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Abstract

Models and data used to describe species–area relationships confound sam-

pling with ecological process as they fail to acknowledge that estimates of spe-

cies richness arise due to sampling. This compromises our ability to make

ecological inferences from and about species–area relationships. We develop

and illustrate hierarchical community models of abundance and frequency to

estimate species richness. The models we propose separate sampling from eco-

logical processes by explicitly accounting for the fact that sampled patches are

seldom completely covered by sampling plots and that individuals present in

the sampling plots are imperfectly detected. We propose a multispecies abun-

dance model in which community assembly is treated as the summation of

an ensemble of species-level Poisson processes and estimate patch-level species

richness as a derived parameter. We use sampling process models appropriate

for specific survey methods. We propose a multispecies frequency model that

treats the number of plots in which a species occurs as a binomial process.

We illustrate these models using data collected in surveys of early-successional

bird species and plants in young forest plantation patches. Results indicate

that only mature forest plant species deviated from the constant density

hypothesis, but the null model suggested that the deviations were too small

to alter the form of species–area relationships. Nevertheless, results from sim-

ulations clearly show that the aggregate pattern of individual species density–
area relationships and occurrence probability–area relationships can alter the

form of species–area relationships. The plant community model estimated that

only half of the species present in the regional species pool were encountered

during the survey. The modeling framework we propose explicitly accounts

for sampling processes so that ecological processes can be examined free of

sampling artefacts. Our modeling approach is extensible and could be applied

to a variety of study designs and allows the inclusion of additional environ-

mental covariates.

Introduction

The observation that species richness increases with area,

the species–area relationship (SAR), is one of the few gen-

eral laws in ecology (Lawton 1999). Many hypotheses

have been invoked to mechanistically explain this

ubiquitous pattern (Connor and McCoy 1979; Triantis

et al. 2012). Explanations commonly focus on how indi-

viduals within a community are apportioned into species,

and how the abundance of individual species scales with

area (Arrhenius 1921; Preston 1962; MacArthur and Wil-

son 1967; May 1975; Coleman et al. 1982). These
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hypotheses deal with habitat patches or island systems

and assume that population densities of individual species

remain constant irrespective of area (“constant density

hypothesis”).

Although most of the research on SARs has focused on

the functional form of SARs (Connor and McCoy 1979;

Triantis et al. 2012), how to collect the data and estimate

species richness to generate SARs has received little atten-

tion. While Scheiner (2003) provides a classification of sev-

eral types of SARs, we focus here primarily on SARs that

involve independent units, Type IV SARs (Scheiner 2003).

Classically, the data used for independent SARs have

amounted to no more than lists of species found at a num-

ber of sites such as true islands, or geographic or political

units. In most instances, no specific sampling design is dis-

cussed, and these lists often represent the combined work

of numerous naturalists who visit, collect, and describe the

species found on each site over many years. The actual sam-

pling effort devoted to produce a species list, which is likely

to be greater when the area studied is larger, is unknown,

and the “net” probability of detecting a species (i.e., detec-

tion probability of at least one individual) is expected to be

a function of sampling effort and possibly area. On the

other hand, studies of habitat patches use specific sampling

designs in which sampling effort may be held constant for

all sized patches or may increase for larger patches, but not

necessarily in direct proportion to patch area. For example,

Lynch and Whigham (1984) used point counts to estimate

species richness of birds in forest fragments with one point

used in patches <50 ha, two points in patches between 50

and 100 ha, and three points for patches above 100 ha,

even though their largest patches exceed 1000 ha. While

the authors described their sampling design, they did not

use information from the sampling design to adjust esti-

mates of species richness for differences in sampling effort

among patches. Therefore, based on current and past sam-

pling practices, SARs may be confounded with sampling

effort (Cam et al. 2002) leading to the misestimation of the

relationship between species richness and area. For exam-

ple, Connor and Simberloff (1978) found that the best pre-

dictor of plant species richness in the Galapagos Islands

was the number of botanical collecting trips to each island,

rather than island area. This illustrates that sampling effort

is an important determinant of observed species richness

and is usually confounded with island or patch area. Cam

et al. (2002) recommended that future studies of SARs

explicitly account for sampling processes so that ecological

processes could be examined free of sampling artefacts.

We have long known that the detection probability of

individuals is less than one and varies among species even

for sessile plant species (Royle and Dorazio 2008; Chen

et al. 2013). For species to be detected and enumerated in

SARs requires that individuals of species present in the

study area also be present in the subregions of the study

area that are actually sampled (Fig. 1). Unless the study

area is sampled completely, we must estimate the number

of species present in the unsampled area in addition to the

number of species undetected in the area sampled. There-

fore, the estimation of species richness should play a

prominent role in constructing SARs. The problem of esti-

mating species richness has been addressed using a variety

of methods (Gotelli and Colwell 2001; Mao and Colwell

2005; Hortal et al. 2006; Gotelli and Chao 2013), but

approaches developed in that context have seldom been

applied nor have they been adapted to the problem of esti-

mating species richness in defined areal units such as habi-

tat or true islands. One approach to SARs using these

estimators is to estimate species richness in each area first

and then regress these estimates against area (Borges et al.

2009). However, this strategy of doing “statistics on statis-

tics” uses the estimates from the first step as “true” values

without incorporating the uncertainty in the estimates in

the second step (Royle and Dorazio 2008). Furthermore,

these traditional estimators assume that net probability of

detecting a species is due to the relative abundance of spe-

cies and do not consider the role of heterogeneity of detec-

tion probability among species (Iknayan et al. 2014).

Here, we propose a framework to model SARs account-

ing for incomplete sampling using hierarchical commu-

nity models (Royle and Dorazio 2008; Iknayan et al.

2014). Hierarchical community models are ensembles of

species-level models from which community-level state

variables such as species richness can be derived (Royle

and Dorazio 2008). Hierarchical community models con-

tain both a model for the ecological process of interest,

Figure 1. Stonechat Saxicola torquata – a representative early-

successional bird species – in a young larch Larix leptolepis plantation.

A male individual perching on a planted larch.
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the abundances or frequencies of individual species at

each site, and a model for the sampling process by which

the data were generated. The central concept of our

approach is to simultaneously estimate SARs and abun-

dances or frequencies of individual species, using a model

that accounts for the imperfect detection of individuals in

the sampled area and the incomplete spatial coverage of

the study area by sampling plots. Furthermore, we con-

sider the contributions to SARs of species undetected

throughout the survey using data augmentation (Royle

and Dorazio 2008) (see Fig. 2 for a conceptualization of

our modeling framework). Because hierarchical commu-

nity models can include species-level covariates, our mod-

eling framework can relax the assumption of constant

density. For example, we can allow for positive or nega-

tive density–area relationships (DARs) for individual spe-

cies, which prevail in many landscapes (Bender et al.

1998; Connor et al. 2000; Brotons et al. 2003).

The goal of our study was first to outline an approach

to model SARs subject to incomplete sampling using a

class of multispecies abundance models. The second goal

was to outline an approach to modeling SARs using a

multispecies frequency model, specifically developed for

plant surveys. We apply these models to data sets of

early-successional birds and plants in young larch planta-

tions. While our data sets are not large, they allow us to

model SARs accounting for incomplete sampling and thus

serve as proof of concept.

Materials and Methods

An ecological process model for abundances

We propose a Poisson model for the latent patch-level

species abundance, zij, in which the abundance of species

i in patch j is as follows:

Figure 2. Conceptual framework of ecological

and sampling processes involved in modeling

species–area relationships (SARs). Abundance

of individual species in the area of interest is

determined by their densities and its area, and

true species richness is a consequence of these

abundances. Unless sampling plots cover the

area entirely, only individuals in the sampling

plots are exposed to sampling. During field

surveys, some individuals may be undetected

because of imperfect detection. SARs are

traditionally estimated using only detected

species. In this study, we propose a sampling

model to consider these two sources of

incomplete sampling separately. To account for

unobserved species due to incomplete

sampling, “potential” species with zero

detected individuals are augmented, and

combined detection histories of detected and

potential species are analyzed to estimate

abundances of individual species (including

unobserved species) in each area (denoted by

“*”). Our estimate of species richness is

obtained as a derived parameter (†, i.e., the

posterior distribution of the number of species

with at least one individual). Based on these

quantities across the species (including

unobserved species), the total abundance of

communities and the species richness are

estimated.
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zij �Poisson ðkijÞ (1)

where kij is expected abundance in the study patch.

Because the model underlying eqn 1 does not explicitly

account for the effect of area, we model the area depen-

dence of abundance for each species (indirectly, area

dependence of density) as the coefficient (b1i) of log-

transformed area (Aj) using the log link (Connor et al.

1997):

log ðkijÞ ¼ b0i þ b1i � log ðAjÞ (2)

where b0i is logarithmically transformed abundance when

area is 1 (if Aj = 1, then log(Aj) = 0, and kij = exp(b0i)).
We make b1i a free parameter rather than fixing it as 1 to

directly test hypotheses of area dependence of the densi-

ties of individual species (Connor et al. 1997).

Our model assumes that variation in abundance can be

fully explained by area. However, environmental differ-

ences among the patches could affect abundances so we

can expand eqn 2 by including additional covariates:

log ðkijÞ ¼ b0i þ b1i � log ðAjÞ þ x0jbi þ bij (3)

where x0j and bi are the patch-specific covariate(s) and

their coefficient(s), respectively. Random site effects (bij)

can be included to consider variation in abundance not

captured by area, environmental covariates, and the asso-

ciated Poisson distribution (Yamaura et al. 2012) and are

assumed to be normally distributed:

bij �Normalð0; r2bÞ: (4)

Although the single normal distribution of site effects

is shared by all species, we could use species-specific stan-

dard deviations when sufficient data are available

(Yamaura et al. 2012). The negative binomial distribution

rather than random site effects could be used to account

for extra-Poisson variation in abundance (Joseph et al.

2009). However, rather than using the negative binomial,

we suggest that other approaches that examine the effects

of unmodeled environmental covariates or intra- or inter-

specific associations among species might be more pro-

ductive (Dorazio and Connor 2014; Dorazio et al. 2015).

It is difficult to analyze rare species with traditional sta-

tistical models because of their low detection frequencies.

This is particularly important in SARs as rare species may

dominate SARs (e.g., Patterson 1987). Using the idea of

hierarchical community modeling, we assume that spe-

cies-level parameters (b0i and b1i) have normal distribu-

tions shared by all species (including rare species):

b0i �Normal ðlb0 ; r2b0Þ; b1i �Normal ðlb1 ; r2b1Þ (5)

where lb0 is the mean value of b0i, and rb0 is its standard
deviation. In this way, we can model parameters of rare

species, including species that are unobserved during the

survey with data augmentation, by borrowing information

from those of common species which are more reliably esti-

mated (Royle and Dorazio 2008) (see section on Estimating

species richness from abundance and frequency below).

A sampling process model for abundances

We next relate observations obtained from a sampling

protocol to the underlying true state variables, that is,

abundances. In our case, we specify two specific observa-

tion models to account for the fact that sampling plots

seldom completely cover the study area (incomplete spa-

tial coverage) and the imperfect detection of individuals

in the sampling plots. To address the issue of incomplete

spatial coverage, we can relate the number of individuals

exposed to sampling (Nij) to the true species abundance

in patch j by assuming that Nij increases proportionally to

the ratio of sampling area to patch area. In other words,

we assume that Nij is a binomial random variable with

probability parameter /j:

Nij �Binomial ðzij;/jÞ (6)

where /j is obtained by dividing sampled area by patch

area.

To consider imperfect detection, we can use different

detection models depending on the survey methods.

When we record simple counts of individuals, a binomial

sampling model is reasonable (Yamaura et al. 2012; Dora-

zio and Connor 2014): yijt ~ Binomial(Nij,pi) where yijt is

the number of individuals of species i in patch j detected

on visit t and pi is the probability of detecting an individ-

ual of species i conditional on presence. However, for our

bird data, we have encounter histories of individuals over

t visits (detection/nondetection of each individual on each

visit). Therefore, we model the number of individuals

detected with a multinomial mixture model in which the

vector (of length t + 1) of encounter frequencies

fyij;HgtH¼0 (where the vector is the number of individuals

of species i in patch j that were detected H = 0, 1, 2,

3,. . ., t times) is multinomial with cell probabilities

fpi;HgtH¼0 (Royle et al. 2007b):

fyij;HgtH¼0 �Multinomial ðNij; fpi;HgtH¼0Þ; (7)

where the multinomial probabilities pi;H are functions of

individual detection probability parameters, pi, that vary

among species. By convention, the “0 cell” having proba-

bility p0 corresponds to the number of individuals not

detected from among the community of species exposed

to sampling. We use a re-parameterization of the multi-

nomial model in terms of the observed frequencies only,

by “conditioning on encounter” (Appendix S1-1).
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An ecological process model for frequencies

We propose another ecological process model, a fre-

quency model, in which we use frequency (number of

sampling plots in which an individual species occurs)

rather than abundance because plant surveys usually

record the occurrence of species (binary presence/absence)

in regular-sized sampling plots (e.g., Whittaker 1956).

Species present in sampling plots are treated equally

regardless of their abundances in the plots, and frequen-

cies are usually much lower than abundances (Magurran

1988). We assume that patch-level frequency (zij) follows

a binomial distribution with plot-level occurrence proba-

bility (wij) in each patch:

zij �Binomial ðtpj;wijÞ (8)

where tpj is the number of plots that tessellate the patch

given that the whole patch is divided into equal-sized

plots. In that case, we model the area dependence of plot-

level occurrence probability in each patch using the logit-

link:

logit ðwijÞ ¼ b0i þ b1i � Aj þ x0jbi þ bij (9)

where parameters are the same as in eqn 3 except that

area is not logarithmically transformed. In this model,

values of b1i = 0 would suggest that the per area occur-

rence probability of an individual species is constant for

all size areas, and tests could be applied to examine this

assumption. We note that frequency and abundance are

different quantities, and DARs and occurrence probabil-

ity–area relationships may not be similar.

A sampling process model for frequencies

In a typical plant survey, patches are only partially cov-

ered by sampling plots. To account for incomplete spatial

coverage, we propose a sampling model linking the

observed occurrence frequency (e.g., number of occur-

rences among the sampled plots) in each patch (yij) to wij

(Yamaura et al. 2012):

yij �Binomial ðapj;wijÞ (10)

where apj is the actual number of sampling plots in patch

j and apj ≤ tpj. For our plant data, we assume perfect

detection as is usually assumed in plant surveys. However,

one could assume imperfect detection if plots are visited

more than once and occupancy models are used (Royle

and Dorazio 2008). We outline in Appendix S1-2 the

analogous model assuming imperfect detection.

We then estimate the occurrence frequency of each spe-

cies in the nonsurveyed portion of each patch z(tp – ap)ij:

z(tp – ap)ij ~ Binomial([tp – ap]j,wij) where (tp – ap)j is

the number of nonsurveyed plots. If, for example, we use

1-m2 plots and measure patch area in ha, (tp –
ap)j = 10,000 9 Aj – apj. We generate patch-level occur-

rence frequency (zij) by adding yij to z(tp – ap)ij. Using

this model structure, we assume that there are species that

only occur in the nonsampled area (i.e., species with

zij > 0 but yij = 0). We can estimate the number of spe-

cies not encountered in each patch and across patches

due to incomplete sampling using the data augmentation

technique described below (i.e., we augment potential

species with zero observed frequency in every patch).

Estimating species richness from abundance
and frequency

A key aspect of formal inference about biological commu-

nities from field survey data is that we cannot expect to

observe all of the species in the community, S. While our

ecological process models described above apply to all

species in the community, our sampling of the commu-

nity yields data that is biased to favor species that are

both more abundant or more frequent and also more

highly detectable. Species that go undetected by the field

survey, either because they occur in the region outside

the sampled patches, or because they occur only in areas

of the patches that were not covered by sampling plots,

or because they occur on sampling plots but were unde-

tected, exist as all-zero encounter histories, and it is

unknown how many of such all-zero encounter histories

there are at each sampled location, and indeed among all

sampled locations. To account for this realistic situation,

we put a prior distribution on the unknown quantity S

and treat it as a parameter to be estimated along with the

other structural parameters of the model (the coefficients

of the covariates and so forth).

The fact that S is an unknown parameter that must be

estimated induces some special difficulties in the fitting of

such models. Namely, the number of parameters of the

model itself is an unknown quantity. That is, because we

assume that abundances or frequencies and detection

probabilities are different for each species in the commu-

nity, the number of such species-specific parameters is a

multiple of S. This problem of a “variable dimension

parameter space” has received much attention in the sta-

tistical literature where it is commonly addressed by the

method of Reversible Jump Markov chain Monte Carlo

sampling MCMC (King and Brooks 2008; Gimenez et al.

2009; King et al. 2010), and also the method of data aug-

mentation (Royle et al. 2007a). We adopt the method of

data augmentation here as in the models we have previ-

ously developed (Yamaura et al. 2011, 2012, 2016).

A heuristic explanation of data augmentation is as fol-

lows: we know that unobserved species in our sample

must possess an “all-zero” encounter history. Therefore,
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we add to our data set a large but fixed number, M, of

artificial species with all-zero encounter histories. We esti-

mate the proportion (X) of these species, which are

exposed/available to the field survey, among the aug-

mented M species – the “presence” species. That is,

instead of estimating S, the unknown size of the true

community, we fix its upper limit at M and estimate the

parameter X. The key technical aspect of data augmenta-

tion is that estimation of X (for fixed M) and estimation

of S are statistically equivalent problems (Royle et al.

2007a; Royle and Dorazio 2012), but the former is some-

what easier to deal with in practice, especially using

modern computing software for Bayesian analysis (BUGS,

JAGS). Specifically, we can formulate whether an

individual species is a member of the community

using an indicator variable, wi, and the Bernoulli distribu-

tion: wi ~ Bernoulli(X). We then modify the ecological

Poisson process model of abundance:

zij � Poissonðwi� kijÞ or the binomial process model of

frequency: zij �Binomialðwi � wijÞ. This formulation leads

to structural zeros for encounter histories (yij = 0) of the

species that are not incorporated in the community (as

wi = 0 and therefore zij is always zero). However, for spe-

cies incorporated in the community (zij ≥ 0 and wi = 1),

abundance and detection histories of unobserved species

are sampling zeros, rather than structural zeros.

In our model, S is the number of species in the com-

munity that was sampled. Our explicit sampling model

includes two levels of sampling: a sample of patches is

selected from the region harboring the community of S

species. Secondly, in each patch, we carry out a survey to

detect and count species. Therefore, the number of unob-

served species (species with detection histories of all

yij = 0), which we aim to estimate, includes two classes of

species; first, there are species that occur on the sampled

patches but that went undetected by the survey activity in

the sampling plots within those patches; second, there are

species that occur in the community of S species but do

not occur on any of the sampled patches. Note that we

do not include the number of the first class of unob-

served species as an explicit parameter in the model but

obtain it as a derived parameter because it is completely

determined by the parameter S and also the individual

species-level abundance states. That is, by estimating

abundance or frequency, zij, for species i in the commu-

nity at sampled patch j and then summing up the num-

ber of species that exist (have zij > 0), we can tabulate the

number of species occurring on the sampled patches. See

Appendix S1-3 for alternative approaches to estimating

patch-specific species richness.

We can obtain the number of the second class of unob-

served species as the number of species that do not occur

on the sampling plots (have zij = 0 for all patches) but

are incorporated in the community (have wi = 1). There-

fore, we can distinguish between these two types of unde-

tected species because our sampling model deals with

them explicitly. On the other hand, sometimes the sam-

pled patches do not represent an explicit sample from

some well-defined landscape and therefore, in general, the

parameter S is mainly an abstract quantity representing

the number of species that exist in some large landscape

of which our sample is representative (K�ery and Royle

2009). Under the model, for a fixed value of S, if we

made predictions for a set of patches, then the predicted

number of species on that set of patches would increase

to S as we increased the number or area of such patches.

Study area and field sampling

We conducted field surveys of young larch plantation

patches in the eastern Tokachi plain (Urahoro and Ikeda

town), eastern Hokkaido, northern Japan (42°540N,
143°360E). We selected 13 young larch plantation patches

varying in size from 1.3 to 10 ha (Appendix S2). All

patches were surrounded by mature natural or plantation

forests, were more than 35 m from other open land uses

(e.g., arable fields), and were separated by at least 1.6 km

from each other. All patches were 4–6 years old and cre-

ated by cutting mature plantations and re-planting

larches.

We surveyed birds using territory mapping during the

breeding season of 2011 (Bibby et al. 2000). A single

observer (Y.Y.) visited each patch five times walking a

100-m-wide transect that covered the entire area of each

patch. We clustered detections into putative territories

based on territorial conflicts, other behavioral observa-

tions, and knowledge of territory size to create encounter

histories describing the pattern of detection (y = 1) or

nondetection (y = 0) for each territory. For example, the

encounter history [00100] indicates a territory that was

only detected during the third visit. We counted the

number of territories detected one to five times at each

patch for each species, fyij;Hg5H¼1.

We surveyed plants during the summer of 2011 by

establishing a square grid of 1 9 1 m2 plots spaced 25 m

apart for each patch. The number of sampling plots per

patch varied from 20 to 161 depending on patch area.

We recorded the plant species occurring in each plot,

excluding planted larches. Most patches had a sample

density of approximately 16 plots per ha. However, in

three patches that were partially weeded prior to the

survey, we only established plots in the unweeded area

(75–90% of patch area: Appendix S2).

We categorized bird species into early-successional and

mature forest species and plant species into early-succes-

sional, mature forest, and exotic species based on
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previous studies and local expert opinion (Yamaura et al.

2012). Species in the same group may have similar

responses to patch area. We treated exotic species as a

single group. For birds, we only used data on early-suc-

cessional species as they nested and foraged within the

patches. Only a few transient individuals of mature forest

species entered the patches.

Model applications to the data

We fit abundance and frequency models to bird and plant

data, respectively. We used patch area as the only covari-

ate for both taxa. However, we included random site

effects because factors other than patch area (e.g., stand

age and topography) could still affect the distributions of

individual species. For birds, we used the number of terri-

tories as an index of bird abundance and did not consider

incomplete spatial coverage because our survey transects

covered all patches entirely (Nij = zij). For plants, we

assumed perfect detection because we tried to identify all

species in the plots irrespective of time (e.g., we took

more than 20 min per species-rich plot: Yamaura et al.

2012). Because we categorized plant species into one of

three groups, we used separate normal distributions with

group-specific hyperparameters for intercepts and slopes

(Yamaura et al. 2012), for example, b1i �Normal

ðlb1;group½i� ; r2b1;group½i� Þ. We assigned undetected species esti-

mated to be present into one of the groups based on the

observed proportions of species detected in each group

using a Dirichlet distribution (Yamaura et al. 2011, 2012:

see Appendix S1-4 for details). We then model their

occurrence probabilities and frequencies with group-level

hyperparameters.

Parameter estimation and model
assessment

We estimated model parameters by computing posterior

distributions using Markov chain Monte Carlo sampling

(MCMC) with JAGS ver. 3.2.0 (Plummer 2012), R2jags

ver. 0.03-08 (Su and Yajima 2012), and R ver. 2.14.1 (R

Development Core Team 2012) (see Appendix S1-5 for

details). We augmented the plant data set with 1000

potential species that might have been present yet unde-

tected. These numbers have to be larger than potential

numbers of undetected species, but not so large as to

unnecessarily extend computation time (Royle and Dora-

zio 2008). Because the posterior distribution of inclusion

probability (Ω), which indicates the proportion of species

that would be present among the augmented species, was

well below 1 (median <0.52), the number of augmented

plant species was sufficiently large (Royle and Dorazio

2008). We obtained a similar estimate of species richness

when we used 2000 potential species. However, for birds,

the upper limit of the 95% CI reached 1 and suggested

that the regional species pool included an additional 32

early-successional bird species (50 potential species were

added). Nevertheless, based on expert knowledge, few if

any early-successional bird species that could occur in

early-successional forests in this region were undetected

(Y. Yamaura, pers. obs.). Therefore, we fit the abundance

model to the bird data without using data augmentation.

We estimated patch-specific bird abundance and plant

frequency of all species for patches with areas ranging

from 0.01 to 10 ha for birds and 0.0001 to 10 ha for

plants using the multispecies models described above with

random site effects. Given the predicted abundance or

frequency of individual species, we enumerated the num-

ber of species predicted to occur (i.e., have at least one

individual) in each patch, that is, we obtained the esti-

mates of species richness for each patch as a derived

parameter. These estimates account for individuals pre-

sent but undetected in the sampling plots and for individ-

uals in the areas of the patches that were not subject to

sampling for both detected and undetected species. We

also obtained estimates of group-specific frequency and

species richness for plants.

It is not straightforward to test the effects of DARs on

the form of SARs and abundance–area relationships even

using the community-level hyperparameters because com-

munity-level properties (e.g., species richness, total abun-

dance) are derived parameters. We assessed the effects of

DARs on SARs and abundance/frequency–area relation-

ships by fitting the abundance model with b1i = 1 and

the frequency model b1i = 0 for all species and with stan-

dard deviations = 0. We call these models “null models,”

and this procedure is equivalent to comparing the con-

stant density or occurrence probability hypothesis to a

hypothesis in which b1i is a free parameter (see

Appendix S1-6 for details). To make these “null models”

strictly comparable to the models we fit to the data, we

included random site effects as these were also included

in the fitted models. We also conducted a set of simula-

tions to confirm our suspicion that the aggregate patterns

of DARs within a community could affect the form of

SARs (see Appendix S3 for details).

Results

Abundance model for birds

Although we observed 39 bird species within patches and

in mature forest adjacent to patches, mature forest species

were transient and rarely detected on more than one visit.

We encountered 150 territories of the 12 strictly early-

successional species. Community-level detectability
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(individual-level detection probability averaged across

species, �p), which was derived from the posterior median

of the hyperparameter, was 0.66 (0.53–0.73). This suggests
that each territory would be detected at least once if sites

were visited five times (>99%). Indeed, estimated species

richness and community-level (total) abundance at each

site were not different from the observed values (Fig. 3A,

B). Estimated species richness increased with patch area

as a saturating curve. The confidence intervals for the

effect of area at individual and community levels (b1i and
�b1) included 1, indicating that all of these bird species

showed no dependence of density on patch area

(Fig. 3C). Indeed, predicted values of species richness and

total abundance from multispecies models were quite

similar to those from null models assuming constant den-

sity (Fig. 3A,B).

Frequency model for plants

We identified 314 plant species in the field and grouped

them into 114 early-successional, 177 mature forest, and

23 exotic species. The regional species richness (S) was

estimated to be 689 (503–1095), indicating that we

would encounter an additional 375 (189–781) species if

we surveyed most of this habitat in the region. When

species richness is estimated accounting for incomplete

spatial coverage, richness estimates are substantially

higher than naive estimates simply based on the number

of species detected in each patch (Fig. 4). This is

because the naive estimates are strongly biased underesti-

mates of species richness. In contrast to bird species

richness, plant species richness was predicted to depend

very weakly on patch area across the sampled range of

patch areas (Fig. 4). Model extrapolation to patches

smaller than the sampled patches suggested that species

richness would decline as expected in very small patches

(<1 ha).

Neither community- or group-level SARs or fre-

quency–area relationships deviated from predictions of

null models (Figs 4 and 5), and neither early-succes-

sional or exotic species showed area dependence of

occurrence probability (Fig. 6). However, for many

mature forest plant species, the posterior distribution of

b1i slightly favored negative values, and the group-level

mean value (�b1) was significantly less than 0 (Fig. 6C).

This indicates that many mature forest plant species col-

lectively showed a slight tendency to be more common

in small patches. Nevertheless, predicted SARs and fre-

quency–area relationships of mature forest plant species

were almost the same as those from null models

(Figs 4C and 5C), indicating that these negative occur-

rence probability–area relationships were not strong

enough to change the form of SARs and frequency–area
relationships.
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Figure 3. Species richness, total abundance,

and b1i values for early-successional bird

species in larch plantation patches. (A) Species

richness and (B) total community abundance as

a function of patch area. Solid and dotted

black lines indicate the median and 95% CIs

derived from multispecies abundance model

(HM), respectively. Vertical line indicates the

smallest area of our sampled patches.

Estimated values smaller than this area are

derived from extrapolation of the model. Solid

and dotted gray lines were predictions from

null models under constant density hypothesis.

Due to high detection probability of bird

species, observed species richness and

abundances were equal to their estimated

values. (C) Estimated values of b1i from the

abundance model for each species. Solid line is

the median and the inner and outer dotted

lines are the 50% and 95% CIs, respectively.

The rightmost box and vertical bar indicate the

median, 50%, and 95% CIs of the estimated

community-level hyperparameter (mean value
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Figure 4. Plant species richness in relation to

area of larch patches for (A) the entire plant

community, (B) early-successional species, (C)

mature forest species, and (D) exotic species.

Estimated values were derived from the

multispecies frequency model. See Figure 3 for

detailed descriptions of symbols. Four figures

have different ranges of vertical axes. Although

we encountered 314 species throughout the

survey, we only observed a subset of these

species in each patch because of the field

survey did not cover the entire area of each

patch (incomplete spatial coverage). Hence,

our estimated values for species richness which

account for incomplete spatial coverage are

substantially higher than the observed values

of species richness.
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Discussion

Modeling SARs subject to incomplete
sampling

Species–area relationships are consequences of ecological

processes by which species with at least one individual are

added into communities as patch area increases. We

model SARs by modeling the patch-specific abundance or

frequency of each species. Echoing the call to separate

sampling processes from ecological processes (Cam et al.

2002), we estimated SARs with an explicit sampling

model to account for imperfect detection and incomplete

spatial coverage separately. Our models account for the

sampling process by accommodating the imperfect detec-

tion of individuals within the sampling plots, and the

individuals ignored in areas of the patch not covered by

sampling plots. Previous attempts to model SARs that

have not explicitly accounted for these two forms of sam-

pling incompleteness almost certainly underestimate spe-

cies richness. Our approach requires an explicit sampling

model and a sampling design that includes repeated

observations on each study patch to account for imperfect

detection. It is not an alternative way to analyze legacy

SAR data as most of these data sets were generated with-

out using a specific sampling design, without estimating

patch and species-specific abundances, and without mak-

ing repeated observations on each study patch.

The modeling approach we propose can accommodate

a variety of sampling methods by adopting appropriate

models of the sampling process. In this study, we adopted

a territory mapping method for birds and considered

imperfect detection using a capture–recapture model.

However, one of the most widely adopted sampling meth-

ods is counting “unmarked” individuals from repeated

visits, and we can treat this type of data with a binomial

mixture model (Yamaura et al. 2012; Dorazio and Con-

nor 2014). As we also develop a multispecies frequency

model, we can deal with binary plot data in which we

record species occurring in each plot. Other sampling

methods can be accommodated by application of an

appropriate sampling model.

We modeled community assembly as a summation of an

ensemble of species-level Poisson or binomial processes and

estimate a scaling parameter linking abundance or frequency

of individual species and patch area from the data, rather

than treating it as a fixed parameter. Community-level

properties including species richness and its dependence on

area (SARs and abundance/frequency–area relationships)

are obtained as derived parameters of a hierarchical model.

Models of SARs under the random placement hypothesis

(Arrhenius 1921; Coleman et al. 1982) are simply special

cases of the Poisson abundance model that we propose with

the scaling parameter b1i equal to 1. However, unlike the

random placement model, we treat the zij (species- and

patch-specific abundances or frequencies) as estimable
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parameters subject to sampling, rather than as fixed known

values. Given that our model is extensible and other covari-

ates could be included, it will be productive to examine their

effects on community-level properties.

Accounting for the existence of undetected species

throughout the study area is also at the core of our

approach to modeling SARs. We used parameter expanded

data augmentation to allow us to estimate the number of

undetected species in each patch and in the set of

patches, as do traditional species richness estimators (see

Appendix S4 for a comparison of species richness estimates

from our multispecies models and traditional species rich-

ness estimators). Model application to the plant data sug-

gests that 375 (95% CI: 189–781) plant species would be

undetected among the regional species pool, which is rea-

sonable because most plant species were rarely encoun-

tered. Indeed, based on the knowledge of the regional

flora, we expect that approximately 400 additional plant

species could occur in these habitats (K. Ito, pers. obs.).

We note that our plant survey only covered 0.14% of the

total area of the study patches, and there were large differ-

ences between observed and estimated values for plant spe-

cies richness and plant species frequencies (Figs 4 and 5).

On the other hand, data augmentation did not perform

well in estimating the species richness for birds. A possible

explanation for this failure is that the number of unde-

tected species was nonidentifiable due either to the sparse

data or excessive heterogeneity among the species (Dorazio

and Royle 2003). For example, we only detected 12 species,

and many of them were rarely detected. One solution in

this case may be to fix the upper bound of species richness

from expert knowledge of the regional species pool (Dora-

zio et al. 2011).

Relaxation of constant density hypothesis

Although existing models of SARs assume that densities

of individual species are constant (Preston 1962;

MacArthur and Wilson 1967; May 1975; Coleman et al.

1982; Williams 1995), the literature has increasingly

shown that individual species display a variety of DARs

(Bender et al. 1998; Connor et al. 2000; Brotons et al.

2003). We relaxed the constant density hypothesis in

our models and also conducted simulation experiments

(Appendix S3). While our plant and bird data did not

show that DARs affect the form of SARs, this is

expected given the small size and narrow range of patch

sizes in our field study. However, results from the simu-

lations clearly showed that the aggregate pattern of indi-

vidual species DARs and occurrence probability–area
relationships can alter the form of SARs. In general,

communities with greater proportions of species with

negative DARs (edge species) or occurrence probability–

area relationships tend to have SARs with lower slopes

(Appendix S3).

Model application to the field data found no bird species

preferred large patches (b1i = 1) (Fig. 3C), suggesting that

for these species small patches have the same value per unit

area as large patches. However, for birds, our data focused

on early-successional species in small plantation patches

(<10 ha), so it is not surprising that bird species showed no

area dependence of densities unlike studies on birds that

covered a wider range of patch areas (Guadagnin et al. 2009;

Bidwell et al. 2014; Dorazio and Connor 2014). On the other

hand, we found that mature forest plant species as a group

showed slightly higher occurrence probabilities in small

patches (Fig. 6), which may be due to the existence of posi-

tive edge effects and immigration from surrounding mature

forests (Bowman et al. 2002). However, comparisons

between the SARs estimated from our models and those gen-

erated under null models assuming constant occurrence

probability suggest that the observed deviations were not

large enough to alter the form of SARs (Figs 4 and 5).

Conclusions

By modeling community assembly as the summation of an

ensemble of species-level Poisson or binomial processes,

we have attempted to explicitly unify the study of species-

and community-level patterns of abundance/frequency and

species richness. Our approach perceives the estimation of

SARs as a problem of accurately and efficiently estimating

the abundances or frequencies of each species in each study

patch. The desire to unify species- and community-level

processes has long been a theme in ecology (Preston 1962;

MacArthur and Wilson 1967; May 1975; Coleman et al.

1982; Williams 1995; He and Legendre 2002; Ovaskainen

and Hanski 2003). As it has long been known that com-

plete sampling is rarely attained, we suggest that without

considering the sampling processes that generate the data

such unification would remain problematic.

While the approach we propose requires substantially

more data to implement than has historically been used

to estimate SARs, it yields a much richer array of infor-

mation about the scaling of species abundances or fre-

quencies, and species richness with area. Most

importantly, our approach explicitly separates sampling

processes from the estimation of ecological processes

and by doing so should yield a clearer picture of the

ecology that underlies SARs and DARs.
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