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Abstract

Effective management of widespread invasive species such as wild pigs (Sus scrofa) is lim-

ited by resources available to devote to the effort. Better insight of the effectiveness of differ-

ent management strategies on population dynamics is important for guiding decisions of

resource allocation over space and time. Using a dynamic population model, we quantified

effects of culling intensities and time between culling events on population dynamics of wild

pigs in the USA using empirical culling patterns and data-based demographic parameters.

In simulated populations closed to immigration, substantial population declines (50–100%)

occurred within 4 years when 20–60% of the population was culled annually, but when immi-

gration from surrounding areas occurred, there was a maximum of 50% reduction, even

with the maximum culling intensity of 60%. Incorporating hypothetical levels of fertility con-

trol with realistic culling intensities was most effective in reducing populations when they

were closed to immigration and when intrinsic population growth rate was too high (> = 1.78)

to be controlled by culling alone. However, substantial benefits from fertility control used in

conjunction with culling may only occur over a narrow range of net population growth rates

(i.e., where net is the result of intrinsic growth rates and culling) that varies depending on

intrinsic population growth rate. The management implications are that the decision to use

fertility control in conjunction with culling should rely on concurrent consideration of achiev-

able culling intensity, underlying demographic parameters, and costs of culling and fertility

control. The addition of fertility control reduced abundance substantially more than culling

alone, however the effects of fertility control were weaker than in populations without immi-

gration. Because these populations were not being reduced substantially by culling alone,

fertility control could be an especially helpful enhancement to culling for reducing abundance

to target levels in areas where immigration can’t be prevented.
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Introduction

Whether native or introduced, wild pigs (or feral swine; Sus scrofa) threaten livestock health,

human health and agricultural productivity in many countries across the globe [1–5]. Most

countries have some level of population management to counteract their fecundity, damage to

agriculture, and disease threats. Despite continued lethal control of wild pig populations in the

USA [5–8], populations have continued to grow and expand geographically in many areas [9],

with a current estimate of over 6 million pigs [7,10]. To manage population growth and reduce

damage from invasive wild pigs in the USA, the National Feral Swine Damage Management

Program (NFSDMP) has been implemented by the United States Department of Agriculture

(USDA) Animal and Plant Health Inspection Service (APHIS), Wildlife Services (WS). The

goal of the program is to eradicate wild pigs in many states eventually, and minimize their

damage in states where eradication is infeasible.

Previous successful control programs in the USA have used a variety of population manage-

ment techniques [11–14]. The most commonly used techniques for lethal control of wild pigs

include trapping, ground shooting and aerial gunning. Registered sterilants for wild pigs do

not yet exist for use in the USA. Efficacy of available techniques depends on population den-

sity, environment type (e.g. grasslands versus heavily wooded), weather and season [11,15–18].

Also techniques often differ in their temporal frequency of application due to inherent logisti-

cal differences among them. For example, aerial gunning is expensive by the hour and requires

substantial planning to implement, whereas trapping and ground shooting are labor intensive

and it is difficult to cover a large spatial area as quickly as aerial gunning. Therefore, effective

trapping and ground shooting activities usually involve culling of fewer individuals per unit

time [8,13,19] relative to aerial gunning, which is often characterized by removing many indi-

viduals sporadically [14,18]. Much progress has been made with technological development

and effective application of commonly used control tools [5,15,20–22]. Similarly, previous

wild pig management efforts in the USA [8,11–14] have provided valuable insight into the

time and expense needed to reduce or eradicate local populations in specific areas. Less well

understood are the general effects of management activities on population dynamics, which is

important for planning resource allocation in large-scale eradication programs [13,23,24] that

span a variety of different demographic conditions.

The large scale of the NFSDMP poses a substantial challenge. There are fewer dollars per

km2 per year for control operations relative to local-scale eradication programs [13], and there

are not enough resources to cover all high-damage areas simultaneously. Within states that

have very high pig abundances a common strategy is to respond to high-damage areas with a

short, intense culling effort in a small geographic area, then reposition resources to other pri-

ority sites, and return when damage is high again. In these cases, the population could rebound

quickly to levels causing high-damage [25] rather than giving a long damage-reduced period.

An unanswered question for strategic planning in high-abundance states is: At what frequency

and culling intensity do wild pigs need to be culled from local areas in order to decrease their

population growth rates to target levels? The answer will depend largely on demographic

dynamics of the population. Thus, in order to develop plans for optimizing allocation of fiscal

and human resources broadly across the country, it is important to improve our understand-

ing of how the magnitude and frequency of culling affect population dynamics over a realistic

range of wild-pig demographic conditions. Population models have provided insight on cull-

ing intensities required for reaching particular management goals [26–29] and conditions

when fertility control may be effective [30–32]. Results range widely suggesting that culling

intensities of 10–65% annually are needed to cause populations declines. Some of this uncer-

tainty is likely due to different levels of model complexity (i.e., Leslie matrix deterministic
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models versus stochastic individual-based models), which account for different amounts of

biological realism. Another potential reason likely comes from using demographic parameters

from different geographic regions (i.e., Australia; Hawaii, USA; Tennesee, USA; California,

USA).

In addition to culling, research by USDA-APHIS-WS and the broader scientific community

is being conducted to identify new tools for enhancing population control work, including

sterilants [33]. The utility of fertility control in large-scale culling programs is much debated,

but this type of contraception-based tool is being discussed and researched with the goal of

potentially applying it as a complement to existing culling programs in wild pig populations.

Because an efficient, registered sterilant for wild pigs requires much time and expense to

develop and register, it is important to carefully consider its potential benefits preceding

investment. Theoretical work has shown that fertility control is most effective when applied in

conjunction with culling [30–32]. However, the efficacy of fertility control depends on intrin-

sic population growth rate [31], emphasizing that potential outcomes must be studied using

population biology of the target species under a variety of possible demographic conditions.

In addition to intrinsic population growth rate, an important factor affecting the efficacy of

fertility and culling programs is immigration from surrounding unmanaged populations

[32,34–37]. In large-scale wildlife management programs, immigration is likely to be an

important factor because not all areas can be controlled simultaneously. However, our current

understanding of the effects of realistic culling patterns on wild pig population dynamics in

the USA is weak, and even poorer is our ability to predict how demographic conditions such

as fertility and immigration affect management outcomes, which impedes science-based plan-

ning of control work.

Wild pigs are a social species. Populations are typically organized in matrilineal groups of

adult females with their young, and small groups (2–3 individuals) of sub-adult males or soli-

tary adult males [38]. Family groups are ever-changing in terms of size and composition; indi-

viduals may leave to join other groups [38]. Territoriality of groups and solitary males could

act to regulate density on the landscape to some degree [38–40]. Monthly and overall home

range sizes are small (mean = 3.4 km2, standard deviation = 4.6; mean = 6.1 km2, standard

deviation = 7.8), and average daily movement is rarely beyond 0.35 km (standard devia-

tion = 0.34) [41]. Natal dispersal occurs primarily in males [38]. Males may disperse in small

groups initially but are almost always solitary after 3 years of age [38,42]. This complex spatial

ecology likely plays an important role in shaping density across the landscape and population

response to control. In fact, some wild pig control techniques, for example corral trapping,

have been designed to target family groups as they have the highest reproductive potential.

Thus accounting for individual-level variation in wild pig spatial ecology could be important

for predicting the effects of control on wild pig populations.

To address knowledge gaps and quantify the effects of wild pig control in the USA, we

examined the effects of culling patterns employed by USDA-APHIS-WS. We compared three

models of varying complexity to understand how different modeling assumptions may affect

predictions of management outcomes: 1) a spatially-explicit individual-based model parame-

terized with field-based measures of demographic processes, 2) an age-structured, population-

level deterministic model with demographic parameters scaled to match population growth
rates in the individual based model, and 3) a logistic model with demographic parameters

scaled to match population growth rates in the individual based model. Because there is uncer-

tainty associated with pig population dynamics, we examined the effects of culling patterns

using a range of demographic conditions (i.e., birth rates, average dispersal distance, maxi-

mum family group size, presence of immigration from neighboring populations) in the
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individual-based model. We also identified conditions where fertility control could substan-

tially accelerate population decline.

Methods

To examine the impact of different culling patterns on wild pig populations in the USA, we

developed three population-dynamic models that incorporated varying levels of biological

complexity. We implemented the individual-based and population-level logistic models in

Matlab (Version R2016b, The MathWorks, Inc., Natick, Massachusetts, United States) and the

age-structured population-level model in R (R Core Team, 2015, Vienna, Austria). We mod-

eled small populations (~500 pigs) because individual management efforts most often operate

in small geographic areas [12] and because we were interested in considering the stochastic

effects of abundance as a population nears eradication. We obtained data on culling patterns

of pigs from the USDA-APHIS-WS Management Information System (MIS) database.

USDA-APHIS-WS provides wildlife control assistance to land owners based on the authority

of the Animal Damage Control Program of 1985 in compliance with the National Environ-

mental Policy Act. We selected five different properties that: 1) had long-term (> 5 years), per-

sistent culling, 2) ranged from 8.5–40.5 km2 to represent areas that could be considered a

single population, and 3) differed qualitatively in the temporal frequency and intensity of cull-

ing (i.e., showing different culling patterns; Fig 1). We applied the empirical culling data to

simulated population dynamics to evaluate efficacies of the different patterns. We also investi-

gated the effects of sterilizing a proportion of the population in addition to culling, to examine

potential benefits of mixed management strategies (i.e., culling alone versus culling and fertil-

ity control). Below, we describe implementation of the stochastic individual-based model first,

followed by the deterministic, discrete-time models.

Stochastic individual-based model

Process overview. The individual-based model accounted for spatial, social and age-struc-

ture dynamics, which are all thought to impact efficacy of management. At the start of simula-

tions, individuals were assigned several attributes that were monitored and updated at a

weekly time step. Individual-level attributes included age in weeks, sex, unique group identifi-

cation, dispersal distance, age of natural mortality, x coordinate, y coordinate, and grid cell ID.

Thus, individuals were assigned to a particular home range centroid within a grid cell. Male-

specific attributes included dispersal age. Female-specific attributes included age at which con-

ception became possible (i.e., reproductive maturity, Table 1), reproductive status (fertile or

not) and weeks pregnant (if gestating). Sex was fixed throughout life. Dispersal distance varied

stochastically according to Poisson distribution (Table 1). Other attributes changed based on

time, age, group size and grid-cell density. Parameters used to guide changes in attributes are

listed in Table 1. Attributes were updated according to the following processes listed in order

of occurrence (note that specific details of processes involved in each step are treated in more

detail in the next section): 1) culling of individuals that reached age of natural mortality, 2)

culling a fixed number of individuals nearest a random point based on each culling pattern, 3)

sterilization of a proportion of reproductively active females selected at random (only for sim-

ulations involving sterilization), 4) dispersal to new home range centroids, 5) density-depen-

dent mortality, 6) new conceptions by selecting reproductively-active, non-lactating females at

random, 7) births: assignment of individual-level attributes to new litters, and 8) recording

abundance and numbers culled. For simplicity with converting monthly empirical data, we

assumed there were 4 weeks per month and thus each year included 48 weeks.
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Social and spatial structure. Individuals were grouped based on age and sex characteris-

tics as follows: 1) family groups (including females and pre-dispersal males), 2) small groups of

young males (males less than two years old that have dispersed from family groups) or older

males (greater than two years and occurring independently). Individuals in the same group

were assigned the same random home range centroids. Home range centroids were selected at

random within a grid cell. The full landscape was 100 km2, gridded at a 1 km x 1 km scale to be

Fig 1. Five culling patterns. A. Number of wild pigs culled (size of the circles) during each day of population management (X-axis)

according to 5 culling patterns (labeled 1 to 5 on Y-axis). The largest circle corresponds to 171 wild pigs, the smallest corresponds

to 1. Grey plus signs along the bottom indicate the timing of contraceptive control (hypothetical), if applicable. B. The maximum

number of weeks with no culling during the year. C. Total culled per year. Total pigs culled by each method was 680. Line colors in B

and C correspond to culling pattern labels in A.

https://doi.org/10.1371/journal.pone.0183441.g001
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larger than daily movements but smaller than home range size, which includes dispersal dis-

tance [41]. This small scale was chosen because pig movements Culling only occurred in a cen-

tral portion of the landscape, which was 25 km2 (Fig A in S1 File), and outputs were only

recorded for this area. In runs without immigration, only the middle 25 km2 area was mod-

eled. Grid cells each had a carrying capacity of 10 or 30 pigs, which controlled population den-

sity throughout the landscape. There were 2 patches of higher density environment type

(30 pigs /km2) and 2 patches of lower density environment type (10 pigs /km2), for a maxi-

mum carrying capacity of 500 pigs over the middle 25 km2 (average density of 20 pigs /km2),

which was the target for culling (Fig A in S1 File). When family groups grew beyond their max-

imum group capacity, the number of individuals beyond the maximum capacity dispersed to a

new grid cell that had a total abundance below carrying capacity (one mechanism of density-

dependent regulation; details described in Dispersal section). In addition, in grid cells where

family groups were below the maximum group capacity but the total abundance was beyond

the grid-cell carrying capacity, the population density was controlled by removing the number

pigs beyond the grid-cell carrying capacity (density-dependent mortality–a second mechanism

of density-dependent regulation). The youngest pigs were preferentially selected for removal

consistent with density-dependent causes.

Dispersal. There were three types of permanent relocation for home range centroids of

individuals (i.e., dispersal): natal dispersal (males only), adult male dispersal, female dispersal

Table 1. Description of parameters.

Parameter Values References

Age of natural mortality (time before natural death occurs) μ~EXP(3 years) [68–70] (Table 6;

pg 173 [7])

Weekly conception probability per individual (determines

intrinsic population growth rate)

Monthly conception probabilities Jan.-Dec.: 0.1053, 0.0592,

0.0493, 0.0493, 0.0132, 0.0493, 0.0263, 0.1151, 0.2138,

0.1711, 0.0724, 0.0757; These values were divided by 4 and

each value was replicated 4 times to convert from monthly to

weekly conception probabilities; thus conception could occur

during any month but was highest Aug.-Jan.

Estimated from:

[7] Fig 1 pg 67

Age-based scaling factor on conception probability (age-based

conception probability = conception probability x scaling factor)

0.5 (< 1 year); 0.75 (1–3 years); 1 (> 3 years) [7]

Overall scaling factor on conception probability (manipulates

intrinsic population growth rate: overall intrinsic population growth

rate = age-based conception probability x overall scaling factor)

0.5 (low; λ = 1.3, r = 0.26); 1 (field-based; λ = 1.78, r = 0.58); 3

(high; λ = 2.43, r = 0.89)

Litter size (number of viable offspring per litter) 3 piglets (< 1 year); 7 piglets (1–3 years); 10 piglets (> 3 years) [51,71,72]

Age at reproductive maturity (females only) (minimum age that

females may conceive)

6 months [73]

[74]

Minimum time between farrowing and conception 3 months [75]

Gestation time 18 weeks [76]

Age of male dispersal from family group (brothers initially

disperse together and form a group of young males)

~POISSON(36 weeks) [7,77,78]

Age that young male groups dissolve and males become

independent

2 years [42]

Dispersal distance Variable; ~EXP(ξ); where ξ = 0.5, 1.5, or 3 km [79]

Maximum family group size (carrying capacity for family groups; at

carrying capacity some females will disperse and form new family

groups)

Variable; 10, 20 or 30 pigs [38]

Initial age distribution (proportion of individuals in each age class

at the outset of simulations; following the initialization, population

dynamics were allowed to occur for 10 years before beginning

culling treatments)

0–1: 56.5%; 1–2: 16.2%; 2–3: 11.1%; 3–4: 7.5%; 4–5: 4.3%;

5–6: 2.4%; >6: 1.9%

[7] Table 3, pg 168

https://doi.org/10.1371/journal.pone.0183441.t001
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due to overcrowded family groups. For natal dispersal, males left the family group with their

brothers, chosen at random from a Poisson distribution (Table 1) [42]. At 2 years of age, adult

male dispersal occurred, where brother groups dissipated and all members became solitary

adults [42]. Females remained with family groups unless family group size reached maximum

capacity [38,43] (Table 1). For family groups above maximum group capacity, female dispersal

due to overcrowded family groups occurred. The number of females beyond the maximum

group capacity left the family group and formed a new family group with a distinct home

range centroid. The number of females selected to leave were chosen at random with the

restriction that they were older than the minimum natal dispersal age for males (fixed at 6

months). For all three types of dispersal, the dispersal algorithm proceeded the same as follows:

1) for each 45 degree angle from the home range centroid, a new possible set of [x,y] coordi-

nates was obtained using a dispersal distance value assigned at random to the group (Table 1;

i.e. x = distance x cos(angle) + current x coordinate, y = distance x sin(angle) + current y coor-

dinate). If at least one of these eight potential locations were valid (i.e., valid = a grid cell with

fewer pigs than the carrying capacity or a location off the grid), then a valid location was cho-

sen at random and pig(s) were relocated there. If there were no valid locations, the distance

value was doubled and the process repeated until a valid location was obtained. Thus, the dis-

persal algorithm acted in a density-dependent manner because pigs were not allowed to dis-

perse to grid cells that were already at or above carrying capacity. In the runs with no

immigration, pigs which emigrated from the culling area were lost permanently, whereas in

the runs with immigration, pigs which emigrated from the culling area could relocate to land

immediately outside the culling area and immigrate back at a later date when space became

available. Pigs that relocated off the full grid were lost permanently. In the area outside the cull-

ing area, birth rates were much higher than emigration rates off the grid, such that there was a

continuous ample supply of potential immigrants to the culling area.

Birth/death. For reproductive females, conceptions occurred randomly in reproductively

active females according to a weekly conception probability (Table 1), which was the same for

each month but varied across months based on an empirically-derived distribution of monthly

conception probabilities (Table 1). We varied intrinsic population growth rate by multiplying

the vector of weekly conception probability by a fixed scaling factor (Table 1 –possible val-

ues = 0.5, 1, or 3 referred to as ‘low’, ‘field-based’ and ‘high’ intrinsic population growth rate).

When implementing these scaling factors in a population with no density-dependent regula-

tion, a value of 1 (‘field-based’) generated a an average annual population growth rate (λ) of

1.78 ± 0.08—calculated as [∑t(Nt/N0)]/T—where t = 1,. . .,T years (equivalent to intrinsic

r = 0.26). Similarly, scaling values of 0.5 and 3 led to annual population growth rates of

1.3 ± 0.025 and 2.43 ± 0.35 (intrinsic r = 0.58 and 0.89), respectively. Our ‘low’ intrinsic popu-

lation growth rate condition (λ = 1.3) is similar to values that have been estimated based on

data from Texas, USA [44,45], however, that intrinsic population growth is likely higher as

suggested by [46]. We included the high population growth (λ = 2.43) condition for compari-

son because wild pigs are known to be very fecund, and could potentially exhibit high popula-

tion growth rates in parts of the USA where there is substantial introgression of domestic pig

genes and abundant resources. The individual-based model approach does not allow for unre-

alistically high population growth because the number of births per female per year are limited

by gestation births and lactational anestrus periods. After conception and a gestation period

(Table 1), pregnant females farrowed litters with a male:female ratio of 1 [39,47–49]. Litter size

(Table 1) and the maximum litters per year [50] both increased with age (Table 1); litter size

was fixed within age classes (Table 1). After farrowing, females were unable to conceive again

until after a lactational anestrus period (Table 1) and conception probability thereafter. Thus,

the maximum number of litters per year was two [7,50]. We modeled natural mortality by
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assigning each individual an age of natural mortality at birth, which was an exponentially-dis-

tributed random number, such that the probability of living longer was smaller than the proba-

bility of dying young (Table 1). We modeled density-dependent mortality by removing a

family group from each grid cell that reached the grid-cell specific carrying capacity. We culled

entire groups, instead of a subset of individuals, to maintain realistic group structure and

because we assumed that density-dependent effects would affect entire groups because young

are dependent on their mothers. Births were not density-dependent [51].

Initial conditions. Populations were initialized as follows. Each individual was assigned

an age, sex, dispersal age (males only) and age of natural mortality. Ages were chosen at ran-

dom using an empirically-determined age-distribution [7] (Table 1). Sex was assigned at ran-

dom according to a 1:1 ratio within each age class [39,47–49]. Dispersal age was chosen at

random from an exponential distribution (Table 1). For males whose age was beyond dispersal

age, dispersal status was recorded as completed. Age of natural mortality was chosen at ran-

dom from an exponential distribution (μ, Table 1). Males older than 2 years were assigned NA

for group ID. Males beyond dispersal age but less than 2 years were divided into groups of 5

(plus one smaller group of remaining individuals if applicable). Similarly, all females and

males less than dispersal age were divided into group sizes that were ¼ of the maximum family

group size (plus one smaller group of remaining individuals if applicable). Each individual or

group was assigned to a grid cell ID chosen at random with replacement (the algorithm

ensured that unoccupied grid cells were prioritized). Within each grid cell, the individual or

group was given [x,y] coordinates selected at random. Other individual-level attributes were

assigned as described in Table 1 based on age and sex. After the population was initialized,

population dynamics occurred for 10 years (burn-in period), and the population matrix

(defining size, distribution, and individual-level attributes) at the end of the 10 years was used

as the starting point for all simulation conditions.

Culling. We trimmed the five culling patterns by removing events from the later end such

that the total number of pigs culled in each pattern was consistent (680, the smallest number

amongst the 5 patterns, S3 File). Thus, the main differences between the 5 patterns were in the

frequency of culling events (i.e., gaps; Fig 1A and average number culled per event 3–50;

Fig 1B) and culling intensity (mean number culled per year 85–165; Fig 1C). Throughout sim-

ulations of population dynamics, we culled a fixed number of wild pigs at specified time points,

as determined from MIS data (Fig 1). We culled all individuals within the closest proximity of

each other (using the home range centroid attribute) because wild pig culling techniques such

as corral trapping and aerial gunning employ intense culling in focused areas and often target

whole family groups when possible. For each set of demographic parameters, we also ran simu-

lations with no culling as control populations. For all simulations we included a density-

dependent capture probability (α) such that when density was low, not all the pigs targeted for

capture were captured. Thus the realized number culled (Ct) was:

a ¼ 1 �
1

ð1þ bÞ
Nt

� �

ð1Þ

Ct ¼ act; ð2Þ

where β (scaling parameter on the relationship of pig density and capture probability) was

fixed at 0.03 because it gave a relationship similar to [15], Nt was the abundance at time t, and

ct was the target number to cull.

Fertility control. In modeling fertility control, our goal was to examine its effects in con-

cert with culling in a situation where lethal management strategies take priority over other
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strategies. We assumed the sterilant could be broadcast generally across the landscape (such as

by aerial drop). Although such a product does not yet exist, our goal was to examine the poten-

tial effects of this type of ideal product. Sterilization impacts were simulated by randomly

selecting a proportion of fertile (i.e., beyond the minimum age of conception) females to be

sterilized (i.e., coverage) once per year (pattern of implementation in Fig 1A), chosen at ran-

dom across the culling area. We assumed that sterility lasted 2 years and gestating individuals

were sterilized but still gave birth to their current litter. We assessed a range of efficacies, by

sterilizing a proportion (0.2–0.8) of reproductively active females at each event. For each new

sterilization event, we did not distinguish between individuals that were already sterilized

meaning that sterilized individuals could be part of the new proportion sterilized, but that the

new event extended their current time period of infertility. We also assumed that sterilized

individuals could be culled. Our assumptions were based on the logic that there is no easy way

to distinguish sterilized from unsterilized individuals in the field.

Immigration. In order to examine effects of immigration we conducted simulations as

above on larger landscapes (100 km2) where the target area of 25 km2 was in the center. Con-

trols were only implemented within the 25 km2 target zone. Immigration occurred by dispersal

(males at reproductive maturity or large family groups breaking apart to form separate groups)

into the target area according to the parameters in Table 1 and described above.

Sensitivity analyses

We conducted a sensitivity analysis on the following demographic parameters: maximum fam-

ily group size, mean dispersal distance, and population growth rate (implemented through the

scaling parameter on conception probability). We chose 3 values from each demographic con-

dition and used a full factorial design (all possible combinations) for a total of 27 sets of demo-

graphic conditions (Table 1). For each set of demographic conditions, we ran the 5 different

culling treatments and a scenario with no culling. For each culling/no culling scenario we

tested 4 levels of sterilization (20, 40, 60 and 80% of the population). We also ran all conditions

with and without immigration (i.e., dispersal of sub-adults from surrounding areas), making a

total of 1458 sets of conditions. We ran 30 replicate simulations for each set of conditions

(1458x30 = 43,740 simulations in total). All runs were conducted for 10 years.

Statistical analyses

We used generalized linear models to interpret the effects of culling patterns and fertility con-

trol on population reduction. All analyses were implemented in Matlab using the Statistics

toolbox. We summarized simulation output into 3 responses:

1. The average net annual population growth rate (net r) over the first 4 years of culling

(Table A in S2 File). For this, we were interested in the effects of culling patterns (intensity

and gap periods) and demographic conditions (intrinsic r and immigration status) on real-

ized population growth rates. We calculated mean net r as: net r ¼

PT

t¼1
log Nt

N0

� �

T , where

T = 4 years and N was from the last week of year t.

2. The minimum proportion of the population remaining after 4 years of culling (Table B in

S2 File). For this we were interested in the same parameters as in 1) (except for gap period)

on the magnitude to which the population could be reduced over 4 years. We calculated the

proportion remaining as: Nt/N0 where N0 was the initial abundance in the week before any
culling began (i.e., last week of the burn-in period) and Nt was the abundance in the last

week of year t, and t = 1,2,3, or 4. We then took the minimum value over the 4 years.
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3. The difference in the proportion by which the population is reduced after 4 years (as calcu-

lated in 2)) in populations without and with fertility control. For this response, we were

interested in the net r due to culling and coverage of fertility control, and the demographic

effects of intrinsic r and immigration status.

We chose 4 years as the time frame to examine effects because it is a reasonable amount of

time to expect strong management outcomes and because plots of management effects over

time (Fig 2) showed this to be the time frame to observe the strongest effects across the widest

range of conditions (Fig B in S1 File). Details of statistical methods and estimated parameters

are given in S2 File.

Fig 2. Effects of 5 culling patterns under different model structures. X-axis: weekly abundance over 10 years. Five different

culling patterns are distinguished using the same color scheme as in Fig 1. Black lines indicate conditions with no culling. Top plots

are for populations with no immigration; bottom plots are for populations with immigration. For the individual-based model, each line

is the mean replicate simulations for runs that led to eradication within 10 years. The probability of eradication shows the proportion

of 30 simulations that led to eradication. The mean behavior of runs that did not lead to eradication within 10 years is shown in Fig D

in S1 File.

https://doi.org/10.1371/journal.pone.0183441.g002
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Age-structured, population-level, deterministic model

We also used an age-structured, population-level, deterministic model to evaluate the advan-

tage of including age-specific effects on demographic dynamics. We used discrete-time, age-

based recursive equations as per Otto and Day [52] as follows:

NP;tþ1¼ NP;t � SP �
23

24

� �

þmP

� �

� acPt þ b � ðNJ;t� 0:5 � lJ þ NY;t � 0:75 � lY þ NA;t � lAÞ ð3Þ

NJ;tþ1 ¼ NJ;t � SJ �
23

24

� �

þmJ þ NP;t � SP �
1

24

� �� �

� acJt ð4Þ

NY;tþ1 ¼ NY;t � SY �
95

96

� �

þmY þ NJ;t � SJ �
1

24

� �� �

� acYt ð5Þ

NA;tþ1 ¼ NA;t � SA þmA þ NY;t � SY �
1

96

� �� �

� acAt ð6Þ

Where the age classes are piglets (0–24 weeks of age), juveniles (25–48 weeks), sub-adults

(49–144 weeks), and adults (145+ weeks). The discrete-time intervals are by week (t). The

abundance is given by age class and week (e.g., NP,t). We calculated weekly survival probabili-

ties (e.g., SP,t) by age class from the age of natural mortality distribution used in the individual-

based model (Table 1). Both survival probability and immigration rates (m) are density depen-

dent and thus are reduced if the total population (of all age classes N•,t) exceeds the carrying

capacity (K). Since the weekly time scale is not the same as the timing of advancing to the next

age class, we included a probability of ‘aging’ as the simple proportion of one in the number of

weeks in that age class (e.g., 1/24 to age from juvenile to yearling and 1/48 to age from yearling

to adult). The target culling patterns (c) and density-dependent capture process (α, Eq 1) are

the same as described above. The distribution of age classes culled is the same as the propor-

tion of each age class at a given time point. Birth probabilities (b) contribute to new piglets

from the age classes that are of reproductive age (all put piglets). The conception probability

used in the individual-based model was shifted by 4 months (gestation period) and used to

model weekly birth probability. As in the individual-based model, the weekly birth probability

was scaled by age class (0.5 for juveniles, 0.75 for sub-adults, and 1 for adults). Litter sizes (l)
for the different age-classes were as in Table 1. In this model, all females are available every

week to give birth. This is different from the individual-based model that assumes that gesta-

tion and lactating females are unavailable for conception. Thus, in order to capture the same

population growth as the individual-based model (λ = 1.78), we used an additional overall scal-

ing parameter on birth probability: 0.1426.

Population-level, deterministic model

We also used a non-spatial, discrete-time logistic model with no social or age structure for

comparison to the more complex individual-based model. The deterministic model was as fol-

lows:

Nt ¼ rt� 1Nt� 1 þ
m

Nt� 1

� �

1 �
Nt� 1

K

� �

þ Nt� 1 � act� 1 ð7Þ

N represents pig abundance, t is week, r is the intrinsic rate of increase (population growth

rate), m is the immigration rate, K is the population carrying capacity, c is the target number of
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pigs to be culled (from empirical data described above), and α is the density-dependent cap-

ture probability (Eq 1). Once populations dropped below 1 they were considered eradicated.

Parameter values were: conception probability vector (Table 1) times a scaling factor of 0.2183

(to match an annual population growth rate of λ = 1.78—the same as the individual-based

model), K = 450 pigs, and m = K x 10. m included an arbitrary scaling factor, here 10, because

there were no data to parametrize this value. We chose 10 because using this value, the dynam-

ics were similar to our individual-based model. Note in this model population changes are

instantaneous, whereas in the individual-based model population changes occur in bursts (i.e.,

litters) after a gestation period when females give birth.

Results

Conception probability (which determined intrinsic population growth rate) had the strongest

impact on population dynamics while maximum family group size and mean dispersal dis-

tance showed only marginal effects across the three parameters examined (Fig C in S1 File).

Culling pattern 1 (Fig 1: Prop1) maintained the lowest wild pig abundances while culling was

ongoing (Fig 2, Fig D in S1 File). This pattern was characterized by culling more pigs per year

on average (Fig 1), and large numbers of pigs per event. Patterns 1, 4 and 5 all involved periods

of no culling (up to ~ 1–2 years). For patterns 4 and 5 these gaps were enough to cease popula-

tion decline, until culling was resumed later on (Fig 2). Also, during these gaps in culling,

abundance for patterns 4 and 5 climbed above that in patterns 2 and 3.

In populations closed to immigration, all three models performed qualitatively similarly

(Fig 2). The main difference was that both deterministic models predicted eradication within

10 years for all culling patterns whereas the stochastic model predicted relatively low eradica-

tion probability ranging from 0.03–0.20 (Fig 2A, top). In populations that became eradicated

in the stochastic model, the population trajectories were similar to the deterministic models

except that there was a larger difference in the abundance trajectories between culling pat-

terns 2 and 3 (green and blue) in the deterministic models relative to the stochastic model

over most of the trajectory (Fig 2, top). Also, for pattern 1, the stochastic model predicted

higher abundances relative to the deterministic models over most of the trajectory until a

large removal in the 4th year drove the population to extinction. In general, the stochastic

model also allowed for higher abundance during birth pulses relative to the deterministic

models (Fig 2, top). In all three models, immigration severely limited the effects of culling on

abundance (Fig 2, bottom). The deterministic models allowed for greater perturbations from

culling patterns relative to the stochastic model (Fig 2, bottom). However, in the determin-

istic models with immigration, populations rapidly returned to carrying capacity whereas in

the stochastic model, abundances remained lower than carrying capacity while culling was

ongoing.

Because population growth rates for wild pigs in the USA are largely unknown, we con-

ducted all remaining analyses of culling patterns across 3 different intrinsic population growth

rates (λ = 1.3, 1.78, and 2.43). We focused on the stochastic model because it represented wild

pig biology most comprehensively. We averaged results across replicate simulations and other

demographic conditions (maximum family group size and mean dispersal distance) because

they were less influential in determining population dynamics. Intrinsic population growth

rate, immigration, culling intensity, and gaps in culling were all important in determining a

metric of culling efficacy: realized mean population growth rate (net r) in the first 4 years of

culling (Table A in S2 File). There was an interaction between gap length (a metric of culling

frequency) and culling intensity that obscured the main effects of these covariates on realized

growth rate (Fig 3A–3D show effects of culling intensity on realized growth rates for two
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Fig 3. Relationship of population reduction metrics and culling conditions without (A,C,E) and with (B,D,F) immigration

from surrounding areas. Points in A-D show all the data for the indicated culling intensity and gap period; points in E and F show

all the data for all culling intensity and gap periods from similar conditions. Lines are predictions using the models presented in

Tables A and B in S2 File. Colors indicate data from different intrinsic population growth rate parameters: Red: r = 0.26, Blue:

r = 0.58, Black: r = 0.89. The A,B and C,D give predictions for two different gap lengths: 8.6 days (dotted), 25 days (solid).

Predictions are cut-off to avoid predicting outside the range of the data.

https://doi.org/10.1371/journal.pone.0183441.g003
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separate gap periods). As expected, realized growth rates decreased as culling intensity

increased for different gap lengths, and the slope of this relationship increased with decreasing

gap length indicating that realized growth rates were lowest when gap length was low but cull-

ing intensity was high (Fig 3A and 3C, Table A in S2 File). In the presence of immigration, the

effects of culling intensity were very weak and only showed effects in the populations with low

intrinsic r (Fig 3B and 3D). Within 4 years, populations could be reduced by > 95% with mean

annual culling intensities of ~ 38%, 50%, and 60% in populations with intrinsic r = 0.26, 0.58,

and 0.89; respectively (Fig 3E). For a 50% population reduction within 4 years, mean annual

culling intensities of ~20–35% was required across the different intrinsic population growth

rate conditions (Fig 3E). When immigration was allowed populations were never reduced

more than 50%, which only occurred when the intrinsic population growth rate was low

(r = 0.26), and the culling intensity was at the maximum we tested (60% annually, Fig 3F,

Table B in S2 File).

The addition of fertility control, at levels of 40% of females annually (or greater), caused a

substantially higher rate of population reduction (50–70% more reduction relative to culling

alone) within 4 years in populations closed to immigration (Fig 4C, 4E and 4G, Table C in

S2 File). This enhancement was highest in populations with the highest intrinsic population

growth rates (r = 0.89), where culling alone was less effective. Enhancement was much weaker

in populations with immigration, resulting in a maximum of ~30% enhancement with 40%

coverage and 40% enhancement with 80% coverage (Fig 4F), although mean enhancement val-

ues were closer to 15% and 20%. In contrast to the populations with no immigration, popula-

tions with immigration showed the highest enhancement intrinsic populations growth rates

were low (r = 0.26), and the amount of enhancement was similar across the full range of net

r caused by culling in those populations (i.e., lines in Fig 4F are flat).

Discussion

Efficient planning for controlling vertebrate pests depends on an understanding of popula-

tion-dynamic processes and knowledge of demographic parameters. As we show here, knowl-

edge of spatial and temporal processes that occur in wild pig populations and previously

measured demographic parameters (references in Table 1) can be combined to predict the

effectiveness of current patterns of wild pig culling (based on USDA activities). Incorporating

data from realistic culling patterns helped us examine the effectiveness of a range of culling

intensities and frequencies, which are implemented in practice, and assess whether fertility

control could provide additional benefits under realistic culling patterns.

Effects of culling intensity

A common question posed by wildlife managers is: “What annual harvest rate is needed to

cause a decline or prevent population growth?” [53]. Considering the biology of wild pigs, we

found that annual culling intensities of 20–60% of the population led to population declines

(50–100% over 4 years) across a range of intrinsic population growth rates without immigra-

tion. With immigration, similar annual culling intensities led to an average population reduc-

tion of ~20% within 4 years (depending on intrinsic population growth rate) and the

population maintained this lowered abundance, rather than continuing to decline. Our results

are consistent with a previous analysis of hunter harvest data in Queensland, Australia (open

to immigration) that found harvest rates as low as 20% could cause abundance reduction (30%

over 4 years), as long as the harvest rates are maintained [54]. As the 30% abundance reduction

is on the higher end of the range of our models with immigration (most realistic scenarios), it

suggests immigration rates or intrinsic population growth rates in the Australian study may
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Fig 4. Effects of adding fertility control. Percent reduction in abundance due to sterilant (i.e., relative to culling only) after 4 years as

a function of different net population growth rates (note: negative r values due to culling). Each point represents one simulation. Lines

are predictions from the model presented in Table C in S2 File. Predictions were truncated outside the range of the data. Colors

indicate data from different intrinsic population growth rate parameters: Red: r = 0.26, Blue: r = 0.58, Black: r = 0.89. A, C, E and G

columns are for populations closed to immigration, B, D, F and H columns indicate scenarios where immigration from neighboring

populations occurs. Predictions are cut-off to avoid predicting outside the range of the data.

https://doi.org/10.1371/journal.pone.0183441.g004
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have been slightly lower than immigration rates in our model. It is likely that the immigration

rates were lower in the Australian study because our low intrinsic population growth rates

were quite low: 50% of field-based estimates (r = 0.26). Also, for immigration, we assumed that

as soon as animals were culled, space was available to be occupied by dispersers or groups in

cells at carrying capacity. However, in reality, there may be a lag time between these individu-

als seeking new space and the realization that the space is available, which could result in

slower immigration than in our model.

Our result that annual culling intensities > 60% almost always led to> 99% reduction are

also consistent with a previous modeling study based on demographic data from Texas, USA,

(without immigration) that found that 40% annual culling intensities allow population growth

while 66% leads to population declines [45]. However, in our model, culling intensities of 40%

were also quite strong and led to population declines of 70–95% over 4 years in populations

closed to immigration, while the previous work did not suggest such strong effects with 40%

culling intensities. One reason for the discrepancy with [45] could be that our model included

realistic lag times between conception and births, social structure, fluctuations around carry-

ing capacity and spatial structure (these details were unclear in [45]).

Previous work suggests that the impacts of culling may be underestimated in deterministic

models that neglect fluctuations around carrying capacity and lag times in reproductive pro-

cesses [55]. When we scaled our deterministic models to have the same intrinsic population

growth rates as our stochastic model, we found that the general patterns were similar between

the two approaches but that the stochastic model tended to have larger abundances for slightly

longer, and tended to persist longer. Thus, our results support Dexter & McLoed [55] because

we found that the birth-pulse fluctuations in our stochastic model led to different effects of

culling patterns on abundance trajectories relative to our deterministic models. But, in contrast

to [55], we found that the populations with stochasticity tended to be more robust at low abun-

dance because of the potential for higher fecundity at low densities relative to the deterministic

models. The discrepancies between the simplified deterministic models and the more complex

individual-based model suggest that deterministic model may be inappropriate for planning

management in low-density populations.

Effects of immigration on effectiveness of culling

As expected, intrinsic population growth rate affected the efficacy of control but the magnitude

of intrinsic population growth rate effects depended strongly on immigration. In populations

closed to immigration, where culling intensities were high enough to drive the population to

zero under low intrinsic population growth rate, high intrinsic population growth rate pre-

vented eradication. Alternatively, if immigration from surrounding areas was allowed, the out-

come of different culling patterns was more similar across the different intrinsic population

growth rates because immigration overwhelmed the effects of culling, and emphasizing that

accurately predicting the effects of management depends on understanding immigration rates.

Similarly, our statistical analysis predicted that culling intensity and gap length effects on

abundance over time were weaker when immigration was allowed. Previous eradication efforts

of wild pigs have found that blocking or severely reducing immigration into controlled areas

(e.g., zoning by fencing) is critical to success of the program [11–14,56]. Our results predict

that the importance of using fencing zones or other means of blocking immigration increases

with intrinsic population growth rate. However, techniques such as fencing are only achievable

for small-scale eradication programs, making it important to devise alternative strategies for

national-scale control programs. Collecting data on population growth rates (abundance or

density over time) alongside management, and combining this information with environment
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type covariate data and management activity maps may be a useful approach for predicting

source populations that should be targeted for immigration control. Such predictions would

inform spatial prioritization of culling (or other population management resources) by empha-

sizing where additional management should be conducted either at the border or within

important source populations.

Addition of fertility control

In agreement with previous work, we found that a sterilant used in conjunction with culling

caused dramatically faster population decline under low culling intensities and high rates of

fertility control [30]. We also found that even moderate levels of fertility control could provide

benefits when used in conjunction with culling: the population was reduced 50% more relative

to culling alone over a four-year period. This level of benefit required at least 40% of females

be sterilized annually, which could be considered moderately high depending on the delivery

mechnism of the sterilant. Thus our results suggest that moderately high (40% of females

annually) levels of sterilization can accelerate population reduction in populations with ongo-

ing culling [31]. However, our statistical analysis of the effects of net population growth rates

on the efficacy of fertility control paints a more complicated picture than has been described

previously [31], which suggests that the greatest response to fertility control will occur in popu-

lations that are declining, or have lower intrinsic population growth rate [31]. In contrast, we

found that for closed populations, lower intrinsic population growth rate resulted in lower effi-

cacy of fertility control relative to populations populations with higher intrinsic population

growth rate. This was likely because simulated culling was intense enough in the populations

with lower intrinsic population growth rate that fertility control could not provide additional

benefits. This is consistent with the finding that fertility control provided no added benefits

over poisoning in red foxes (Vulpes vulpes) [57]. Additionally, under the range of conditions

we examined, we found that the populations without immigration and with low intrinsic pop-

ulation growth rate showed maximal effects of fertility control when net population growth

rates were highest (near 0—we did not have data for conditions of net r> 0), but that effects of

fertility control declined dramatically with net r. Thus, overall, our results show that a relativley

narrow range of net population growth rates exist where application of fertility control in addi-

tion to culling may be beneficial—net r (the combination of intrinsic r and culling intensity)

needs to be high enough that the population will not decline to eradication without additional

control.

Effects of immigration on effectiveness of fertility control

As has been noted previously [25,32,58], we found that immigration greatly reduced efficacy

of fertility control. We found also that under conditions with immigration, intrinsic popula-

tion growth rate had opposite effects on the efficacy of fertility control (relative to that in popu-

lations closed to immigration) along a similar gradient of population growth rate: fertility

control was generally more effective in populations with lower intrinsic population growth

rate (as would be predicted by [31] that did not consider immigration). This was because when

immigration was allowed, the culling patterns were not strong enough to reduce abundance to

low levels under any of the intrinsic population growth rate conditions, thus allowing fertility

control to provide additional benefits. In cases with immigration, fertility control was only pre-

dicted to provide a maximum of 30% reduction with 40% coverage of females and 40% reduc-

tion with 80% coverage. Although this seems low, it is similar to the level of reduction

provided by the culling patterns we examined under immigration. Thus our results show that

addition of fertility control could almost double the magnitude of abundance reduction under
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immigration, suggesting that fertility control could be an important contribution to reduced

abundance under conditions with immigration. One benefit that fertility control may have

over culling under conditions with immigration and territoriality [40] or density dependence

is that sterile individuals occupy areas that are unavailable for fertile immigrants (termed the

‘placeholder effect’ by [59]). This could serve as an important contribution to reduced abun-

dance and immigration in controlled areas, buying time for additional immigration preven-

tion techniques (e.g., culling at the border or within source populations) to be implemented.

This placeholder effect method of maintaining lower abundance in target populations while

culling source populations would act to maintain lower overall abundance in the target popu-

lation, which could be particularly useful in target populations with high rates of immigration

(i.e., where culling alone seems ineffective).

Caveats

Although we explicitly modeled spatial locations and family group structure, the social and

spatial ecology of wild pigs in our model only became relevant in our implementation of cull-

ing (i.e., targeting individuals in closest proximity to each other, thus removing whole family

groups instead of random samples across groups). Therefore, our model does not account for

territoriality [40] or other behavioral interactions in the probability that individuals will be

sterilized or culled, meaning that our results in absolute terms are likely overestimates of popu-

lation decline rates. We also simplified implementation of fertility control. We did not explic-

itly model the mating process, delivery or potential changes in behavior due to sterilants,

which can affect the efficacy of fertility control [58,60–63]. We made these simplifying assump-

tions because we had no data for informing these processes, and also because we sought to

understand the maximum potential effects of sterilants used in conjunction with lethal control.

Previous work has also shown that fertility control tends to be more effective when density-

dependence in the system acts through survival (as in our model), rather than through repro-

duction, which we did not include [64,65]. Thus, the realized effects of sterilants could be

lower than our model predicts.

Although our analyses reveal important insight for implementation of control methods,

two major gaps remain for accurate determination of optimal management strategies. For one,

the relationship between damage levels and pig abundance is not well established in the USA.

If we were to assume that the relationship is linear, then predicting the abundance reduction

needed to reach a target level of damage would be straightforward. However, the relationship

is likely more complicated such that at least some large reduction is needed in order to observe

any effect on damage levels (i.e., culling patterns that do not meet some threshold of abun-

dance reduction have no benefit to damage reduction) [66]. Thus, quantifying the relationship

between abundance and damage is a critical ingredient to be considered in determining opti-

mal strategies. Nonetheless, analyses without consideration of the damage-abundance relation-

ship can still be enlightening when focused on the fastest reduction to eradication, as in some

of our culling patterns, because these conditions would certainly eliminate damage. This is

important because control techniques differ in efficacy according to abundance [13,23]. Stud-

ies designed to quantify the degree that effort increases as abundance decreases, as a function

of multiple control techniques, is critical to predicting the most cost-effective solutions for

minimizing abundance in target areas. Until these data become available, decision-making to

reach a target level of damage should be based on previous experience of costs and effort for

available techniques and knowledge of the effects of different strategies on abundance trajecto-

ries (as presented here, for example).
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Conclusions

As fiscal resource limitations are a major obstacle for large-scale wildlife management pro-

grams, it is important to carefully consider the efficacy of different practical control patterns

on abundance reduction in order to prioritize resource allocation most effectively, and to eval-

uate the potential for new tools to enhance management outcomes. In wild pig populations

closed to immigration, culling 20–60% of the population annually should result in rapid and

substantial population reduction (50–100% within 4 years). However, with immigration, cull-

ing intensities must be at least 60% to reduce abundance by 50% over 5 years, which will only

be possible when intrinsic population growth rates are on the low end for pigs (λ = 1.3). The

addition of fertility control could provide additional reduction in abundance when used in

conjunction with culling, but the amount of benefit depends strongly on demographic condi-

tions and population growth rate as influenced by culling patterns. In summary:

• In conditions with culling and no immigration, fertility control will accelerate population

decline when culling alone is slowing population growth but not drastically reducing abun-

dance. In contrast, when intrinsic population growth rate is high enough that population

growth continues despite culling, or when culling intensity is so high that culling alone

reduces the population near 0 within 4 years, fertility control may not be worthwhile. Of

course, in populations closed to immigration, the cost-effectiveness of simply increased cull-

ing should be weighed against that of using a combined strategy because, theoretically, sim-

ply increasing culling intensities should lead to eradication. Cost-effectiveness will be

difficult to assess until a registered sterilant and delivery system are established.

• In conditions with immigration, effects of fertility control are weak (40% reduction in abun-

dance at the most, 15–20% on average depending on conditions) but it provides benefits

even when culling intensities are very high. Fertility control could be useful when immigra-

tion occurs because it may not be possible to reach target abundance with culling alone.

Success of control programs depends on rigorous monitoring programs alongside manage-

ment in order to adaptively allocate resources and plan ongoing strategies in response to

changing abundance [13,67]. Our results further emphasize that collecting demographic data

such as fecundity and immigration rates could be important for adaptive allocation of

resources. Collection of these and damage data alongside management will enable prediction

of optimal resource allocation over space and time.
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