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Deep learning identifies 
antigenic determinants of severe 
SARS‑CoV‑2 infection within T‑cell 
repertoires
John‑William Sidhom1,2,3* & Alexander S. Baras1,2,4

SARS-CoV-2 infection is characterized by a highly variable clinical course with patients experiencing 
asymptomatic infection all the way to requiring critical care support. This variation in clinical course 
has led physicians and scientists to study factors that may predispose certain individuals to more 
severe clinical presentations in hopes of either identifying these individuals early in their illness or 
improving their medical management. We sought to understand immunogenomic differences that 
may result in varied clinical outcomes through analysis of T-cell receptor sequencing (TCR-Seq) data 
in the open access ImmuneCODE database. We identified two cohorts within the database that 
had clinical outcomes data reflecting severity of illness and utilized DeepTCR, a multiple-instance 
deep learning repertoire classifier, to predict patients with severe SARS-CoV-2 infection from their 
repertoire sequencing. We demonstrate that patients with severe infection have repertoires with 
higher T-cell responses associated with SARS-CoV-2 epitopes and identify the epitopes that result in 
these responses. Our results provide evidence that the highly variable clinical course seen in SARS-
CoV-2 infection is associated to certain antigen-specific responses.

In December 2019, SARS-CoV-2, a novel coronavirus was first reported in Wuhan, China, and was later named 
a pandemic by the WHO in March 2020. Notably, the clinical course of SARS-CoV-2 infection is highly variable 
with individuals exhibiting asymptomatic infection all the way through to requiring critical care support in the 
intensive care unit (ICU)1. One of the defining features of SARS-CoV-2 infection that predisposes patients to 
requiring critical care support is acute respiratory distress syndrome (ARDS) that often complicates the clini-
cal course of many patients; thought to be secondary to an overactive and dysfunctional/dysregulated immune 
response2–8.

Given the extent of the morbidity and mortality that has been caused by SARS-CoV-2, there has been massive 
efforts across academia and industry to expedite our knowledge of the disease and its corresponding immune 
response to develop efficacious therapies and vaccines9–18. In this effort, Adaptive Biotechnologies and Micro-
soft have partnered together to release ImmuneCODE19,20, a database of T-cell receptor (TCR) repertoires from 
individuals who were either sampled while acutely infected or recovered from SARS-CoV-2 along with derived 
specificities to SARS-CoV-2 epitopes through the use of the MIRA assay (Multiplex Identification of T cell 
Receptor Antigen Specificity)21.

While previous studies have focused on the transcriptional and cell profiling differences in severe infection, 
little work has been done to understand the antigenic determinants of clinical outcomes14,22–25. In the study, 
we sought to answer questions about the immunogenomic factors related to these antigenic determinants that 
may influence whether an individual develops severe versus mild SARS-CoV-2 infection by studying the T-cell 
repertoire in individuals during acute infection. By using DeepTCR, a deep learning software/framework for 
analyzing TCR-Seq26, to analyze the previously published and open access ImmuneCODE database, we show a 
TCR sequence concept signature (i.e. motif usage) that predicts severe versus mild SARS-CoV-2 infection. This 
work further provides a framework and example of the future use of artificial intelligence and machine learning 
for immune repertoire diagnostics and prognostics.
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Results
To determine the appropriate data sets to query an immune repertoire signature of severe SARS-CoV-2 
infection, we carefully curated the available data within the ImmuneCODE database published by Adaptive 
Biotechnologies19,20. In the original database, there are 7 cohorts of patients or individuals who either were acutely 
infected or were sampled in the convalescent phase. Of the 7 cohorts, we noted that 5 (COVID-19-DLS, COVID-
19-ISB, COVID-19-NIH/NIAID, COVID-19-HUniv12Oct, COVID-19-IRST/AUSL) contained patients who 
were sampled during active infection. Of these, 3 had clinical outcomes data that pertained to severity of illness 
(COVID-19-NIH/NIAID, COVID-19-ISB, COVID-19-HUniv12Oct). In the COVID-19-ISB cohort, severity of 
illness was measured via the WHO ordinal scale which grades degree of clinical intervention required for a given 
patient. In the COVID-19-NIH/NIAID and COVID-10-HUniv12Oct cohorts, there exists a label of whether 
the patient sampled required an intensive care unit (ICU) admission. However, when examining the proximity 
of sampling to active infection in the COVID-19-HUniv12Oct cohort, we noted that the majority of individu-
als admitted to the ICU were sampled after recovery and not during active infection (Supplementary Fig. 1). 
Therefore, we were left to analyze metrics of disease severity in the COVID-19-NIH/NIAID and COVID-19-ISB 
cohorts (here on forward referred to as NIH/NIAID and ISB respectively.

Demographics of ImmuneCODE database.  The ISB cohort was collected under the INCOVE project 
at Providence St. Joseph Health in Seattle, WA while NIH/NIAID was collected in Brescia, Monza and Pavia 
(Italy) during active infection, and provided to the NIAID in Bethesda, MD for DNA extraction. Since these two 
cohorts came from different parts of the world and institutions, we first wanted to examine how the demograph-
ics of the individuals in the two cohorts compared (Table 1). We noted, unsurprisingly, that these cohorts dif-
fered in composition notably in biological sex and racial groups; however, were similar in terms of age, days from 
symptom onset to sampling, and fraction requiring ICU-level care, as defined by the icu_admit label within the 
ImmuneCODE database or the WHO ordinal scale. Notably, we binarized the WHO ordinal scale at the point in 
the scale corresponding to critical care need (> 4)27.

TCR measures of diversity.  We first wanted to investigate whether conventional measures of TCR reper-
toire diversity and abundances were associated with severity of SARS-CoV-2 infection. To do this, we collected 
sample-level TCR-seq data provided by Adaptive Biotechnologies within the ImmuneCODE database. We first 
noted when looking at these metrics, that many of them were significantly different in the two cohorts (Sup-
plementary Fig.  2), suggesting a possible difference in collection and processing of the samples prior to the 
sequencing. Regardless of these batch effects, when comparing all provided metrics between severe and mild 
infection (Fig. 1a), we noted that many of the metrics representative of a magnitude of T-cell response (i.e. total 
t-cells, total templates, and total rearrangements) were lower in severe versus mild infection across both the 
NIH/NIAID and ISB and cohorts.

To interrogate the predictive power of these associations, we fit uni-variate logistic regression on these metrics 
to predict severe disease and assessed performance in cross-validation (Fig. 1b). We noted that in both cohorts, 
a few of these associations had moderate predictive power. Finally, we fit a multi-variate logistic regression using 
all provided metrics, once again assessing performance in cross-validation, and found a moderate predictive 
power to identify individuals who had severe SARS-CoV-2 infection (Fig. 1c). Taken together, these results sug-
gest that during the peak of infection, individuals with depleted T-cell responses have a more severe course of 
disease, consistent with previously described phenomena of lymphopenia in severe SARS-CoV-2 infection28–31.

Table 1.   Demographic data of the ImmuneCODE database. Demographic data for ImmuneCODE database 
were collected including biological sex, age, and racial group. Additionally shown, time between symptom 
onset and sampling along with proportion of individuals with severe illness; documented with either ICU 
admission or WHO ordinal scale > 4 (corresponding to individuals requiring critical care needs).

Characteristic NIH/NIAID (N= 357) ISB (N = 157)

Median age (IQR)—yr 62 (54-75) 61 (48-75)

Biological sex

Male sex—no. (%) 140 (77) 71 (46)

Female sex—no. (%) 41 (23) 83 (54)

Race—no. (%)

Caucasian 93 (61) 180 (100)

Asian or Pacific Islander 25 (16)

Unknown racial group 24 (16)

Black or African American 8(5)

Mixed racial group 2(1)

Days from onset to sample (IQR)—days 18 (13-25) 13 (9-21)

Severity of illness—no. (%)

Severe 38 (22) 38 (36)

Mild 131 (78) 68 (64)
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Figure 1.   Associations of TCR diversity and abundance metrics to disease severity. (a) TCR-Seq diversity 
and abundance metrics were collected and stratified by disease severity in both the COVID-19-ISB and 
COVID-19-NIH/NIAID cohorts. (Mann–Whitney rank test: ***p val < 0.001, **p val < 0.01, *p val < 0.05, with 
multiple hypothesis testing with Benjamini/Hochberg correction, α = 0.05). (b) Uni-variate logistic regression 
models were fit on all TCR-Seq sample-level measures and performance was assessed via receiving operating 
characteristic (ROC) curves and calculating area under the curve (AUC) with 2-fold cross-validation with 100 
iterations, averaging predictions across all iterations and folds. (c) Multi-variate logistic regression models were 
fit on all TCR-Seq sample-level measures and performance was assessed in the same manner as previously 
described in (b).
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Deep learning models.  While analyzing TCR metrics such as the abundance of T-cells, unique CDR3 
sequences, or entropy can provide an assessment of the diversity of the repertoire or its level of clonal expan-
sion, these metrics are sequence agnostic. They are unable to query the antigen-specific nature of the repertoire, 
and thus, cannot identify antigenic associations with clinical outcomes in this data. Therefore, we sought to use 
DeepTCR, a deep learning framework for analyzing TCR-Seq data, to identify antigenic determinants or TCR 
signatures of severe SARS-CoV-2 infection.

In order to identify differences in the TCR repertoires of individuals who had a severe clinical course from 
those who had more mild symptoms, we used DeepTCR’s multiple instance repertoire classifier to fit a predictive 
model to the NIH/NIAID and ISB cohorts of individuals where the label of interest was severe disease either cor-
responding to an ICU admission in the NIH/NIAID cohort or a WHO ordinal scale score > 4 in the ISB cohort. 
We noted in internal Monte Carlo cross-validation, both cohorts carried significant predictive signatures (Fig. 2a. 
AUC = 0.79—NIH/NIAID, 0.89—ISB), which were more predictive than the logistic regression models fit to 
TCR metrics of abundance and diversity (Fig. 1c). However, when these models were used to predict severity 
of disease across cohorts, there was no shared predictive signature between them (Supplementary Fig. 3). Upon 
further interrogation, when attempting to fit a model to distinguish the two cohorts (NIH/NIAID and ISB) from 
each other, we noted a very strong predictive signature (Fig. 2b), suggesting these patients had TCR repertoires 
that were very different from each other and might explain why predictive models trained to predict severity of 
disease may not generalize across cohorts. Additionally, when combining the per-sample/patient predictions 
from the previously fit logistic regression model with the predictions from DeepTCR into one multi-variate 
logistic regression model, we noted that while there was no significant difference in performance over DeepTCR 
(Supplementary Fig. 4a), the two models provided independent information as evidenced by the coefficients of 
the logistic regression model (Supplementary Fig. 4b).

To provide more descriptive and explainable results from the deep learning models, we examined the most 
predictive TCR sequences and interrogated their corresponding antigen-specificities. First, we collected the top 
25 most predictive sequences for severe infection and visualized them across both cohorts with residue sensi-
tivity logos (RSL’s) from DeepTCR (Fig. 2c). As described in more detail in the original DeepTCR publication, 
the RSL’s query the sensitivity of any given residue to the probability of a given TCR sequence belonging to a 
specific class. By altering each residue, one can query the effect of this alteration on the probability output from 
the model and thus, determine which residues are the most relevant to the model’s prediction. We noted that 
the most sensitive residues were located in the central part of the CDR3 sequences, suggesting the signature 
was tied to an antigen-specific exposure. Furthermore, when examining the RSL’s from the model trained to 
distinguish between the two cohorts, we noticed that once again, the model’s attention was at the center of the 
CDR3 sequence, suggesting an antigen-specific difference in the cohorts (Fig. 2d).

To examine further the antigenic specificities of these TCR sequences, we used provided SARS-CoV-2 specific 
TCR sequences collected from the MIRA assay21 and provided within the ImmuneCODE database to label all 
TCR sequences within both cohorts by whether they were known to be COVID(+) or COVID(-) sequences. 
We then plotted these sequences by their prediction values to be associated with severe infection across both 
cohorts of patients (Fig. 2e). We noted that that when setting a threshold of P(severe infection) = 0.90, there was 
a statistically significant enrichment for SARS-CoV-2 specific TCRs in patients with severe infection. Finally, 
when stratifying the SARS-CoV-2 positive TCRs by open reading frame (ORF) and by CD8 or CD4 specificity, 
we noted in both cohorts that certain areas of the viral genome had increased likelihood of being targeted in 
severe infection as well as there also being differences in the CD8 versus CD4 response across multiple ORFs 
(Fig. 2f). Full results have been provided in Supplementary Tables 1 and 2 allowing investigators to query the 
most immunodominant/immunogenic epitopes and their corresponding TCRs.

Finally, in order to interrogate further what this difference in antigen-specificity could be within the two 
cohorts analyzed, we used provided the SARS-CoV-2 specific TCR sequences collected from the MIRA assay 
to map TCR sequence to known SARS-CoV-2 epitopes and when substituted these sequences into DeepTCR’s 
repertoire classifier to query whether there was a similar ability for the model now fit to the epitope sequence to 
predict the cohort a given sample belonged to. In this case, the input sequencing data was the epitope sequence 
data for the SARS-CoV-2 specific TCRs (as determined by MIRA), and the predicted label was the cohort the 
given sample came from. We found that while not to the same predictive power as when the model was fit to TCR 
sequences, there still remained the ability for DeepTCR’s repertoire classifier to predict the cohort label from the 
“epitope repertoire” (Fig. 2g), suggesting once again the SARS-CoV-2 specific response was antigenically differ-
ent between these two cohorts. Taken together, these results reveal an antigen-specific signature associated with 
SARS-CoV-2 specific epitopes that is predictive of severe clinical course in SARS-CoV-2 infection and further-
more, the SARS-CoV-2 specific repertoire recognizes different epitopes depending on the population sampled.

Discussion
In this work, we demonstrate the power of leveraging a multiple instance deep learning framework within a 
clinically relevant and timely cohort of individuals to predict and learn distinguishing TCR sequence features 
in individuals with clinically severe SARS-CoV-2 infection. We further identify that this predictive signature is 
associated with SARS-CoV-2 specific TCRs as determined by MIRA, an orthogonal T-cell culture based sequenc-
ing assay and also reveal that the antigenic response may be dependent on the population sampled. We believe 
this work highlights multiple points of novelty for physicians and scientists studying SARS-CoV-2 but also for the 
broader scientific community interested in leveraging immune repertoire for diagnostic and prognostic purposes.

A few limitations exist in this study that are important when considering the interpretations and conclusions 
of this work. The first major limitation we found as was highlighted in the cross-validation of the models between 
cohorts was the predictive signature was not shared between the NIH/NIAID and ISB cohorts. We noted that 



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14275  | https://doi.org/10.1038/s41598-021-93608-8

www.nature.com/scientificreports/

Figure 2.   Deep learning models identify TCR signature of severe disease. (a) DeepTCR’s multiple instance repertoire classifier was 
used to fit predictive models of severe/mild illness in Monte Carlo cross-validation across both the NIH/NIAID and ISB cohort of 
patients. Receiver Operating Characteristic (ROC) curves are shown with corresponding Area Under Curve (AUC) measurements. 
(b) DeepTCR’s repertoire classifier was also fit to identify TCR repertoire differences between samples taken from the NIH/NIAID or 
ISB cohort. Receiver Operating Characteristic (ROC) curves are shown with corresponding Area Under Curve (AUC) measurements. 
(c) Following model fitting, top predictive sequences for severe disease were extracted from the network and residue sensitivity logos 
(RSL’s) were created highlighting predictive residues. (d) Following model fitting, top predictive sequences for NIH/NIAID versus 
ISB cohorts were extracted from the network and residue sensitivity logos (RSL’s) were created highlighting predictive residues. (e) 
All TCR sequences present in the samples were mapped to being COVID(+) or COVID(−), based on empirically derived antigen-
specificity data from the MIRA assay and plotted by their corresponding prediction values for severe illness. A threshold of P = 0.90 
was used to create contingency tables of TCR sequences called to carry the severe disease as well as the COVID(+) signature and used 
to calculate enrichment scores (Fisher’s Exact Text: ***p val < 0.001). (f) COVID(+) sequences were further stratified by open reading 
frame (ORF) in the viral genome as well as by CD8/CD4 specific TCRs as provided by the MIRA assay. (g) SARS-CoV-2 specific TCR 
sequences, as determined from MIRA assay results in the ImmuneCODE database were collected and mapped to their corresponding 
epitope sequences and used in place to train the repertoire classifier. Receiver Operating Characteristic (ROC) curves are shown with 
corresponding Area Under Curve (AUC) measurements.
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there are multiple reasons this could be the case. The first reason one must consider when using machine learning 
models is over-fitting of the model. While this could be playing a role in why the models did not cross-validate, 
there are several other notable reasons that might explain the lack of generalization. First, as was described in 
the demographics of the cohorts, these two cohorts were notably different in biological sex and race. Previous 
studies have revealed differences in clinical outcomes as a function of sex and race32–36 and therefore; these dif-
ferences could be playing a large role in why the models do not generalize across cohorts. Second, when looking 
at the measures of TCR abundance and diversity between the two cohorts, there were clear batch effects that 
may reflect differences in how the samples were collected and processed. These artifactual differences could 
also add to the difficulty of the model generalizing between cohorts. Furthermore, when we trained a repertoire 
classifier to distinguish between samples from either cohort, the model had very high power in distinguishing 
the repertoires from individuals that came from either cohort, further providing evidence for batch effects in the 
sequencing data. Whether these batch effects were derived from biological sources of variation (i.e. immunoge-
netic background, environmental exposures, etc) or technical sources of variation (i.e. collection protocol, sample 
preparation, sequencing differences, etc), we cannot be sure of but the fact that a repertoire model trained on the 
corresponding “epitope repertoire” also provided predictive power to distinguish the cohorts suggests a relevant 
biological difference between the cohorts. Furthermore, when looking at the SARS-CoV-2 antigenic signature in 
both cohorts as it related to the predictive signature of clinical severity, we noted a stronger association between 
the predictive signature in the ISB to the antigenic signature than in the NIH/NIAID cohort. One possible expla-
nation of this is due to the cohort of patients the MIRA assay was performed. If the MIRA assay patients were 
collected in the USA, the SARS-CoV-2 response may be different in this demographic versus the Mediterranean 
Italian cohort in the NIH/NIAID cohort. Ideally, one would have MIRA data matched for the demographics of 
the cohort one was training the repertoire models on. These results should encourage investigators in the future 
to study the host-specific factors that could shape the antigen-specific immune response in patients with not 
only just SARS-CoV-2 but all other insults whether they be pathogenic, autoimmune, or oncological in origin.

Another significant limitation, particularly of the ImmuneCODE database is the clinical outcomes data 
associated with the repertoire data. As was noted, not only do two of the five cohorts with patients who were 
sampled while acutely infected lack clinical outcomes data, the HUniv12Oct cohort had collected outcomes data 
at different time points with respect to the peak of infection. Given the nature of how immune responses evolves 
over the course of infection, further studies should provide more descriptive annotations of when samples were 
collected with respect to symptom onset, if/when a patient was admitted to the ICU, and if/when they recovered. 
Furthermore, sampling from multiple time points over the course of illness would also help distinguish host-
specific versus disease specific features of the immune repertoire as they relate to clinical outcomes. Since the 
cohorts of patients we studied here were only sequenced during the acute phase of their infection, one cannot 
determine if the predictive features were disease of host-specific.

In conclusion, SARS-CoV-2 represents an interesting scientific and clinical phenomena where a single patho-
gen can cause a highly variable clinical presentation, which has led scientists to look for immune related factors 
that may explain this variable presentation. Here, by applying deep learning of the immune repertoire, we reveal a 
TCR signature that is predictive of severe versus mild infection, which not only provides insight into the immune 
response to SARS-CoV-2 but also provides a framework to study host-specific differences in immune repertoire 
as they relate to clinically relevant outcomes.

Methods
Data collection and curation.  All data used in this study was collected from the publicly available 
ImmuneCODE Open Access Database19,20. Data was pre-processed and organized to be compatible with Deep-
TCR. Steps to pre-process and organize data can be found in scripts in the code repository (referenced under 
Code availability). The data in this study consists of 1) clinical metadata, 2) TCR repertoire data, and 3) antigen-
specific TCR data collected via the MIRA assay21. Severity of illness was determined either by whether the 
individual had an ICU admission (NIH/NIAID) or whether their WHO ordinal scale was greater than 4 (ISB).

Logistic regression models.  Logistic regression models were fit to predict severity of SARS-CoV-2 infec-
tion from aggregate TCR metrics provided under the ImmuneCODE database. Models were implemented with 
scikit-learn python package and performance was assessed via 2-fold cross-validation with 100 iterations to 
obtain per-sample prediction. Performance was assessed with Receiver Operating Characteristic (ROC) curves 
and Area Under Curve (AUC) measurements.

Training deep learning repertoire classifier.  DeepTCR’s multiple instance repertoire classifier was used 
to fit predictive models based on the TCR repertoires of individuals who were acutely infected with SARS-CoV-2 
and had documented clinical outcomes in terms of severity of infection. Models were fit in Monte Carlo cross-
validation fashion and per-sample predictions were averaged over all Monte Carlo simulations. All DeepTCR 
hyper-parameters can be found under training scripts within the code repository (referenced under Code avail-
ability). Performance was assessed with ROC curves and AUC measurements.

Statistical tests and machine learning models.  All statistical tests applied to data were implemented 
with the scipy.stats module. Classical machine learning techniques and performance metrics were implemented 
with scikit-learn. Deep learning models were implemented with DeepTCR (v2.0.10) python package (https://​
pypi.​org/​proje​ct/​DeepT​CR/)26.

https://pypi.org/project/DeepTCR/
https://pypi.org/project/DeepTCR/
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Data availability
All data used in this study is publicly available as part of the ImmuneCODE Open Access Database19,20 and 
available for download at https://​clien​ts.​adapt​ivebi​otech.​com/​pub/​covid-​2020.

Code availability
All code used to analyze this dataset can be found at https://​github.​com/​sidho​mj/​DeepT​CR_​COVID​19.
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