not be included in any module were placed in the grey
module and removed for the downstream analysis.

Next, we correlated the eigengene of the selected traits and
modules to evaluate the module–trait relationships. Three modules
(brown, turquoise, yellow) were highly significantly associated with
the signature risk score (|R| > 0.3). The yellow and turquoise
Frontiers in Immunology | www.frontiersin.org 9
modules were positively correlated with the signature risk score.
The brownmodule was negatively correlated with the signature risk
score (Figure 4C). All modules also showed significant
correlations between gene significance and module membership
(Supplementary Figure 3), implying that the genes in these
modules might play an essential biological role associated with the
RNA processing-related prognostic signature.

We then performed functional enrichment analysis of the genes
in each module to explore the biological functions of the signature-
related modules. Consistent with the GSEA results, genes in the
brown module were significantly enriched in the proliferation- and
metabolism-related pathways (Figure 4D). For yellow module
genes, the top enriched terms were allograft rejection, interferon-
A

F G J K

H I L M

B C

D E

FIGURE 3 | Identification of the composite prognostic nomogram. (A) Composite nomogram prediction of 1-year, 3-year, and 5-year OS. (B, F, J) RMS curves for
the composite prognostic nomogram and clinical model in the training and validation datasets. (C, G, K) Time-dependent ROC curves for the nomogram, signature
model, and clinical model at different time points in the training and validation datasets. (D, H, L) Calibration curves of observed and predicted probabilities for the
nomogram in the training and validation datasets. (E, I, M) DCA curves for the nomogram in the training and validation datasets.
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gamma response, and inflammatory response, suggesting that the
yellow module is involved in the immune response (Figure 4E).
Genes in the turquoise module were associated with the
development of malignant phenotypes, focusing on invasion and
metastasis processes (Figure 4F). These findings imply that the
RNA processing-related prognostic signature reflects the expression
alterations of genes involved in multiple vital hallmarks (invasion,
metastasis, proliferation, metabolism, immune response) in GC.

Expression and Clinical Features
Underlying the RNA Processing-Related
Prognostic Signature
All 1079 GC samples were pooled to explore the expression and
clinical features of the RNA processing-related prognostic signature.
All 10 LASSO-selected factors were significantly differentially
expressed between the two risk groups (Figures 5A, B). Risk-
associated genes showed higher expression levels in patients with
high risk scores. In comparison, protection-associated genes showed
higher expression levels in those with low risk scores (Figures 5A,
B). Moreover, the immunohistochemical analysis via the HPA
determined that most protection-associated genes showed lower
Frontiers in Immunology | www.frontiersin.org 10
protein expression levels in GC samples than in adjacent normal
tissues; the protein products of the risk-associated genes showed an
opposite trend (Figure 5C).

Moreover, we found that advanced tumor stage (stage III and
IV) was significantly enriched in the high-risk group (p < 0.001;
Figures 5A, D). A higher percentage of clusters 1 and 5, featuring
poor prognosis and stromal activation, was enriched in the high-
risk group (p < 0.001; Figures 5A, E). These results suggest that
the identified RNA processing factors might be involved in GC
occurrence and development and could serve as potential
therapeutic targets.

Genetic Variants, Pathway Activation,
and Immune Heterogeneity Underlying
the RNA Processing-Related
Prognostic Signature
Genomic data, including mutation profile and somatic copy
number alteration (SCNA) data from the TCGA-STAD dataset,
were first analyzed to explore the possible mechanisms
underlying the RNA processing-related prognostic signature.
A significantly higher tumor mutation burden (TMB) was
A

D E F

B C

FIGURE 4 | Function analysis of genes correlated with the RNA processing-related prognostic signature. (A) GSEA of the hallmark gene sets for risk scores based
on pre-ranked Pearson’s correlation coefficients of risk score-associated mRNAs. (B) Clustering dendrogram of the top 5000 mRNAs with dissimilarity based on the
topological overlap together with assigned module colors. (C) Module–trait relationships. Each row shows a module eigengene; each column corresponds to a
clinical trait. Each cell contains the corresponding correlation (upper number) and p-value (lower number). (D–F) Functional enrichment analysis of the hallmark gene
sets for the brown (D), yellow (E), and turquoise (F) modules.
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detected in the low-risk group than in the high-risk group
(Figure 6A). More mutations caused more neoantigens in cases
with lower risk scores (first vs. fourth quartile; Figure 6B) (45).
After filtering out genes with low-frequency mutations (5% of
GC samples), we found 25 significantly mutated genes between
the two groups (Figure 6C). All these significantly mutated
genes were enriched in the low-risk group, and were involved in
the UV response down pathway (adjusted p = 0.014).
Frontiers in Immunology | www.frontiersin.org 11
Subsequently, investigation of the data related to SCNA
events revealed distinct chromosomal alteration patterns
between the low-risk and high-risk groups (Figure 6D). A
significantly greater fraction of genome gained was detected in
the low-risk group (Figure 6E).

GSVA confirmed significant differences in biological
functions between the high-risk and low-risk groups
(Figure 7A). Consistent with the above results, stromal
A

D E

C

B

FIGURE 5 | Identification of expression and clinical features underlying the RNA processing-related prognostic signature. (A) Heatmap showing the expression
patterns of 10 prognosis-associated RNA processing factors for the entire 1079-sample GC set sorted by the signature risk score in ascending order. (B) Differential
expression of the 10 prognosis-associated RNA processing factors between the low-risk and high-risk groups. P values were obtained by the Mann-Whitney test.
The asterisks represented the statistical P-value (****P < 0.0001). (C) Histogram showing the distribution of TNM stage between the low-risk and high-risk groups.
(D) Histogram showing the distribution of the five distinct RNA processing patterns between the low-risk and high-risk groups. (E) Immunohistochemical analysis of
the protein expression of the 7 prognosis-associated RNA processing factors in the HPA database.
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activation pathways, such as the EMT, TGF-beta, and
angiogenesis pathways, were significantly enriched in the high-
risk group (Supplementary Table 4). The immune-related
pathways, such as the complement, interferon-alpha response,
and interferon-gamma response pathways, were also
significantly enriched in the high-risk group (Figure 7A and
Supplementary Table 4).

As the high-risk group had marked enrichment of the stromal
and immune activation pathways, we explored the relationship
between the tumor microenvironment status and the RNA
processing-related signature to characterize their immune
heterogeneity. We found that both the stromal and immune
scores, representing stromal and immune cell infiltration in
tumor tissue, respectively, were significantly higher in the high-
risk group (Figures 7B, C). The MCP-counter algorithm also
determined a higher proportion of immune and stromal cells in
the high-risk group (Figures 7B, D). Further, based on the
pathology whole-slide images, samples with high risk scores
had a higher percentage of tumor-infiltrating lymphocytes
Frontiers in Immunology | www.frontiersin.org 12
(including T cells, B cells, and natural killer cells) than those
with low risk scores (Figure 7E) (46). These results indicate that
the activation of stromal and immune components in the tumor
microenvironment and the activated oncogenic pathways based
on the proposed signature likely contribute to the worse
prognosis in high-risk patients.

RNA Splicing Events Underlying the RNA
Processing-Related Prognostic Signature
RNA processing factors dominate RNA splicing activities. Our
outcomes showed that prognosis-associated RNA processing
genes are closely correlated with RNA splicing-related activities
(Figure 8A). Accordingly, we also comprehensively characterized
ASEs in GC samples with different risk scores. Tens of thousands of
seven ASE types were detected in each GC sample (Figure 8A). The
proportion of these ASE types in the GC samples varied widely,
from 0.5% to approximately 43% (Figure 8A). Although all GC
samples shared similar ASE type patterns, the total number of
detected ASEs gradually decreased along with the increasing risk
A C
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FIGURE 6 | Identification of genetic variants underlying the RNA processing-related prognostic signature. (A) Violin plot for the TMB between the low-risk and high-
risk groups. (B) Violin plot for the number of neoantigens between the lower-risk and higher-risk groups. (C) Waterfall plot of the top 25 mutant genes in the low-risk
and high-risk groups. (D) SCNA profiles with gains (red) and losses (blue) between the lower-risk and higher-risk groups. (E) Differential analysis of the fraction (%) of
the genome altered, lost, and gained between the lower-risk and higher-risk groups. P values were obtained by the Mann-Whitney test. The asterisks represented
the statistical P-value (*P < 0.05).
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score (p < 0.001, R = -0.18). Moreover, ASEs were significantly
higher in GC samples with lower risk scores (first quartile, n = 94)
compared to those with higher risk scores (fourth quartile, n = 94)
(Supplementary Figure 4).

We further identified differentially expressed RNA processing
genes (absolute fold change > 1.2, false discovery rate [FDR] < 0.05)
and ASEs with significantly different PSI values (absolute fold
change > 1.5, FDR < 0.05) in GC samples with lower risk (first
quartile, n = 94) and higher risk (fourth quartile, n = 94) scores
(Figure 8B). We identified 358 ASEs from 327 genes, including 240
upregulated ASEs from 217 genes and 118 downregulated ASEs
from 118 genes (Supplementary Table 5). For these ASEs with
markedly different PSI values, we found that the frequency of all
ASE types was significantly altered compared to the background
ASEs (Supplementary Figure 5), suggesting that the presence of
altered ASEs might be associated with GC prognosis.
Frontiers in Immunology | www.frontiersin.org 13
We found that genes involved in the aberrant RNA splicing in
GC (CD44), the RAS oncogene family (RAB5C, RANN), the TNF-
a/NF-kB signaling pathway (e.g.,NR4A2, TANK, PFKFB3), and the
zinc finger protein family (e.g., ZNF74, ZNF671, ZNF106) were
differentially spliced among GC samples with lower and higher risk
scores (Figure 8C). We performed GO analysis of all differentially
spliced genes to explore the role of alternative splicing underlying
the RNA processing-related signature. These spliced genes were
mainly related to cell–matrix adhesion and mesenchymal cell
differentiation for biological process; cell projection membrane
and cell–substrate junction for cellular component; and cadherin
binding and guanyl nucleotide exchange factor activity for
molecular function (Table S6). Our analysis indicates that
differential ASEs participate in many cancer-related pathways,
suggesting that ASEs are a critical mechanism underlying the
prognostic value of RNA processing factors in GC.
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FIGURE 7 | Identification of immune heterogeneity underlying the RNA processing-related prognostic signature. (A) The differential analysis of GSVA scores between
the low-risk and high-risk groups. The height and color represent the -log10(FDR). (B) Heatmap showing the immune cell infiltration between the high-risk and low-
risk groups. (C) Differential expression of immune scores and stromal scores between the low-risk and high-risk groups. P values were obtained by the Mann-
Whitney test. The asterisks represented the statistical P-value (ns, not statistical; **P < 0.01; ****P < 0.001). (D) Differential expression of immune and stromal cells
between the low-risk and high-risk groups. P values were obtained by the Mann-Whitney test. The asterisks represented the statistical P-value (ns, not statistical;
**P < 0.01; ****P < 0.001). (E) Tumor-infiltrating lymphocyte infiltration between the low-risk and high-risk groups determined by hematoxylin–eosin (H&E) whole-slide
images. Red represents a positive TIL patch; blue represents a tissue region with no TIL patch, while black represents no tissue.
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RNA splicing might inevitably affect their protein
characteristics. Therefore, we constructed a protein interaction
network based on the spliced genes, presenting the interactive
relationship in normal conditions and uncovering the potential
Frontiers in Immunology | www.frontiersin.org 14
influence of ASEs at protein level. After removing the isolated
nodes, 228 genes were mapped in the protein interaction
network. These spliced genes were closely linked to each other
(Supplementary Figure 6). From the whole protein interaction
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FIGURE 8 | Identification of the RNA splicing landscape underlying the RNA processing-related prognostic signature. (A) Proportions of ASEs in 375 TCGA samples
sorted by increased risk score. Bars indicate the proportion of each ASE type. Dark blue dots indicate the number of ASEs in each sample. The risk scores in ascending
order are shown in the top panel. (B) Heatmaps showing the expression levels of RNA processing factors (top panel) and PSI value of ASEs with significant differences
between lower-risk and higher-risk groups (bottom panel). (C) Representative ASEs with differential PSI values between lower-risk and higher-risk groups. (D) Network plot
showing the correlation between RNA processing factors and ASEs with significant differences between lower-risk and higher-risk groups.
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network, we identified six individual modules using the MCODE
algorithm (47) (Supplementary Figure 7). Module enrichment
analysis showed that most modules had biological functions with
module specificity (Supplementary Table 7).

We explored the potential regulatory network among the
significantly altered RNA processing genes and ASEs. A network
with 549 pairwise correlations that ultimately involved 16 RNA
processing genes and 119 ASEs was constructed (Figure 8D).
Almost all ASEs followed the same expression trend as the RNA
processing genes (Supplementary Figure 8). Most RNA processing
genes were correlated with more than one ASE, and some played
opposite roles in regulating different ASEs (Figure 8D). Besides, we
found that different RNA processing genes competed for the same
ASEs, partly explaining the diversity of splice isoforms created by
only a few RNA processing factors.

Drug Response Features Underlying the
RNA Processing-Related Signature
Given that genetic variants, pathway activation, immune
heterogeneity, and splicing features were significantly different
according to the RNA processing-related signature, we
investigated the relationship between the prognostic signature and
drug response to encourage personalized treatment decisions. As
described earlier, the low-risk group presented a significantly higher
TMB and neoantigens count than the high-risk group (Figures 6A,
B), suggesting that the patients with low risk scores might benefit
from immune checkpoint inhibitor treatment. Consistent with the
idea, the TIDE algorithm determined that patients with low risk
scores (45.56%, 246/540) might be more likely to respond to
immunotherapy than those with high risk scores (33.58%, 181/
539) (p < 0.001, odds ratio [OR] = 1.654, 95% CI: 1.284–2.134)
(Figures 9A, C and Supplementary Figure 9).

We used two approaches to identify the drug response
relationship between the selected chemotherapeutic agents and
the identified signature. The analyses were performed using
GDSC, CTRP, and PRISM-derived drug response data. First,
differential drug response analysis between the higher-risk (first
quartile) and lower-risk (fourth quartile) groups was conducted
to identify chemotherapeutic agents with significantly different
AUC values (|mean difference| > 0.01, p < 0.05). Next, Pearson
correlation analysis between the AUC value and the risk score
was performed to select agents with a significant correlation
coefficient (|R| > 0.1, p < 0.05). Finally, we determined that
patients with low-risk scores were more sensitive to two CTRP-
derived compounds (5-fluorouracil and paclitaxel), and patients
with high-risk scores were more sensitive to two GDSC-derived
compounds (irinotecan and cisplatin) (Figures 9A, B, D).
DISCUSSION

In this study, we found that the general expression pattern of
RNA processing factors correlates with specific clinical outcomes
and hallmark features of GC. RNA processing factors that were
significantly associated with the prognosis of patients with GC
were also identified. We then constructed a 10-gene RNA
Frontiers in Immunology | www.frontiersin.org 15
processing-related prognostic signature to predict the
prognosis of stratified patients with GC. The identified
signature was integrated with clinical features to establish the
composite prognostic nomogram, which reliably demonstrated
accurate prognostic predictions for the patients. Finally, we
identified the clinical outcomes, genetic variants, pathway
activation, immune heterogeneity, alternative splicing
landscape, and drug response features associated with the
prognostic signature.

GC is a highly heterogeneous malignant tumor. Some patients
with GC within the same TNM stage have differing responses to
treatment and prognosis (6). Therefore, further stratification of
patients with GC with definite TNM subgroups is urgently
needed. RNA plays a crucial role in cell biological functions by
passing genetic information from DNA to protein and regulating
various biological processes (48). Dysregulation of RNA profiles
is closely related to the malignant progression and prognosis of
GC. The RNA expression profile and RNA fate are highly
dependent on the RNA processing factors responsible for
precise temporal and spatial coordinating gene expression (49).
Here, we highlight the stratification ability of RNA processing
factors in GC.

In the present study, we identified five distinct RNA
processing patterns, characterized by different biological
behaviors and prognoses (Figure 1). We confirmed the
prognostic value of a signature built with 10 RNA processing
genes in each cohort (Figure 2 and Table 1). The risk score of the
RNA processing-related signature was a stable, independent
prognosis factor in both the training and validation datasets
(Tables 2, 3). Moreover, we established a composite nomogram
by integrating the RNA processing-related signature with
traditional stratifying factors (age and TNM stage). The
composite nomogram showed improved prognostic accuracy,
better predictive efficiency, and larger net benefits than the
signature alone and the prognostic model of the traditional
stratifying factors in each cohort (Figure 3). These results
indicate that the signature is a powerful tool for predicting the
prognosis of patients with GC stratified by TNM classification.

The RNA processing-related signature reflects the expression
alterations of genes involved in multiple vital hallmarks in GC.
We found that genes that correlated negatively with the signature
were significantly enriched in the pathways associated with
proliferation and metabolism. In contrast, genes with
expression that related positively to the signature’s risk score
were significantly enriched in the invasion, metastasis, and
immune biological processes (Figure 4). Among the 10
survival-related genes included in the signature, the risk-
associated genes PWP2 and TGFB1 have been suggested to be
associated with GC invasion and metastasis (50, 51), and
ZBTB7A, a protection-associated gene, plays a tumor-
suppressive role in GC cells (52). METTL2B was found to be
RNA methyltransferases and play important roles in
tumorigenesis (53). CACTIN involved in the regulation of
innate immune response (54), contributing to the regulation of
transcriptional activation of NF-kappa-B target genes in
response to endogenous proinflammatory stimuli (55). TRUB2
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was a component of a functional protein-RNA module,
which was required for intra-mitochondrial translation (56).
POLDIP3 was involved in regulation of translation, enhancing
translational efficiency of spliced over non-spliced mRNAs (57).
TSEN54 participated the complex process for identification and
cleavage of the splice sites in pre-tRNA. SUGP1 and RBMS1 were
involved in RNA binding, playing a role in pre-mRNA splicing.
Frontiers in Immunology | www.frontiersin.org 16
These outcomes indicate that our study protocol can identify
novel carcinogenesis-associated RNA processing genes that
might serve as potential therapeutic targets. Future studies of
these prognostic factors could identify novel mechanisms
underlying RNA processing in GC.

We also determined that genetic variants, immune
heterogeneity, and the alternative splicing landscape were also
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FIGURE 9 | Identification of drug response features underlying the RNA processing-related signature. (A) Heatmap showing the TIDE scores and AUC values for
patients with GC with different risk scores. (B) Differential analysis of the selected chemotherapeutic agents for patients with GC with higher and lower risk scores in
the PRISM, CTRP, and GDSC databases. P values were obtained by the Mann-Whitney test. The asterisks represented the statistical P-value (*P < 0.05; **P < 0.01;
****P < 0.001). (C) Violin plots of TIDE scores for patients with GC in the high-risk and low-risk groups. (D) Heatmap showing the Spearman correlation coefficient
between the AUC values and the risk scores for the selected chemotherapeutic agents.
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significantly different between the high-risk and low-risk groups.
The low-risk group had significantly higher TMB, more
neoantigens, and greater fraction of genome gained than the
high-risk group (Figure 6). Consistent with the GSEA result,
the stromal and immune activation pathways were markedly
enriched with increased risk scores (Figure 4). The ESTIMATE
and MCP-counter algorithms and the pathology whole-slide
images also suggested a higher proportion of immune and
stromal cells in the high-risk group (Figure 7).

Currently, genome-wide analyses have begun to reveal the roles
of ASEs correlated with GC progression and prognosis (12, 13).
Abnormal ASEs of individual genes participate in several
tumorigenic processes, such as proliferation, apoptosis, hypoxia,
angiogenesis, immune escape, and metastasis (58, 59). For example,
CD44 splice variants participate in GC carcinogenesis, progression,
and metastasis (60, 61). By revealing the ASE landscape in GC, we
identified 358 ASEs correlated with GC prognosis.We also observed
that CD44was differentially spliced in the lower-risk and higher-risk
groups (Figure 8). Moreover, we identified the potential regulatory
network between the altered RNA processing genes and the
differential ASEs.

Further, we investigated the relationship between the signature
and drug response to promote personalized treatment decisions. To
date, immune checkpoint inhibitors have been approved for GC
treatment. However, the response rate is relatively low (10–26%)
(62–64). Therefore, it is critical to find new biomarkers for
appropriate patient selection for immunotherapy. We determined
that patients with low risk scores might benefit from immune
checkpoint inhibitor treatment (Figure 9), suggesting that this RNA
processing-related signature could be a predictive biomarker for
immunotherapy in GC.

Chemotherapy remains the mainstay in GC treatment (43). We
found that patients with low-risk scores might be more sensitive to
5-fluorouracil and paclitaxel, both cell cycle-nonspecific drugs. 5-
Fluorouracil is an anti-cancer antimetabolite that inhibits tumor cell
proliferation via DNA damage. Paclitaxel stabilizes microtubules
and interferes with mitotic spindle formation, which leads to the
inhibition of cancer cell proliferation. As mentioned above, the
proliferation- and metabolism-related pathways were markedly
enriched with decreased risk scores. The activation of these
pathways, such as G2M checkpoint, DNA repair, and mitotic
spindle, might be responsible for the higher sensitivity to 5-
fluorouracil and paclitaxel.

On the other hand, patients with high-risk scores might be
more sensitive to irinotecan and cisplatin, cell cycle-nonspecific
anti-cancer drugs. Such drugs are not affected by the cell cycle
phase and act upon rapidly dividing cancer cells for destruction.
Therefore, GC characterized with a mesenchymal phenotype
might be more sensitive to irinotecan and cisplatin. Whether a
genetic variant, pathway activation, immune heterogeneity,
splicing features, or chemotherapy and immunochemotherapy
response feature, all the results aid understanding of the roles of
RNA processing in GC. Our signature may further aid the design
of a more reasonable and effective treatment regimen,
contributing to precision therapy for individual patients with
different risk levels.
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This study has several strengths. First, we analyzed a large
sample of 1079 patients with GC using either RNA-seq or
microarray data, suggesting that our outcomes are likely highly
reliable, robust, and independent of specific expression quantitative
platforms. Second, the present study includes both our own RNA-
seq dataset and public datasets, indicating the possibility of future
verification of our risk signature in additional cohorts. Third, we
used RMS time to demonstrate the clinical utility of the RNA
processing-related signature. It is equivalent to the area under the
Kaplan-Meier curve from the beginning of the study through that
time point. The RMST difference means gain or loss in the event-
free survival time between the groups during this period. As such,
using the average survival time can be more easily understood by
clinical communities. Meanwhile, RMST difference is valid and
interpretable whether or not the proportional hazards assumption is
violated (65). Despite these strengths, our study has its limitations as
well. First, we used only two clinical characteristics (age and TNM
stage) to construct the composite nomogram; additional clinical
factors, such as Lauren subtype, microsatellite instability status,
chemotherapy, surgery, and radiotherapy information, are
warranted to refine the model. Second, further ex vivo, in vitro,
and in vivo experiments regarding these prognosis-related RNA
processing factors are required to validate our in silico results.
Finally, the response of immunotherapy and chemotherapy
should be further verified by clinical data in other cohorts.

In summary, our study highlights the prognostic value of
RNA processing genes in GC and reveal an RNA processing-
related prognostic signature for further improving the prognosis
prediction of patients with GC with definite TNM subgroups.
The clinical outcomes, genetic variants, pathway activation,
immune heterogeneity, splicing features, and drug response
features underlying the signature were also identified. Our
findings provide a basis for understanding the roles of RNA
processing and indicate the potential clinical implications of
RNA processing factors in GC.
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Supplementary Figure 1 | The workflow of this study.

Supplementary Figure 2 | Identification of the soft threshold according to the
standard of the scale-free network. The red line represents the threshold line
of 0.85.

Supplementary Figure 3 | Intra-modular analysis for the signature-related
modules. The scatterplot showing gene significance vs. module membership in the
turquoise (A), yellow (B), and brown (C) modules.

Supplementary Figure 4 | The absolute numbers of all ASEs were compared in
GC patients with higher-risk (first quartile) and lower-risk (fourth quartile) scores.
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Supplementary Figure 5 | The distribution of splicing types for the differential and
background ASEs. (A) The histogram showing ASE types’ frequency for the
differential and background ASEs. (B) The pie graph showing ASE types’ frequency
for the differential ASEs. (C) The pie graph showing ASE types’ frequency for the
background ASEs.

Supplementary Figure 6 | The protein interaction network for the spliced genes
with significantly different PSI values.

Supplementary Figure 7 | The six individual modules from the protein interaction
network determined by the “MCODE” algorithm.

Supplementary Figure 8 | The number of ASEs regulated by the 16 RNA
processing factors.

Supplementary Figure 9 | Response rates of immunotherapy between two risk
groups determined by the “TIDE” algorithm.

Supplementary Table 1 | 929 genes, annotated as RNA processing factors,
acquired in the AmiGO database.

Supplementary Table 2 | 819 RNA processing factors involved in all data sets.

Supplementary Table 3 | 105 OS associated RNA processing factors.

Supplementary Table 4 | Difference of GSVA scores between the high-risk and
low-risk groups.

Supplementary Table 5 | 358 differentially expressed ASEs and 28 differentially
expressed RNA processing genes.

Supplementary Table 6 | GO analysis was performed for all differentially spliced genes.

Supplementary Table 7 | Module enrichment analysis for the six individual modules.
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