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Abstract
Ovarian cancer, the most deadly gynecological malignancy in U.S. women, metastasizes uniquely, spreading
through the peritoneal cavity and often generating widespread metastatic sites before diagnosis. The vast majority
of ovarian cancer cases occur in women over 40 and the median age at diagnosis is 63. Additionally, elderly
women receive poorer prognoses when diagnosed with ovarian cancer. Despite age being a significant risk factor
for the development of this cancer, there are little published data which address the impact of aging on ovarian
cancer metastasis. Here we report that the aged host is more susceptible to metastatic success using two murine
syngeneic allograft models of ovarian cancer metastasis. This age-related increase in metastatic tumor burden
corresponds with an increase in tumor infiltrating lymphocytes (TILs) in tumor-bearing mice and alteration of B cell-
related pathways in gonadal adipose tissue. Based on this work, further studies elucidating the status of B cell TILs
in mouse models of metastasis and human tumors in the context of aging are warranted.
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Introduction
Ovarian cancer (OvCa) is the leading cause of death due to
gynecological malignancy in women in the United States. Often
diagnosed with metastases, patients with ovarian cancer receive poor
prognoses [1]. The vast majority of OvCas are epithelial in origin with
predominantly serous (70%–85%) and endometrioid (10%) histotypes
[2,3]. OvCa metastasizes uniquely when tumor cells or multicellular
aggregates detach from the primary tumor and disseminate throughout
the peritoneal cavity, forming metastatic sites on the peritoneum [1].
Additionally, hematogenous metastasis with metastatic homing to the
ovary has been seen in model systems [4,5].
Aging is a significant risk factor and prognostic factor for women

with OvCa, wherein the median age at diagnosis is 63 [6].
Furthermore, elderly patients have poorer prognoses, with unfavor-
able progression-free survival (PFS) and overall survival associated
with increased age [7–11]. While treatment disparities in the elderly
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may contribute to this difference, the aged host may also be more
susceptible to disease progression. There is a paucity of studies
addressing the impact of aging on OvCa metastasis.

The fact that OvCa is so often diagnosed at metastatic stages of the
disease confounds the ability of researchers to draw conclusions about
the relationship between metastasis and age from patient data. Thus,
to evaluate this relationship, research models of metastasis are
required. In vitro models using human omental mesothelial cells
(HOMCs) have demonstrated that HOMCs from elderly patients are
in a pro-inflammatory state [12]. Another study showed an increase in
adhesion of OvCa cells to HOMCs in a state of induced senescence
in vitro [13]. While a single ovarian cancer metastasis study has
utilized middle-aged mice [14], studies designed to evaluate the
impact of age on metastasis in vivo have not been reported.

The purpose of this study was to test the hypothesis that age
impacts the metastatic outcome of OvCa. Here we utilize distinct
syngeneic murine models of OvCa metastasis to demonstrate that age
increases the susceptibility of the host to metastasis. Our data suggest
that the immune composition of aged peritoneal adipose tissue,
specifically B cells, may contribute to this age-related disparity in
metastasis.
A

B C

D

Figure 1. Short-term in vivo assay of ID8 cell adhesion to peritoneal ad
Mouse ages were chosen based on work by the Harrison Laboratory
images. Young (Y) and Aged (A) mice were injected IP with 4.3x106

peritoneal adipose depots were dissected and imaged ex vivo using
organ-specific tumor cell adhesion. Tumor cell adhesion area (C) was q
Omen P = .01; FatR P = .05; Mes P = .004. Tumor cell adhesion a
organs. N = 10. For Omen P = .07; Mes P = .003. Double asterisk
Materials and Methods

Murine Aging Models
Two age groups of C57Bl/6 female mice (Jackson Laboratories)

were used for this study. Retired breeders were purchased around
8 months of age and allowed to age until they reached 20 months, at
which point they are devoid of ovarian follicles [15]. Young mice were
bred once beginning at 8 weeks and were used between 4–6 months
of age. Mouse age time points were chosen based on research on
mouse-human lifespan equivalencies [16]. In this murine model of
aging, mice 3–6 months (young) and 20–23 months (aged)
correspond to humans 20–30 and 60–67 years of age, respectively
(Figure 1A). The same methods were used for experiments with FVB/
NJ mice (Jackson Laboratories), which have a comparable lifespan to
C57Bl/6 mice [17]. All animal procedures were carried out according
to the regulations of the Institutional Animal Care and Use
Committee at The University of Notre Dame.

Murine Allograft Models
Two allograft models were utilized in this study. Parental ID8 cells,

a C57Bl/6 syngeneic mouse ovarian surface epithelial (MOSE) cell
ipose tissues. A. Mouse ages and equivalent ages in human years.
at Jackson Laboratories [16]. B. Representative tumor cell adhesion
ID8 cells tagged with RFP and sacrificed the following day. Major
the Bruker In Vivo Xtreme imaging system. C, D. Quantification of
uantified using ImageJ as described in Materials andMethods. For
rea fraction (D) was quantified by adjusting for the weight of the
indicates P b .05, single asterisk indicates P b .1.
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line [18], were tagged with red fluorescent protein (RFP) and
maintained as previously described [19]. ID8 cells with a CRISPR/
Cas9-generated Trp53 gene deletion (designated ID8-Trp53−/−) were
generously provided by Dr. McNeish, Glasgow, UK [20] and were
RFP-tagged. Cells derived from the oviductal epithelium of FVB/NJ
mice and genetically engineered to lack PTEN expression and express
oncogenic KRAS [21] (FVB/N-PTENshRNA/KRASG12V) were
generously provided by Dr. Burdette, Chicago, USA, and were
maintained and RFP-tagged as previously described [19,21].
C57Bl/6 young and aged mice (n = 14) were intraperitoneally (IP)

injected on the right side of the peritoneal cavity with ID8-RFP cells
(3.7x106) or ID8-Trp53−/−-RFP cells (8.7x106) to model dissemi-
nation and colonization events of ovarian cancer metastasis. Mice
were imaged under isoflurane anesthesia using the Bruker Xtreme
In Vivo Imaging system and were observed for signs of lethargy or ascites
accumulation. Mice were sacrificed by CO2 anesthesia followed by
cervical dislocation. If present, ascites was harvested and volume
noted. The ventral skin was pulled away and the peritoneal cavity was
exposed with incisions down the center and the sides of the ventral
parietal peritoneum. The abdominal organs were scanned in situ
[19,22], then the organs were removed and imaged ex vivo. Note that
because tumor cells were injected on the right side, the right and left
B C

D
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Figure 2. Evaluation of ID8 tumor burden in situ of young (Y) and aged
C57Bl/6 aging cohorts. Mice were injected IP with 3.7x106 ID8 mou
anesthesia at 4.5, 5.5, 6.5 and 7.5 weeks post injection to monitor tu
4 weeks. B. Abdominal ID8 tumor burden in situ. Mice were sacrifi
exposed and imaged. C, D. Quantification of abdominal tumor burd
quantified by dividing either the tumor area or the tumor intensity by t
tumor area and tumor intensity are .02 and .03, respectively. Double
fat pads were analyzed separately, such that lesions on the left side
(designated FatL) represent metastatic seeding whereas the right fat
pad (FatR) underwent injection. Images underwent spectral
unmixing as previously described [22]. Using ImageJ, tumor burden
was analyzed by calculating the tumor area and the intensity of the
RFP signal (Raw Integrated Density). In the case of abdominal
images, the measurements were corrected using the adjusted body
weight of the mouse (weight2/3). The adjusted weight of the organs
(weight2/3) was used to control for animal-to-animal differences in
organ size. Statistical analysis used Student's T-test. Studies using
FVB/N-PTENshRNA/KRASG12V cells were conducted in parallel
fashion following IP injection of cells (3.4x106) into young and aged
FVB/NJ mice (n = 14). At ~4.5 weeks, mice were sacrificed and
abdominal and organ tumor burden was assessed as described above.

In Vivo Adhesion Assay
To evaluate early events in in vivo adhesion [23], young and aged

C57Bl/6 mice (n = 10) were injected IP with 4.3x106 ID8-RFP cells,
sacrificed the following day, and excised peritoneal fat depots were
rinsed with PBS and imaged as described [19,22]. RFP signal was
quantified using ImageJ. Statistical analysis was carried out using
Student's T-test. The FVB/N-PTENshRNA/KRASG12V in vivo
(A) C57Bl/6 mice. A. Longitudinal imaging of tumor progression in
se ovarian cancer cells tagged with RFP and were imaged under
mor progression. Individual mice were followed over the course of
ced at 8 weeks post IP injection and each abdominal cavity was
en. Abdominal tumor area (C) and intensity (D), respectively, were
he scale-adjusted body weight of each mouse. N = 14. P-values for
asterisk indicates P b .05.

Image of Figure 2
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Figure 3. Evaluation of organ-specific ID8 tumor burden of young (Y) and aged (A) C57Bl/6 mice A. Representative tumor burden images.
Individual organs were dissected from the mouse peritoneal cavity and imaged ex vivo. B. Quantification of organ specific tumor burden.
The Organ Area Fraction was quantified by dividing the tumor area by the adjusted organ weight. Organs with significant differences
between aged groups are shown, with the omentum as reference. N = 14. For Ovary P = .07; Mes P = .07; FatL P = .02; FatR P = .07.
Double asterisk indicates P b .05, single asterisk indicates P b .1.
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adhesion study was carried out in a parallel fashion (3.2 x106

PTENshRNA/KRASG12V-RFP cells were injected into young and aged
FVB mice, n = 10 and 9 respectively).

Histological Analysis
Organs were fixed in 10% formalin and paraffin embedded. Tissue

sections were stained with H&E according to the specifications of
Leica's H&E protocol using SelecTech Define MX-aq, SelecTech
Blue Buffer 8, SelecTech Hematoxylin 560 MX, SelecTech Alcoholic
Eosin 515. Immunohistochemical analysis of CD45R (protein
tyrosine phosphatase receptor type C; lymphocyte common antigen)
was performed as described [19] using rat monoclonal anti-CD45R
(clone RA3-6B2, 1:800 dilution). Anti-rat IgG and peroxidase
detection system reagents (DAB chromogen) were purchased from
Abcam, Vector Laboratories, and BioGenex, respectively. Slides were
scanned into the eSlide Manager database (version 12.3.2.5030) with
the Aperio ScanScope CS (Leica, Biosystems, Inc.). Using Aperio
macros, the number of cells stained with DAB chromogen and the
total number of cells in tumor sections were quantified. Statistical
analysis was carried out using a Student's T-test.

RNA Isolation, RNAseq and Bioinformatics
Gonadal fat was harvested from young and agedmice (n = 4), placed

into QIAzol Lysis Reagent (RNeasy Plus Universal Kit), homogenized
and RNA was isolated according to the manufacturer's protocol. The
NotreDameGenomics andBioinformatics Core Facility carried out the
RNAseq and bioinformatics analyses. All samples had an RNA Integrity
Number (RIN) value greater than or equal to 9. Libraries were
constructed using the TruSeqRNA Sample PrepKit v2 set A andGuide
15,026,495 Rev. F (Illumina, Inc., San Diego, CA). To calculate final
library concentration, the quantity and average fragment length was
measured using the Agilent Bioanalyzer DNA 7500 Assay (Agilent
Technologies, Santa Clara, CA) andQubitDNAHigh Sensitivity Assay
(Life Technologies Corp.). Libraries were normalized to 20 nM in
Buffer EB (Qiagen, Santa Clarita, CA). Equal molar amounts were
combined for 100-bp paired-end sequencing on two lanes of
HiSeq2500. An average of 46 million raw reads were obtained per
sample. Raw sequences were trimmed with Trimmomatic [24] v0.32
and assessed for quality with FastQC [25] v0.11.2. Trimmed sequences
were aligned to the Mus_musculus.GRCm38 Ensembl version of the
mouse genome, using Mus_musculus.GRCm38.81 annotations, [26]
with TopHat2 [27], v2.0.11.Linux_x86_64, using Bowtie 2 [28],
v2.2.2. Corresponding alignments were sorted with SAMtools [29],
v0.1.19. Read counts were generated with HTSeq-count [30], v0.6.1,
and were merged with a python script [31]. Subsequent statistics were
completed in R [32], v3.1.0, implementing the EdgeR library [33–35].
Gene names and GO terms were identified using the Ensemble version
of BioMart [36]. Metacore Pathway Analysis and Ingenuity Pathway
Analysis (IPA) were used to view pathways enriched in differentially
expressed genes using a cutoff of P = .05.

Quantitative Real-Time PCR
RNA from gonadal adipose tissue was converted to cDNA using a

QuantiTect Reverse Transcription Kit (QIAGEN) according to the
manufacturer's specifications. qRT-PCR reactions were set up using
iTAQ Universal SYBER Green Supermix (BIO-RAD) according to
the manufacturer's specifications. A StepOnePlus Real-Time PCR
Thermal Cycler System (Applied Biosystems, StepOne Software
V2.2.2) was used for qPCR. Primers were custom ordered from
Integrated DNA Technologies (Coralville, Iowa). Primers are listed in

Image of Figure 3


Figure 4. RNASeq analysis of gonadal adipose tissue. A. Representation of differentially regulated pathways in aged gonadal adipose.
RNA harvested from gonadal adipose was subjected to RNASeq analysis using the HiSeq2500. Raw sequences were processed and
evaluated using Metacore Pathway Analysis. The top 20 pathways from Metacore Pathway Analysis are shown. B, C. IHC analysis of
tumor infiltrating lymphocytes in C57Bl/6 ID8 tumor tissue. CD45R+ lymphocytes in (B) mesentery and (C) omental tumor sections were
identified by staining with an anti-CD45R antibody (1:800 dilution) followed by a peroxidase-conjugated anti-rat-IgG and peroxidase
detection using DAB as described in Methods. Representative images of young and aged tumor tissues are shown. Analysis was carried
out with the Aperio Image Analysis Tools package. N = 13, 14 for young (Y), aged (A), respectively. Scale bar = 100 μm. Triple asterisk
indicates P b .01, double asterisk indicates P b .05.
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Supplemental Table 1. RSP13 and HPRT were used as endogenous
controls to calculate ΔCt values. PCR thermal cycling conditions were as
follows: 95 °C for 10 minutes followed by 40 cycles of 95 °C for
15 seconds and 60 °C for 60 seconds. Biological replicates of n = 4 and
three technical replicates were utilized for each experiment. The
nonparametric Mann–Whitney U Test was selected to determine if
ΔCt values of the young and aged samples were significantly different from
each other (significance cutoff P = .05, analysis carried out in R [32]).

Image of Figure 4


Table 1. qRT-PCR validation panel of B cell related genes upregulated in aged mice. The
differential expression of prominent genes in pathways involving B cells in the RNAseq dataset was
quantified using qRT-PCR, as described in Materials and Methods. Two normalizer genes, RSP13
and HPRT, were utilized and showed a similar trend N = 4.

Gene RSP13 HPRT

Average Fold Change P-Value Average Fold Change P-Value

Bank1 8.57 .057 9.18 .029
Blnk 15.78 .057 16.90 .029
Card11 9.59 .029 10.27 .029
CD22 18.25 .029 19.54 .029
CD72 15.45 .029 16.54 .029
CD79a 29.68 .029 31.78 .029
CD79b 26.55 .029 28.43 .029
Ikzf3 11.52 .029 12.34 .029
Pax5 15.78 .029 16.90 .029
Prkcb 6.20 .057 6.64 .029
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Results
Epidemiologic data indicate that older women are at greater risk for
developing ovarian cancer and receive worse prognoses than younger
women [6,8]. As the impact of age on ovarian cancer metastasis has
not been evaluated in vivo, two syngeneic allograft models of aging
and metastasis were selected; the C57Bl/6 ID8 and the FVB/N-
PTENshRNA/KRASG12V models [18,21]. To explore how age
impacts initial adhesion in vivo, young and aged C57Bl/6 mice
(Figure 1A) were injected IP with ID8-RFP cells (4.3x106) and
sacrificed the following day. Peritoneal adipose tissues, the earliest sites
of adhesion in this mouse model of metastasis, were imaged ex vivo and
A
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Figure 5. Evaluation of ID8-Trp53−/−-RFP tumor burden of young (Y)
Trp53−/−-RFP tumor burden in situ. Mice were injected IP with 8.7x10
were sacrificed at 5.5 weeks post IP injection and each abdominal
intensity (B), respectively, were quantified by dividing either the tumo
each mouse. N = 14. P-values for tumor area and tumor intensity are
tumor burden. The organ area fraction (C) and intensity (D) were calc
weight. N = 14. Triple asterisk indicates P b .01, single asterisk indic
analyzed for tumor cell adhesion. Increased tumor cell adhesion was
observed to aged adipose tissues relative to the corresponding tissues in
young mice (Figure 1B-D).

To investigate if the aged host is more susceptible to metastatic
success over an extended period of time during which tumor cells
survive and proliferate, young and aged C57Bl/6 mice were injected IP
with ID8-RFP cells (3.7x106) and were imaged longitudinally
beginning at 4.5 weeks to monitor tumor progression. Live imaging
demonstrated that aged mice developed greater metastatic burden
(Figure 2A). Abdominal tumor area and abdominal tumor intensity,
parallel methods of analysis, consistently demonstrated aged mice had
significantly greater overall tumor burden than their young counterparts
(Figure 2B-D). Dissection and analysis ex vivo revealed significant age-
related differences in tumor burden in the gonadal adipose tissue, with a
notable difference also in the mesentery (Figure 3A-B). No difference in
metastasis to the omentum was detected, suggesting that over the 8-
week incubation, the initial difference in adhesion to the aged omentum
was compensated for bymatched survival or growth of tumor cells in the
young and aged omental fat band. Ascites accumulation was not
significantly different. The same trend was observed using virgin young
and aged mice, confirming that the parity status of the retired breeders
did not confound the results (Supplemental Fig. 1A-D).

RNAseq analysis of gonadal adipose tissue was used to explore factors
potentially contributing to metastatic success in aged vs young animals
[37]. Over 1500 genes were significantly differentially expressed
(P b .05) to varying degrees, ranging from log2(fold change) -4.86 to
4.35 in the aged animals. Metacore Pathway Analysis and Ingenuity
and aged (A) C57Bl/6 mice. A, B. Quantification of abdominal ID8-
6 ID8-Trp53−/− mouse ovarian cancer cells tagged with RFP. Mice
cavity was exposed and imaged. Abdominal tumor area (A) and
r area or the tumor intensity by the scale-adjusted body weight of
0.005 and 0.006, respectively. C, D. Quantification of organ specific
ulated by dividing the tumor area or intensity by the adjusted organ
ates P b .05.

Image of Figure 5
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Figure 6. Short-term in vivo assay of PTENshRNA/KRASG12V cell adhesion to peritoneal adipose tissues. A. Representative tumor cell
adhesion images. Young (Y) and Aged (A) mice were injected IP with 3.2x106 PTENshRNA/KRASG12V RFP-tagged mouse ovarian cancer
cells and sacrificed the following day. Major peritoneal adipose depots were rinsed with 1xPBS imaged using the Bruker In Vivo Xtreme
imaging system ex vivo. B, C. Quantification of organ-specific tumor cell adhesion. Tumor Cell Adhesion Area fraction (B) and Intensity
Fraction (C) and were quantified using ImageJ as described in Materials and Methods. N = 10, 9 for young and aged, respectively. For
Omentum Area Fraction P = .02; Omentum Intensity Fraction P = .001. Triple asterisk indicates P b .01, double asterisk indicates
significant P b .05.
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Pathway Analysis (IPA) were used to view pathways enriched in
differentially expressed genes and these analyses revealed that several
upregulated pathways involving lymphocytes, and most notably B cells,
were prominent (Figure 4A; Supplemental Table 2). As B cells are
altered in aging and have prognostic significance inOvCa [38,39], B cell
pathway-related genes were chosen for validation by qRT-PCR. Of 11
genes evaluated, 10 were significantly differentially regulated in aged
gonadal adipose (Table 1). Concomitant with the increase in B cell
markers, CD45R+ lymphocytes were significantly upregulated in
tumors from aged mice relative to young mice (Figure 4B-C).
During the course of this study, new sequencing data showed that

parental ID8 cells contain wild type Trp53, whereas mutations in this
gene are highly prevalent in human OvCa [20]. An ID8 derivative
was therefore generated using CRISPR/Cas9 to delete Trp53,
designated ID8-Trp53−/− [20]. Using ID8-Trp53−/−-RFP cells, our
results confirm those of Walton and coworkers and show much more
rapid IP growth (8 weeks vs 5.5 weeks for parental vs mutant cells).
Furthermore, a significant increase in both overall and organ-specific
tumor burden was found in aged mice relative to young mice in this
model (Figure 5A-D).
To determine if the age-related effect observed with ID8 cells in

C57BL/6 hosts extends to another allograft model, cells derived from the
mouse oviductal epithelium were used [21]. These cells mimic fallopian
tube-derived OvCa and form aggressive high-grade carcinomas [21].
Young and aged FVB/NJ mice were injected with FVB/N-PTENshRNA/
KRASG12V cells (3.2x106) and sacrificed the following day, followed by
imaging of peritoneal adipose tissues ex vivo. Surprisingly, analysis
revealed the young FVB/NJ mice were more susceptible to tumor cell
adhesion at this time point (Figure 6A-C). However when mice were
sacrificed and imaged in situ and ex vivo at 5.5 weeks, agedmice had twice
as much abdominal tumor as young mice (Figure 7A-C), with
significantly greater tumor burden in multiple tissues including the
omentum, mesentery and gonadal adipose tissues Figure 8A-B).
Additionally, aged animals accumulated significantly more ascites fluid
than did young animals (1.7 +/− 0.3 ml vs 0.4 +/− 0.2 ml, P b .001,
respectively).

Discussion
Age is a well-established risk factor for developing OvCa [6].
Furthermore, poorer prognoses are observed in aged individuals, with
older women twice as likely to die from OvCa as younger women [8].
A recent epidemiologic study of patients with serous OvCa reported a
median overall survival of 37.4 months and 47.6 months for women
ages 65 and older and for women under the age of 65, respectively
[10]. While a number of factors may be responsible for decreased
survival in older women, such as age-related disparities in patient care
[11] or coexisting medical conditions, altered cancer aggressiveness in
the aged host may also contribute to this phenomenon [8]. Cancer
aggressiveness could include properties of the tumor cells themselves
and/or the receptivity of the aged host. Studies addressing the impact
of the aged peritoneal cavity on OvCa metastasis may offer insights
into mechanisms underlying epidemiologic data, particularly the

Image of Figure 6


Figure 7. Evaluation of abdominal PTENshRNA/KRASG12V tumor burden in situ of young (Y) and aged (A) FVB/NJ mice. A. Representative
abdominal tumor burden images. Mice were injected IP with 3.4 x 106 PTENshRNA/KRASG12V-RFP cells. Mice were sacrificed at 4.5 weeks
post IP injection and each abdominal cavity was exposed and imaged. B, C. Quantification of abdominal tumor burden. Tumor area (B) and
intensity (C), respectively, were quantified by dividing either the tumor area or the tumor intensity by the scale-adjusted body weight of
eachmouse. N = 14. P-values for tumor area and tumor intensity are .0006 and .0007, respectively. Triple asterisk indicates significant P
b .01.
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observed decrease in survival of aged patients, and may expose new
therapeutic targets for treatment of aged women with OvCa [6].

It has been proposed that age-related senescence of human omental
mesothelial cells (HOMCs) may create a more receptive environment
for metastasis as OvCa cells adhere more readily to induced-senescent
mesothelial cells in vitro [13,40]. Furthermore, HOMCs are in an
inflammatory state in the elderly [12]. A single study using a
syngeneic murine model of OvCa metastasis reported that age did not
significantly alter the immune profile of the murine omental fat band
and was ascribed to be a negligible factor in an in vivo study
addressing the role of parity on OvCa metastasis [14]. This study used
middle-aged mice that were 11–12 months old; however there have
been no reports regarding the impact of age on OvCa metastasis
in vivo using truly aged mice (N20 months). Syngeneic murine
allograft models with immunocompetent mice provide several
advantages in aging and metastasis studies. Such mouse models
allow for an intact immune system with which to study the impact of
immune cells on cancer progression. Immunocompetent mice also age
better than immunocompromised mice without succumbing to other
diseases. Working with aged animals can be both expensive and
challenging [16], but the current data suggest age is an important factor
when investigating OvCa metastasis, warranting further investigation.

Interestingly, various events in metastatic dissemination appear to
be differentially effected by age. Short-term in vivo adhesion studies
with the ID8 C57Bl/6 model revealed that ID8 cells adhered more
readily to aged omentum and mesentery compared to young and, at
8 weeks post injection, aged mice had larger overall tumor burden. In
contrast, in short-term in vivo adhesion studies with the FVB/NJ
model, PTENshRNA/KRASG12V cells adhered with greater efficacy to
the young omentum. Similarly, however, in an extended tumor study,
the aged animals also had substantially greater tumor burden. It is
interesting to speculate that differential adhesion observed at early
time points may reflect distinct profiles of mesothelial senescence in
the two murine hosts. Alternatively, differential expression of adhesive
ligands and receptors on C57Bl/6 versus FVB/NJ host animals and
on tumor cells derived from the ovarian surface epithelium versus
oviductal epithelium may also influence early adhesive events in vivo.
These may include expression of molecules such as P-cadherin,
mesothelin/Muc16, CD44/hyaluronic acid, and fibronectin/integ-
rins, Nevertheless, while the two distinct models of age and metastasis
varied in the age-related impact on early adhesive events, both
consistently demonstrated that the aged host is ultimately more
susceptible to IP metastatic colonization.

Our data suggest that age-related changes in the immune cell
composition in peritoneal adipose tissue may contribute to metastatic
efficiency in aged animals. An unbiased RNAseq approach revealed
enrichment of a number of pathways related to B cells in aged C57Bl/6
mouse gonadal adipose tissue and a panel of B cell markers and
regulators were validated as significantly upregulated in aged mice
relative to young animals. A greater number of TILs were also found in
aged ID8 tumors. B cell TILs are associated with prognosis, but reports
vary on whether they correspond to positive or negative prognostic
significance. Survival in patients with both CD20+ B cell and CD8+ T
cell TILs was greater than in patients with CD8+ only TILs [41]. A

Image of Figure 7


Figure 8. Evaluation of organ-specific PTENshRNA/KRASG12V tumor burden of young (Y) and aged (A) FVB/NJ mice. A. Representative
tumor burden images. Individual organs were dissected from the mouse peritoneal cavity and imaged ex vivo. B. Quantification of organ
specific tumor burden. The Organ Area Fraction was quantified by dividing the tumor area by the adjusted organ weight. N = 14. For
Organ Stom P = .001; Omen P = .00002; Ovary P = .000002; PerR P = .019; Mes P = .019; FatL P = .0005. Triple asterisk indicates
P b .01 and double asterisk indicates P b .05.
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separate study also found that both the presence of CD20+ in the
epithelial portion of the tumors and the combination of CD20+ CD8+

were associated with better survival in debulked patients with high-
grade serous OvCa [42]. Furthermore, analysis using The Cancer
Genome Atlas data revealed that certain B cell receptor expression
signatures were predictive of improved survival in immuno-reactive and
mesenchymal OvCas [43]. Interestingly, mice with a depleted CD20+

B cell population developed greater tumor burden when injected with
ID8 cells [44]. B cells have also been reported as a negative prognostic
factor by multiple groups [45,46]. A greater number of CD19+ B cells
was correlated with poor survival [46], while more recent data show that
high expression of CD19+ B cells in omental ovarian tumors is
associated with decreased survival [45]. This same group demonstrated
CD19+ B cells promote angiogenesis via STAT3, thereby contributing
to disease progression [47]. As CD19 was upregulated in the aged
gonadal adipose RNAseq dataset, it is interesting to speculate that the
enhanced metastatic tumor burden seen in aged animals in this study
may be due to increased angiogenesis.
Among the immunological changes that accompany aging, age-

related changes in B cell development and function in humans and in
mice have been described [38]. Several groups have recently reported
the presence of an age-associated B cell population in aged mice
[48,49]. While beyond the scope of this study, further investigation
into which subpopulation of B cells are present in the metastatic niche
in aged murine models is warranted. Given our findings on the
impact of age on metastasis and the literature on age-related changes
to B cell populations, future studies which take age into account when
investigating the prognostic significance of B cell TILs are needed.
Additionally, researchers considering the possibility of modulating B
cell response as a therapeutic strategy must consider that age-related
differences may impact the contribution of B cells to disease
progression.

In summary, here we demonstrate that the aged host is more
susceptible to OvCa metastasis in two distinct murine models. Our
data suggest a potential contribution of B cells to this age-related
disparity in metastatic success. These murine models harbor potential
for evaluating immunotherapy interventions in the context of the
aged host. Investigating the impact of age on metastasis is timely
research, as there is an aging global population and the number of
older women diagnosed with OvCa is expected to rise [8]. In addition
to continued research in murine models, future research is needed to
elucidate the status of B cells in human tumors from patients of
varying ages. Such studies are required to predict whether targeting B
cells with immunomodulatory therapies is an effective approach in
older patients.
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