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a b s t r a c t 

The data show an association between measured and pre- 

dicted changes in cognitive performance in older adults who 

are cognitively normal. Changes in cognitive performance 

over two years were assessed using the Cognitive Compos- 

ite Score. The prediction of change in cognitive function 

was based on changes in pairwise functional connectivity 

between 80 gray matter regions examined by resting-state 

functional magnetic resonance imaging. A feature extraction 

process based on the Variable Importance Testing Approach 

(VITA) identified changes in 11 pairs of functional connec- 

tions associated with the default mode network as features 

related to changes in cognitive performance. Linear and elas- 

tic net regression models were applied to these 11 features 

to predict changes in cognitive performance over two years. 

A relationship between the 11 features and the geriatric de- 

pression score was also shown. The dataset supplements the 

research findings in the "Changes in pairwise functional con- 
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nectivity associated with changes in cognitive performance 

in cognitively normal older individuals: a two-year observa- 

tional study" published in Oishi et al. (2022). The raw rs- 

fMRI correlation matrix and associated clinical data can be 

accessed upon request from the BIOCARD website ( www. 

biocard-se.org ) and can be reused for predictive model build- 

ing. 

© 2022 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

S

 

pecifications Table 

Subject Neuroscience 

Specific subject area Functional neuroimaging, resting-state functional connectivity, aging, cognitive 

change 

Type of data Table 

Figure 

How the data were acquired The Imaging Core staff of the Johns Hopkins BIOCARD study team acquired 

high-resolution three-dimensional T1-weighted images and resting-state 

functional magnetic resonance imaging (rs-fMRI) using a 3T MR system 

(Philips Healthcare, Best, The Netherlands). 

Clinical assessments, cognitive evaluations, and APOE genotyping were 

performed by the Clinical Core staff of the Johns Hopkins BIOCARD study team. 

Variable importance measures were performed using VITA in R (v.4.0.2). 

Predictive modeling was performed using linear regression and an elastic net 

regression in the classification and regression training (caret) package in R 

(v.4.0.2). 

Evaluation of model performance was assessed with four-fold cross-validation, 

in which the data splitting was performed using the vtreat package in R 

(v.4.0.2). 

Depressive symptoms were rated using the Geriatric Depression Scale (GDS) 

[2] . 

Correlation analysis was carried out with Pearson’s product-moment 

correlation and Kendall’s ranking correlation in R (v.4.0.2). 

Data format Analyzed 

Description of data collection Clinical assessments and cognitive evaluations for participants were performed 

during at least six visits, approximately one year apart. The MRI scans were 

obtained at the fourth visit (between 2015 and 2017, Time 1) and at the sixth 

visit (between 2017 and 2019, Time 2). Clinical evaluations were performed 

using methods consistent with the National Institute on Aging Alzheimer’s 

Disease (AD) Research Centers program. The diagnostic procedures were in 

accordance with the recommendations for diagnosing mild cognitive 

impairment (MCI) and dementia due to AD contained in the report of the 

NIA/AA working group. 

The EPI sequence was used to acquire rs-fMRI data consisting of 140 functional 

volumes. The total scan duration for each session was 420 s. Forty-Eight axial 

slices were obtained to cover the whole brain. The field of view (FOV) was 

2.12 × 2.12 cm 

2 ; the voxel size was 3.3 × 3.3 × 3.3 mm 

3 ; the repetition time 

(TR) was 30 0 0 ms; the echo time (TE) was 30 ms; the flip angle was 75 °. 
For the anatomical reference, magnetization-prepared rapid gradient echo 

(MPRAGE) scans were acquired. There were 170 sagittal slices that covered the 

whole brain. The FOV was 240 × 256 mm 

2 ; the TR was 6.8 ms; the TE was 

3.1 ms; the shot interval was 30 0 0 ms; the flip angle was 8 °; the voxel size 

was 1 × 1 × 1.2 mm 

3 ; the scan duration was 5 min 59 s. 

The image processing, including postprocessing, segmentation, and 

quantification, was performed in MRICloud ( www.MRICloud.org ). 

( continued on next page )

http://www.biocard-se.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.MRICloud.org
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The identification of variables associated with changes in cognitive 

performance was based on 15 cross-validations and 10 permutations. 

Regression coefficients of the prediction model were obtained by fitting the 

model with 10-fold cross-validation [3] . Predictive model performance was 

evaluated by correlation analysis between predicted response and measured 

response using Pearson’s product-moment correlation. 

Relationships between predicted response and measured response were 

visualized in scatterplots. 

Data source location School of Medicine, Johns Hopkins University 

Baltimore, Maryland 

United States 

Data accessibility Biomarkers for Older Controls at Risk for Dementia (BIOCARD) 

https://www.biocard-se.org/public/Data%20Access%20Procedures.html 

The raw datasheet containing the rs-fMRI correlation matrix and associated 

clinical data are available upon request. Send the required documents 

(BIOCARD Data Use Agreement_FILLABLE.pdf) via e-mail to BIOCARD@jhu.edu. 

Please clearly state that you are requesting the rs-fMRI datasheet in Oishi, K. 

et al., Data in Brief. Send any questions about the requests to this e-mail 

address as well. 

The rs-fMRI correlation matrix among structures was obtained from the 

nuisance-corrected BOLD time courses, followed by Fisher’s z-transformation, 

which resulted in the z-correlations (z-cor) at each time point (Time1 and 

Time2). The other columns include age, sex, years of education, vascular health 

risk composite score, APOE gene status, and cognitive composite score when 

the MRI scan was assessed. 

If you have specific questions about the BIOCARD study, you may contact the 

Principal Investigator, Dr. Marilyn Albert, at malbert9@jhmi.edu, or (410) 

614-3040. 

Related research article K. Oishi, A. Soldan, C. Pettigrew, J. Hsu, S. Mori, M. Albert, K. Oishi, BIOCARD 

Research Team, Changes in pairwise functional connectivity associated with 

changes in cognitive performance in cognitively normal older individuals: a 

two-year observational study, Neurosci Lett 10.1016/j.neulet.2022.136618 (2022) 

136,618. https://www.ncbi.nlm.nih.gov/pubmed/35398188 

Value of the Data 

• This dataset is beneficial to researchers in the field of cognitive aging by providing a natural

course of cognitive performance over five years of observation in cognitively normal older

adults. 

• This dataset is beneficial to functional connectivity researchers by providing an elastic net

regression model that predicts changes in cognitive function from pairs of resting-state func-

tional connectivity. 

• This dataset can provide research guidance to data scientists who aim to extract clinically

relevant information from signals originating from the brain. 

• This dataset can be used as a reference with which to assess changes in cognitive perfor-

mance seen in older adults who are cognitively normal. 

• This data set can be used as a benchmark to evaluate advanced mathematical models aimed

at predicting changes in cognitive performance. 

https://www.biocard-se.org/public/Data%20Access%20Procedures.html
https://www.ncbi.nlm.nih.gov/pubmed/35398188
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. Data Description 

ig. 1. Trajectory of cognitive composite score in older adults who are cognitively normal. Cognitive performance was

valuated annually using the Cognitive Composite Score (CC). Each participant was assessed a total of at least six times.

he mean CC of 92 cognitively normal participants is plotted against the number of visits. The rs-fMRI was scanned at

isit 4 ( = Time 1) and visit 6 ( = Time 2). Mean CC and standard deviation (SD) are shown above the graph. 

ig. 2. Workflow for extracting features related to changes in cognitive performance from rs-fMRI signals and risk factors

or cognitive decline. 

pper row: The process of calculating the change in pairwise functional connectivity between Time 1 and Time 2. For

he evaluation of functional connectivity, the correlation matrix of the rs-fMRI data was Fisher’s z-transformed and age-

orrected (z-cors). The change in functional connectivity (dz-cors) was calculated from the difference in z-cors between

ime 1 and Time 2. 

iddle row: A set of variables that may be associated with changes in cognitive performance. 

ower row: Evaluation of change in cognitive performance between Time 1 and Time 2 (dCC) and selection of important

ariables related to dCC. The change in cognitive performance (dCC) was calculated from the difference in CC between

ime1 and Time 2. Among 3160 dz-cors, vascular health risk, years of education, sex, and APOE code, important features

ssociated with dCC were selected using VITA. 
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Fig. 3. Scatterplots showing the relationship between measured dCC (y-axis) and dCC predicted by the linear regression 

model (x-axis). With the variables selected by the procedure detailed in Fig. 2 and sex as inputs, a linear regression 

model was applied to create a predictive model for dCC. Four-fold cross-validation was used for the validation. That is, 

the data were randomly divided into four equal-sized subsets (subsets a–d); all samples not included in the selected 

subset were used as training data, and samples included in the selected subset were used as test data. Predictive model 

performance was evaluated by coefficient of determination between measured dCC and predicted dCC and the p -values, 

which are embedded in each graph. This data supplements Table 3 in the original publication [1] to assess the predictive 

model’s performance. 

 

 

 

 

 

 

 

 

 

 

 

 

2. Experimental Design, Materials and Methods 

2.1. Participants 

Data of 92 cognitively normal older individuals (52–82 years of age (SD, 6.22 years;

male/female = 31/61) were extracted from the Biomarker for Older Controls at Risk for Demen-

tia (BIOCARD) cohort. All participants signed informed consent to complete examinations and

evaluate previously obtained blood and cerebrospinal fluid (CSF) samples and brain MRIs. 

2.2. Clinical Assessments 

The Clinical Core staff of the Johns Hopkins BIOCARD study team made a consensus diag-

noses. First, a syndromic diagnosis of normal, mild cognitive impairment (MCI), or dementia

was made. This diagnosis was based on clinical data about medical, neurological, and psychi-

atric status; reports of cognitive changes by the individual and his or her companion; and cog-

nitive decline based on a review of longitudinal tests in multiple cognitive domains. If cognitive

decline was determined to be present, the probable etiology of the syndrome was then deter-

mined based on medical, neurological, and psychiatric information collected at each visit and

from medical records obtained from the individual. Each individual might have multiple etiolo-

gies, such as AD and vascular disease. Vascular health risk factors and APOE gene status were

assessed as in the original publication [1] . 
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.3. Cognitive Composite Score (CC) and Geriatric Depression Scale (GDS) Score 

The CC is the mean of the following four cognitive test scores converted to z-scores [4] . The

ognitive tests used were Paired Associates Immediate Recall and Logical Memory Delayed Re-

all (Story A) from the Wechsler Memory Scale-Revised [5] , Boston Naming [6] , and Digit-Symbol

ubstitution of the Wechsler Adult Intelligence Scale-Revised [7] . The requirement for measur-

ng cognitive composite scores was the presence of at least two of the four scores at each visit

8] , and if two or more scores were missing, the CC for that visit was considered missing. The

wo-year change in cognitive performance (dCC) was obtained from the difference in CC be-

ween Time 1 and Time 2 ( Fig. 1 ). Depressive symptoms were assessed using GDS [2] (Min = 0,

ax = 15) (results are described in the original publication in [1] ) ( Table 1 ). 

.4. MRI Scans 

An echo-planar imaging sequence was used to acquire rs-fMRI data consisting of 140 func-

ional volumes. The total scan duration for each session was 420 s. Forty-Eight axial slices were

btained to cover the whole brain. The field of view (FOV) was 2.12 × 2.12 cm 

2 ; the voxel size

as 3.3 × 3.3 × 3.3 mm 

3 ; the repetition time (TR) was 30 0 0 ms; the echo time (TE) was 30 ms;

he flip angle was 75 °. For the anatomical reference, magnetization-prepared rapid gradient echo

MPRAGE) scans were acquired. There were 170 sagittal slices that covered the whole brain. The

OV was 240 × 256 mm 

2 ; the TR was 6.8 ms; the TE was 3.1 ms; the shot interval was 30 0 0 ms;

he flip angle was 8 °; the voxel size was 1 × 1 × 1.2 mm 

3 ; and the scan duration was 5 min

9 s. 

.5. Image Processing 

rs-fMRI images were automatically post-processed, segmented, and qualified in MRICloud

 www.MRICloud.org ). The multi-atlas label fusion approach was applied to parcellate the

PRAGE image into 283 anatomical structures that included 80 gray matter structures used in

his study [9] . The JHU multi-atlas library [10] version 9, containing 30 atlases covering an age-

ange of 50–90 years, was adopted as the reference library. The label fusion step was performed

ased on [11] , adjusted by the PICSL algorithm [12] . The MPRAGE and corresponding parcellation

ap were co-registered to the motion and slice timing-corrected EPI [13] , and the time course

f the BOLD signal was extracted from the 72 cortical (including the hippocampus) and eight

ub-cortical gray matter regions [14] . 

.6. rs-fMRI Analysis and Feature Selection 

The correlation matrix among structures was obtained from processed rs-fMRI images.

isher’s z-transformed correlation was used as functional connectivity (z-cor). z-cors were age-

orrected [15] . The two-year changes in functional connectivity (dz-cors) were obtained from

he differences of z-cors between Time 1 and Time 2. Featured variables related to dCC were as-

essed using VITA [16] with a cross-validated permutation variable importance measure (CVPVI)

rom 3164 variables, including 3160 dz-cors and risk factors (sex, vascular health risk, years of

ducation, and APOE gene status) at Time 1 (detailed in the original publication in [1] ) ( Fig. 2 ). 

.7. Prediction Modeling 

After feature selection using VITA, we applied the generalized model to build the prediction

odel with selected functional connections as variables for a change in cognition. We used four-

http://www.MRICloud.org
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Table 1 

Regression coefficients and the intercept obtained from an elastic net regression model. With the variables selected by 

the procedure detailed in Fig. 2 and sex as inputs, elastic net regression was applied to generate a predictive model for 

dCC. Four-fold cross-validation was used for the validation. That is, the data were randomly divided into four equal-sized 

subsets (subsets 1–4 in Table 1 ); all samples not included in the selected subset were used as training data, and samples 

included in the selected subset were used as test data. Predictive model performance was evaluated by coefficient of 

determination between measured dCC and predicted dCC and the p-value. AG_L, the left angular gyrus; AG_R, the right 

angular gyrus; subgenual_ACC_R, the left subgenual anterior cingulate cortex; MTG_L_pole, the left middle temporal 

gyrus pole; MTG_R, the right middle temporal gyrus; MTG_L, the left middle temporal gyrus; MTG_L_pole, pole of the 

left middle temporal gyrus; PrCu_R, the right precuneus; STG_R_pole, pole of the right superior temporal gyrus; Insula_L, 

the left insula; RG_R, the right rectal gyrus; GP_L, the left globus pallidus; Caud_L, the left caudate; LFOG_R, the right 

lateral fronto-orbital gyrus; MFG_L, the left middle frontal gyrus; MFG_DPFC_R, the right dorsolateral prefrontal aspect 

of the middle frontal gyrus; SFG_L, the left superior frontal gyrus; SFG_PFC_R, the right prefrontal aspect of the superior 

frontal gyrus; SPG_L, the left superior parietal gyrus. The areas involved in the default mode network are boxed; the 

salient network is underlined; and the lateral prefrontal areas are double underlined. This data supplements Table 3 of 

the original publication in [1] , in which the results of a simple linear model are presented instead of the elastic net 

penalized regression model. 

 

 

 

 

 

 

fold cross-validation for the evaluation of the model, in which the data set was split into training

data ( n = 69) and test data ( n = 23). The kWayStratifiedY function in the vtreat package in R

(v.4.0.2) was used to introduce a stratified sampling to address the internal structure imbalance

problem of the data splitting. Namely, it allows the splitting of data to maintain the internal dis-

tribution of dCC in the original data. The glmnet for elastic net regression [3] in the classification

and regression training (caret) package in R (v.4.0.2) was used. Model fitting for regression co-
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Table 2 

Correlation between change in functional connectivity (dz-cors, see Fig. 2 ) and the Geriatric Depression Scale (GDS). The 

dz-cors were selected by the procedures described in Fig. 2 . AG_L, the left angular gyrus; AG_R, the right angular gyrus; 

subgenual_ACC_R, the left subgenual anterior cingulate cortex; MTG_L_pole, the left middle temporal gyrus pole; MTG_R, 

the right middle temporal gyrus; MTG_L, the left middle temporal gyrus; MTG_L_pole, pole of the left middle temporal 

gyrus; PrCu_R, the right precuneus; STG_R_pole, pole of the right superior temporal gyrus; Insula_L, the left insula; 

RG_R, the right rectal gyrus; GP_L, the left globus pallidus; Caud_L, the left caudate; LFOG_R, the right lateral fronto- 

orbital gyrus; MFG_L, the left middle frontal gyrus; MFG_DPFC_R, the right dorsolateral prefrontal aspect of the middle 

frontal gyrus; SFG_L, the left superior frontal gyrus; SFG_PFC_R, the right prefrontal aspect of the superior frontal gyrus; 

SPG_L, the left superior parietal gyrus. The areas involved in the default mode network are boxed; the salient network 

is underlined; and the lateral prefrontal areas are double underlined. This dataset was supplementary to the original 

publication in [1] . 
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E

fficients was performed with ten-fold cross-validation in all four subsets of training data. Each

odel was applied to each subset of the test dataset to obtain the predicted dCC. The model

erformance for the prediction of the dCC was evaluated by the correlation analysis between

he measured dCC and the output of the model (predicted dCC) obtained from four subsets of

he test data. The correlation between the measured and predicted dCC was calculated using

earson’s product-moment correlation in R (v.4.0.2). The regression coefficients obtained from

ach of the four models and the p -values were demonstrated ( Figs. 3 and 4 ). 

.8. Correlation Between Functional Connectivity and Geriatric Depression Scale (GDS) Score 

GDS score at baseline (Time 1) was assessed in the correlation analysis with the dz-cor of

eatured functional connections ( Table 2 ). Correlation analysis was performed using Kendall’s

ank correlation in R (v.4.0.2). 

thics Statements 

The BIOCARD study was approved by the JHU Institutional Review Board, 
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Fig. 4. Scatterplots showing the relationship between measured dCC (y-axis) and dCC predicted by the elastic net pe- 

nalized model (x-axis). The (a–d) represent the results of subset 1, subset 2, subset 3, and subset 4 described in Table 1 . 

Correlation and p -values are embedded in each graph. This data supplements Table 3 in the original publication [1] to 

assess the predictive model’s performance. 
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