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Abstract

Background: As Lens epithelium-derived growth factor (LEDGF/p75) is an important co-factor involved in HIV-1 integration,
the LEDGF/p75-IN interaction is a promising target for the new class of allosteric HIV integrase inhibitors (LEDGINs). Few
data are available on the genetic variability of LEDGF/p75 and the influence on HIV disease in vivo. This study evaluated the
relation between LEDGF/p75 genetic variation, mRNA expression and HIV-1 disease progression in order to guide future
clinical use of LEDGINs.

Methods: Samples were derived from a therapy-naı̈ve cohort at Ghent University Hospital and a Spanish long-term-non-
progressor cohort. High-resolution melting curve analysis and Sanger sequencing were used to identify all single nucleotide
polymorphisms (SNPs) in the coding region, flanking intronic regions and full 39UTR of LEDGF/p75. In addition, two intronic
tagSNPs were screened based on previous indication of influencing HIV disease. LEDGF/p75 mRNA was quantified in patient
peripheral blood mononuclear cells (PBMC) using RT-qPCR.

Results: 325 samples were investigated from patients of Caucasian (n = 291) and African (n = 34) origin, including Elite
(n = 49) and Viremic controllers (n = 62). 21 SNPs were identified, comprising five in the coding region and 16 in the non-
coding regions and 39UTR. The variants in the coding region were infrequent and had no major impact on protein structure
according to SIFT and PolyPhen score. One intronic SNP (rs2737828) was significantly under-represented in Caucasian
patients (P,0.0001) compared to healthy controls (HapMap). Two SNPs showed a non-significant trend towards association
with slower disease progression but not with LEDGF/p75 expression. The observed variation in LEDGF/p75 expression was
not correlated with disease progression.

Conclusions: LEDGF/p75 is a highly conserved protein. Two non-coding polymorphisms were identified indicating a
correlation with disease outcome, but further research is needed to clarify phenotypic impact. The conserved coding region
and the observed variation in LEDGF/p75 expression are important characteristics for clinical use of LEDGINs.
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Background

Acquired Immunodeficiency Syndrome (AIDS) caused by the

human immunodeficiency virus (HIV) is one of the major

infectious diseases with 34 million people affected world-wide

[1]. The introduction of combination antiretroviral treatment

converted HIV/AIDS from a deadly disease into a chronic

infection [2]. However, short- and long-term side-effects often

challenge life-long antiviral treatment, prompting the need for new

therapeutic strategies. This search has mainly been focussed on

targeting viral enzymes as reverse transcriptase, protease and more

recently integrase [3]. Different steps of the HIV-1 cycle are tightly

dependent on cellular factors and accordingly host factors have

become potential targets for HIV drug development. As an

example, a first drug targeting the CCR5 co-receptor was

approved for treatment of HIV-1 infection [4]. Further unravel-

ling the host – virus interaction not only leads to better

understanding of viral dynamics and disease progression, but also
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paves the way to validate new targets in the treatment of HIV-1

[5]. An increasing number of co-factors is being studied in the

course of new strategies against HIV-1 infection [6].

An important and limiting step during cell infection is the

integration of proviral DNA into host cell DNA, catalyzed by the

viral enzyme integrase (IN). This requires the interaction with

Lens epithelium-derived growth factor p75 (LEDGF/p75). By

interacting with the catalytic core domain of IN, LEDGF/p75

functions as a chromatin tethering factor for the pre-integration

complex, and targets HIV-1 integration towards actively

transcribed genomic regions [7,8,9,10,11,12,13,14]. LEDGF/

p75 is a member of the hepatoma-derived growth factor (HDGF)

related protein family (HRP-family) known as transcriptional co-

activators for heat-shock and stress-related genes

[15,16,17,18,19,20]. It plays a role as anti-apoptotic protein in

diverse oncologic settings [21,22]. The essential role in HIV-1

replication has been elucidated by mutagenesis, RNA interfer-

ence, transdominant expression of protein domains and knock-

out experiments [23,24,25,26,27]. Recently, allosteric inhibitors

of the LEDGF/p75 - IN interaction (LEDGIN) were developed

as a new class of antiretroviral treatment [28]. In vitro data show

that LEDGINs also block the interaction between IN and HRP2,

a second host protein of the HRP-family that contains a

structurally similar integrase binding domain (IBD) and can

substitute for HIV integration in cell lines with LEDGF/p75

knock-down [29].

Several Genome-wide association studies explored the

influence of human genetic variation on HIV-1 replication

and disease progression [30,31,32,33,34]. Genetic variants in

genes associated with HLA-B*57:01 and the HLA-C gene

region, together with the CCR5D32 variant can explain up to

13% of the observed variability in HIV-1 viremia [32] raising

the need for further genetic studies to improve individualized

prognosis in HIV-infected patients. Gene polymorphisms can

be particularly important to predict response to treatment when

drug targets are cellular host proteins [35]. Two studies

investigated genetic variation in the LEDGF/p75 gene (known

as PC4 and SFRS-1 interacting protein-1 or PSIP1). One study

detected rare single nucleotide polymorphisms (SNPs) in the

adjacent domains of LEDGF/p75 integrase binding domains

(IBD) of Caucasian long-term non-progressor patients [36]. The

other study genotyped five pre-defined tagSNPs in two South-

African cohorts. They showed that the minor allele of one

tagSNP was associated with higher CD4 T-cell count, lower

viremia and reduced LEDGF/p75 mRNA expression during

early infection and slower CD4 decline during the chronic

phase. Another tagSNP minor allele was more prevalent in

sero-positives and trended towards association with high

likelihood of HIV-1 acquisition [37]. This data indicate there

can be a correlation between genetic variants in the LEDGF/

p75 domain and HIV disease outcome. However, a compre-

hensive analysis of all genetic variation in the coding region of

LEDGF/p75 has not been performed so far and may provide

information of additional variants with an influence on HIV

disease progression.

The current study aimed at a comprehensive in vivo character-

ization of LEDGF/p75 on both genetic and mRNA level in a large

and ethnically mixed HIV-1 infected patient cohort. We focused

on the association of genetic variation in the full coding

region+39UTR of the LEDGF/p75 gene and HIV-1 disease

progression and on the link of genetic variants with LEDGF/p75

and HRP2 mRNA expression levels.

Methods

Patient population
The study included chronically HIV-1 infected patients from

the Aids Reference Center at Ghent University Hospital (n = 187)

and HIV-1 long-term non-progressors (LTNP; n = 138) from the

LTNP cohort of the Spanish AIDS Research Network (See

Table 1). Samples from the LTNP cohort were kindly provided by

the HIV BioBank integrated in the Spanish AIDS Research

Network (RIS) [38]. Samples were processed and frozen imme-

diately after collection. The Ghent patients had a therapy-naive

follow-up period of at least two years with regular CD4 count and

plasma HIV RNA determination (three times/year). They

comprised patients from Caucasian (81.2%) as well as African

(18.2%) descent. Data on HIV-1 subtype were available for 83%

of patients with 70% of them harboring an HIV-1 B-subtype. The

LTNP cohort were all of Caucasian origin, had a documented

HIV-1 infection .10 years, consistent CD4 count above 500

cells/ml and viral load below 10,000 copies/ml in the absence of

therapy. The slope of CD4 decline and the average plasma HIV

viral load were determined for all patients based on at least four

CD4+ T-cell counts and plasma HIV RNA measurements on

samples collected with minimum three months’ time interval

during the therapy-naive follow-up period. Classification of

patients according to disease progression was based on broadly

applied clinical definitions [39,40,41,42,43]: LTNP elite control-

lers (LTNP-EC) are long-term non-progressors (10 year follow-up,

CD4 .500cells/mL) maintaining an undetectable viral load

without antiretroviral therapy (n = 48), LTNP viremic controllers

(LTNP-VC) are long-term non-progressors harboring less than

2000 HIV RNA copies/ml without therapy in 75% of the

measurements (n = 63), viremic non-controllers (LTNP-NC) are

long-term non-progressors with a viral load between 2000 and

10,000 copies/ml (n = 66). Rapid progressors (RP) are non-LTNP

patients with CD4 decline of more than 100 cells/ml per year

(n = 35) and normal progressors (NP) are non-LTNP with a CD4

decline less than 100 cells/ml per year (n = 113). Ethical approval

was obtained from Ethics Committee of Ghent University

Hospital (Reg nr B67020071646) and Instituto de Salud Carlos

III (Ref CEI PI 33_2010-v3). All participants provided written

informed consent.

PSIP1 genotyping
After gDNA extraction from whole blood (Blood mini kit,

Qiagen), 23 fragments were amplified by PCR, spanning the

complete coding region of PSIP1, 39UTR and on average 25

basepairs of the flanking intronic regions (see Figure 1). Two

intronic tagSNPs described by Madlala et al. were analyzed as well

[37]. Primers were designed with Lightscanner software (Idaho

Technologies) and listed in Table S1. Single nucleotide polymor-

phisms were screened by high resolution melting curve (HRM)

analysis (Lightscanner, Idaho Technologies) with high sensitivity

detection and auto-grouping [44,45]. Bi-directional Sanger

sequencing with Big Dye Terminator (ABI 3730 xl Sequencer,

Applied Biosystems) was performed on all samples with aberrant

melting curves for identification of SNPs. This methodology was

validated by direct comparison of HRM data with Sanger

sequencing in a large group of samples (n = 50). When necessary,

detection sensitivity levels were adjusted to assure 100% sensitivity

for all variants. All SNPs in the coding region and infrequent SNPs

in the non-coding region were re-tested using separate DNA

samples to independently verify the results. The impact of SNPs on

protein structure was assessed with SIFT (Sorting Intolerant from

Tolerant) and Polyphen score (Polymorphism Phenotyping) for

LEDGF/p75 Variants in Relation with HIV-1 Disease
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variants in the coding region and MaxEnt scan and NNSPlice for

intronic variants [46,47,48,49]. In silico evaluation of the amino

acid code of PSIP1 gene product from different primates

(Chimpanzee, Gorilla, Gibbon, Bushbaby) was performed based

on the consensus sequences found in Ensembl database [50].

mRNA gene expression analysis
RNA was isolated using Trizol LS reagent (Invitrogen,

Carlsbad, USA) from freshly extracted 56106 peripheral blood

mononuclear cells (PBMCs) of patients from the Ghent cohort

containing genetic variants that indicated clustering in disease

progression groups. Patients not harboring PSIP1 genetic variants

were used as controls. A strict protocol in accordance with MIQE

guidelines was followed [51]. After Dnase treatment (Dnase I,

Ambion), the RNA integrity was assessed using automated

electrophoresis (Experion, Bio-Rad). Reverse transcription was

performed on 400 ng RNA with the iScript complementary DNA

(cDNA) synthesis kit and random hexamere primers (Bio-Rad).

LEDGF/p75 specific mRNA (i.e. not including LEDGF/p52) and

HRP2 mRNA expression was quantified by qPCR using dual-

labelled hydrolysis probes and LightCyclerH 480 Probes Master-

mix on a LC480 platform (Roche Diagnostics). After qPCR, the

most stable and optimal number of reference genes were validated

from a panel of eight reference genes with GeNorm, NormFinder

and BestKeeper software [52] (see also Figure S1). The geometric

mean of the two most stable reference genes (B2M and YMHAZ)

was used as normalization factor for the calculation of relative

mRNA expression quantities (qBase Plus, Biogazelle, Ghent,

Belgium [53]).

Statistical analysis
Linkage disequilibrium between different variants was assessed

with principal component analysis. Observed minor allele

frequencies of individual SNPs were compared to expected

frequencies per ethnicity with Fisher exact test (SPSS 19 software).

The same analysis was performed to distinguish clustering of

alleles in disease progression subgroups. Bonferroni correction for

multiple sampling was applied. After normality testing with

Shapiro-Wilk, Analysis of variance (ANOVA) was used to

determine differences in gene expression between different disease

progression groups. Of the genetic variants in the coding region

and in the non-coding region with significant clustering in one or

more disease progression groups, the influence on gene expression

(LEDGF/p75 and HRP2 mRNA) and disease progression (CD4

slope and average viral load) was analyzed for significance by

Mann-Whitney U and Kruskal-Wallis test (SPSS 19 software).

Pearson correlation and paired T-tests were used to assess

correlation between gene expression data and the parameters of

disease outcome.

Results

The study comprised 325 chronically infected HIV-1 patients

from a diverse ethnic background with an average follow-up time

of 15 years (Table 1). Patients were grouped into five distinct

disease progression categories as outlined in Methods. Thirty-four

percent of study subjects were either LTNP viremic or elite

controllers. CD4 decline or average plasma viral load was

independent from HIV subtype. The sensitivity of HRM curve

analysis for SNP detection was 100% for all amplicons, the

specificity ranged from 82% to 97%. In total 23 individual SNPs

were detected, five in coding regions of the gene, six in intronic

regions flanking the coding sequences and 12 in the 39UTR

(Table 2 and 3). Most SNPs were previously annotated, two are

newly described in this work and submitted for further reference at

dbSNP database (NCBI). Of all SNPs, minor allele frequencies

(MAF) were calculated and genotype frequencies were determined

to be in accordance with Hardy-Weinberg equilibrium. As there

can be large differences in MAF between Africans and Europeans,

analyses for both ethnicities were separately performed. Two SNPs

(rs35678110 and rs13248) were excluded from further analysis, as

Table 1. Patient characteristics.

Ghent cohort
(N = 187)

RIS Cohort
(N = 138) Overall (N = 325)

African
(N = 34)

Caucasian
(N = 291)

Age at diagnosis, median
years (IQR)

34 (28–40) 25 (22–30) 29 (24–37) 33 (26–39) 31 (24–36)

Follow-up time, median
years (IQR)

8 (6–11) 22 (20–25) 15 (7–22) 8 (6–11) 15 (8–23)

Sex, N (%) Female 45 (24,1) 48 (34,5) 93 (28,4) 23 (67,7) 70 (24,1)

Male 142 (75,9) 90 (65,5) 232 (71,6) 11 (32,3) 221 (75,9)

Ethnicity, N (%) African 34 (18,2) 0 (0) 34 (10,5)

Caucasian 153 (81,2) 138 (100) 291 (89,5)

Disease progression
(N, %)

LTNP - Elite controller 6 (3,2) 42 (30,4) 48 (14,8) 2 (5,9) 46 (15,8)

LTNP - Viremic controller 16 (8,6) 47 (34,1) 63 (19,4) 7 (20,6) 56 (19,2)

LTNP - Non controller 17 (9,1) 49 (35,5) 66 (20,3) 4 (11,8) 62 (21,3)

Normal progressor 113 (60,4) 0 (0,0) 113 (34,8) 19 (55,9) 94 (32,3)

Rapid progressor 35 (18,7) 0 (0,0) 35 (10,8) 2 (5,9) 33 (11,3)

Current ART, N (%) Yes 87 (46,4) 18 (12,9) 105 (32,3) 13 (38,2) 92 (31,6)

No 100 (53,6) 120 (87,1) 220 (67,7) 21 (61,8) 199 (68,4)

Overview of the patient characteristics, divided for Ghent and RIS cohort and per ethnicity (Africans, Caucasians). The number of patients per subcategory is presented
for sex, ethnicity, disease progression groups and current antiretroviral treatment.
IQR = interquartile range; N = number; LTNP = long-term non-progressor; ART = antiretroviral treatment.
doi:10.1371/journal.pone.0050204.t001
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they did not meet the Hardy-Weinberg law. The observed MAFs

of individual SNPs were compared with expected MAFs on

population level per ethnicity. In order to detect clustering in

disease progression groups, the MAFs in subgroups were

calculated and compared. We did not detect linkage disequilib-

rium between different SNPs with higher MAF.

Genetic variants of PSIP1 in the coding region
In the full coding sequence of PSIP1, five SNPs were detected, of

which two were not altering the encoded amino-acid (silent

mutations) and three were non-synonymous SNPs (Table 2). All

these variants have been annotated before and had low abundance

[54]. Observed minor allele frequencies were compared to

expected frequencies per ethnicity, in comparison with data from

HapMap and dbSNP database [55,56]. Fisher exact tests were

performed to detect significant lower or higher MAF compared to

a randomly selected patient population (Table 2). When compar-

ing the MAFs between the different disease progression groups, no

clustering of these variants in one or more subcategories could be

detected (data not shown). Kruskal-Wallis test (wild-type versus

minor-allele) failed to reveal an association between genetic

variants in the coding region and CD4 slope or average viral

load. LEDGF/p75 mRNA expression levels did not differ for

those patients harboring these SNPs (Figure 2).

Of the two synonymous variants, rs2821529 (S116S) was more

abundant and showed comparable MAF to the expected

frequencies, both in Africans and Caucasians. No link with disease

progression (CD4 decline, average viral load) or LEDGF/p75

Figure 1. LEDGF/p75 protein domains, gene structure and primate alignment. LEDGF/p75 functional protein domains (green) with the
integrase binding domain (IBD, indicated in red) and the PWWP domain, which regulates chromatin association. LEDGF/p75 spliced RNA with
different exons (light and dark purple) is linked to the protein domains. The third line represents the PSIP1 gene region with the coding regions
(purple) and non coding regions (introns are grey, 59UTR and 39UTR are respectively orange and yellow). The location of the discussed SNPs in this
work is indicated (red arrows: SNPs detected after screening; blue arrows: 2 tagSNPs in African cohort). The second panel shows the LEDGF/p75
protein alignment of humans and four primate species based on the reference sequences. The integrase binding domain (red box) is indicated,
showing no variation in the four primates. PWWP = proline-tryptophan-tryptophan-proline domain; NLS = nuclear localization signal; AT = adenine-
thymine rich DNA binding region; IBD = integrase binding domain; UTR = untranslated region.
doi:10.1371/journal.pone.0050204.g001

Table 2. Observed genetic variants in the PSIP1 coding region.

dbSNP rs number HGVS name
SNP
location African Caucasian

Amino acid
change

SIFT
score POLYPHEN score

NM_033222.3 MAF exp MAF obs MAF exp MAF obs

rs2821529 c.348T.C Exon2 0,169 0,107 0,042 0,039 S116S - -

rs139433616 c.402T.C Exon5 NA 0,000 NA 0,002 T134T - -

rs188943134 c.743C.T Exon8 NA 0,000 NA 0,002 P248L 0,18 0,045

rs61744944 c.1415A.T Exon13 0,034 0,059 NA 0,002 Q472L 0,01 0,007

rs35678110 c.1432C.G Exon14 0,025 0,000 NA 0,004{ L478V 0,21 0,049

{signifies variants not in accordance with Hardy Weinberg law.
Overview of the observed SNPs in the PSIP1 coding region for LEDGF/p75. Both expected and observed minor allele frequencies (MAF) are shown per ethnicity. The SIFT
score ranges from 0 to 1. The amino acid substitution is predicted as damaging if the score is , = 0.05, and tolerated if the score is .0.05. The POLYPHEN score ranges
from 0.00 to $2.00. The amino acid substitution is predicted possibly damaging if the score is $1.50 and probably damaging if the score is $2.00.
HGVS = Human Genomic Variation Society; SNP = single nucleotide polymorphism; MAF = minor allele frequency; NA = not assessed; rs = referenced SNP id number; –
means no impact due to silent mutation.
doi:10.1371/journal.pone.0050204.t002
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mRNA expression could be established (Figure 2). Only one

Caucasian patient harbored SNP rs139433616 (T134T), from

whom no mRNA for further analysis could be obtained.

The non-synonymous SNPs rs61744944 coding for Q472L

missense variant and rs188943134 coding for P248L were both

infrequent in Caucasian. SIFT and PolyPhen in silico analysis of

these variants did not indicate a major impact on protein structure

and function [54] (Table 2). The Q472L variant was observed

mainly, but not exclusively in Africans and is located outside the

known important functional domains. The P248L variant was

detected in one Caucasian normal progressor with an average viral

load of 5.17 log10 copies/ml. The mutation is also located outside

the known important domains.

The non-synonymous SNP (rs35678110), coding for the L478V

was present in one Caucasian viremic controller as homozygous

allele variant. This amino-acid is situated in a helix-turn-helix

motif outside the integrase binding domain. This SNP was

however excluded from further analysis due to Hardy-Weinberg

disequilibrium. SIFT and Polyphen scores indicated good

functional tolerance in silico.

Genetic variants of PSIP1 in intronic regions
In the flanking regions of the coding sequences, four intronic

SNPs were detected, of which one previously unknown heterozy-

gous intronic variant in one patient (ss536106972) (Table 3).

Intronic SNP rs2737828, upstream of exon 4, was significantly

less abundant in HIV-positive Caucasians compared to Hapmap

and dbSNP randomly selected patient population (p,0.0001).

There was no significant clustering in patients with long-term non-

progression, nor an association with CD4 slope (p = 0.688) or

average viral load (p = 0.702) (Figure 3A). A non-significant trend

towards lower LEDGF/p75 mRNA expression levels (p = 0.053)

was detected in these patients compared to the wild-type genotype.

HRP2 expression was not correlated with rs2737828 minor alleles

(p = 0.171) (Figure 3B).

For intronic SNP rs16933270, mainly observed in the African

subgroup and only in one Caucasian, the MAF was comparable

with expected frequencies in Africans, but was relatively more

prevalent in the LTNP patients. This variant was associated with

slower CD4 decline (p = 0.020) but not with viral load levels, nor

with LEDGF/p75 or HRP2 mRNA expression (p = 0.181 and

p = 0.150, respectively) (Figure 3A and 3B). A multivariate analysis

taking the viral load set-point and LEDGF/p75 mRNA expression

into account, confirmed this impact on CD4 slope (p = 0.025). For

intronic SNP rs2795128 the observed MAFs were in accordance

with the expected frequencies both for Africans as for Caucasians.

The minor alleles did not cluster in LTNP groups.

The allele frequencies of two intronic tagSNPs in Africans, i.e.

rs2277191 and rs12339417, were additionally determined [37].

Both tagSNPs were abundant in the African subgroup and MAFs

were in line with expected frequencies. However, no correlation

with CD4 decline or LEDGF/p75 mRNA expression could be

confirmed in the cohort. It is interesting to notice that the minor

allele of rs12339417 is considered the wild-type allele in Africans.

Genetic variants in the 3’untranslated region
The 39 untranslated region (UTR) harbored 12 different genetic

variants, one of which was not described previously (Table 3). For

rs2737835, a non-significant trend towards association of minor

SNP alleles with slower CD4 decline (p = 0.058) was observed in

Table 3. Observed genetic variants in the PSIP1 non-coding region.

dbSNP rs number HGVS name SNP location African Caucasian

NM_033222.3 MAF exp MAF obs MAF exp MAF obs

ss536106972 c.1409-G.C Intron1 NA 0,000 NA 0,008

rs2277191 c.-142+226C.T Intron1 0,034 0,103 NA 0,011

rs2795128 c.73-59G.A Intron2 0,124 0,109 0,044 0,066

rs12339417 c.149+8064G.A Intron3 0,686 0,638 0,119 0,148

rs2737828 c.289-29T.A Intron4 NA 0,000 0,15 0,0281

rs16933270 c.1421-48T.C Intron14 0,146 0,103 0,000 0,002

rs188404574 c.*30T.G 39UTR NA 0,000 NA 0,002

rs144536781 c.*410G.T 39UTR NA 0,016 NA 0,000

rs114211035 c.*464A.G 39UTR 0,085 0,000 NA 0,002

rs78732111 c.*592G.C 39UTR 0,085 0,000 NA 0,002

rs2737835 c.*620G.T 39UTR 0,033 0,129 0,108 0,076

rs41306098 c.*684G.A 39UTR NA 0,032 0,092 0,056

rs2665515 c.*775C.T 39UTR 0,142 0,094 0,067 0,066

rs139069294 c.*790A.G 39UTR NA 0,031 NA 0,000

ss536106976 c.*815G.T 39UTR NA 0,000 NA 0,003

rs74366322 c.*1079T.C 39UTR 0,186 0,200 NA 0,000

rs13248 c.*1232G.A 39UTR 0,611 0,500{ 0,004 0,015{

rs41268959 c.*1268G.A 39UTR NA 0,000 0,025 0,016

{signifies variants not in accordance with Hardy Weinberg law.
1signifies p,0.001, after Bonferroni correction.
Overview of the observed SNPs in the PSIP1 non-coding region. Both expected and observed minor allele frequencies (MAF) are shown per ethnicity.
HGVS = Human Genomic Variation Society; SNP = single nucleotide polymorphism; MAF = minor allele frequency; NA = not assessed; rs = referenced SNP id number;
ss = submitted SNP id number.
doi:10.1371/journal.pone.0050204.t003
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Caucasian but not in African patients (Figure 3A). There was no

correlation with average viral load (p = 0.931). The expression

levels of both LEDGF/p75 (p = 0.093) and HRP2 (p = 0.317)

mRNA were not associated with the presence of these minor

alleles (Figure 3B). The SNP rs2737835 is located in a 39UTR

region with higher variability, although no linkage disequilibrium

with other variants in this region could be determined.

The other 11 variants did not reveal MAFs aberrant from

expected frequencies, eight variants were infrequent both in

Africans and in Caucasians. None of these clustered in LTNP

subgroups.

LEDGF/p75 and HRP2 mRNA expression levels
Gene expression analysis was performed on a subset of patients

from the Ghent cohort (n = 104). Validation of reference genes for

normalization with the GeNorm, NormFinder and BestKeeper

software gave congruent results (Figure S1). The geometric mean

of the two most stable genes (B2M and YMHAZ) was used for

normalization of gene expression data.

We could not demonstrate significant differences in expression

levels between patients who received cART and those who were

therapy-naı̈ve. No statistical significant differences in either

LEDGF/p75 or HRP2 mRNA expression were observed between

the five disease progression groups with ANOVA. There was no

correlation between LEDGF/p75 expression and the major

disease outcome parameters (CD4 decline and average viral load).

We could not establish an inverse correlation between LEDGF/

p75 and HRP2 expression (Pearson r = 0.490; p = ,0.001)

(Figure 4A). The biological variability of LEDGF/p75 expression

was determined in 24 patients by analyzing samples obtained from

two different time-points. Pearson test indicated correlation

(r = 0.427; p = 0.033) and the paired T-test could not determine

a significant difference in the means between the groups

(p = 0.937) (Figure 4B). Inter-patient variability ranged from 7.7-

fold expression for LEDGF/p75 till 37-fold for HRP2.

Discussion

Small molecules inhibiting the interaction between host-factor

LEDGF/p75 and the viral enzyme IN form a promising new class

of antiretroviral drugs targeting the integration step of HIV-1

replication cycle [28]. Increasing data indicate that genetic

variation in host genes can influence HIV-1 disease susceptibility,

evolution or therapy response [57]. Since there is little in vivo

knowledge of the LEDGF/p75-IN interplay, the present study

focused on a comprehensive characterization of this host-factor in

a large and diverse patient cohort, on the levels of genetic

background and mRNA expression.

The data indicate that the coding region of LEDGF/p75 is

highly conserved. Of the 35 annotated genetic variants in

HapMap (most of them extremely infrequent in a reference

population), only five were detected in a cohort of 325 HIV-1

positive patients. Three non-synonymous SNPs were low-abun-

dant and there was no in silico indication that they had a major

impact on the phenotype. Functional evaluation needs to be

performed to confirm these predictions. For rs61744944 (Q472L),

experimental data previously showed no alteration of the

LEDGF/p75 - IN binding affinity and the near-complete rescue

of HIV-1 infection by mutant LEDGF/p75 [37]. However, this

does not exclude the possibility of changes in other functions such

as integration site distribution. The low MAFs of these variants in

the present cohort were insufficient to detect a more subtle impact

on disease progression. Patients harboring these variants had

normal levels of LEDGF/p75 mRNA expression. One homozy-

gous missense variant (L478V, rs35678110) was detected in one

LTNP viremic controller. Unfortunately, no further expression

data could be obtained for this patient.

Alignment of consensus sequences of PSIP1 gene products from

different species (Chimpanzee, Gorilla, Gibbons) revealed a highly

conserved protein along evolutionary lines, suggesting the

important biological function of this gene (Figure 1).

Three SNPs were described with indications for a weak

association with HIV disease outcome, situated either in intronic

sequences (rs16933270, rs2737828) or in the 39UTR (rs2737835).

In HIV-infected Caucasian patients, rs2737828 was significantly

underrepresented and showed a non-significant trend towards

lower LEDGF/p75 mRNA expression. This might suggest a

protective role of this variant in acquiring HIV-1 without affecting

disease evolution, but the cross-sectional study design and the lack

Figure 2. Phenotypic impact of observed genetic variants in
the PSIP1 coding region. Box-plots showing the association of
individual observed SNPs in the coding region with CD4 decline (top),
average log viral load (middle) and LEDGF/p75 mRNA expression
(bottom).The data are combined for Africans and Caucasians. SNPs not
in accordance with Hardy-Weinberg law (rs35678110) were excluded. In
case of insufficient data to create a boxplot (limited amount of data
points) a bar representing the mean of the values is shown.
doi:10.1371/journal.pone.0050204.g002
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of a highly-exposed sero-negative or healthy control arm do not

allow to establish susceptibility associations. The underrepresen-

tation of this variant in Caucasian HIV-1 patients needs to be

confirmed in different cohorts, since only limited data is available

on the geographic distribution of this SNP. In African patients,

there was a clustering of rs16933270 minor alleles in patients with

slower CD4 decline but no impact on viral load set-point or

LEDGF/p75 expression levels. Although similar viral load levels

are maintained, some LEDGF/p75 haplotypes could result in a

better CD4+ T-cell survival. Low sample size in the African sub-

cohort however can introduce bias in these results. The

investigation of this variant in a larger cohort of African HIV-1

patients to further assess its impact is recommended. Splice-site

finders could not exclude that rs2737828 and rs16933270 had the

potential to create a branch point sequence and alter splicing,

although no minor splice variants were detected. Variant

rs2737835 showed a non-significant tendency towards slower

CD4 decline but not towards a lower average viral load. Based on

miRNA databases (Patrocles finder), this 39UTR SNP could be the

target for miRNA binding (hsa-mir-1274a), leading to mRNA

destabilization and lower protein levels.

The present data did not confirm the association of African

tagSNP rs12339417 with delayed CD4 decline in a chronic

infection phase. It must be noted that the small sample size of the

African sub-cohort and larger genetic diversity in Africans from

different regions could explain part of these findings. Besides this,

lower LEDGF/p75 expression levels associating with the minor

allele were previously only seen in a sero-converter/early infection

cohort and it might be possible that LEDGF/p75 levels mainly

affect initial HIV infection risk and early replication events.

Alternatively, the use of only one reference gene (GAPDH) as

normalization strategy in the gene expression assays might have

Figure 3. Phenotypic impact of three genetic variants in the PSIP1 non-coding region. (A) Differential CD4 decline for patients carrying
wild-type or variant alleles of rs2737828 and rs2737835 (Caucasian) and rs16933270 (African), based on the mean CD4 slope and a similar starting
point. P values to estimate significance of difference are indicated. (B) Differential expression of LEDGF/p75 mRNA and HRP2 mRNA in PBMCs from
patients carrying wild-type or variant alleles of rs2737828 and rs2737835 (Caucasian) and rs16933270 (African). Horizontal bars indicate the mean
expression levels.
doi:10.1371/journal.pone.0050204.g003

Figure 4. Biological variability and correlation of LEDGF/p75 mRNA with HRP2 mRNA expression. (A) Scatter-plot showing LEDGF/p75
mRNA and HRP2 expression in identical patient samples (n = 68). Pearson r-values and p-values are indicated. (B) Scatter-plot showing the biological
variation of LEDGF/p75 mRNA expression in two samples from 24 patients at different time points. t1 = time point 1; t2 = time point 2.
doi:10.1371/journal.pone.0050204.g004
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introduced additional bias and hampers comparison [52]. In our

assays, normalization with only one reference gene resulted in a

27% increase in variability compared to the standard procedure

with two validated reference genes (data not shown).

Relatively stable inter-individual LEDGF/p75 mRNA expres-

sion levels were detected in vivo. This variance was not related to

genetic polymorphisms in the coding region or 39UTR. Low levels

of LEDGF/p75 expression, linked with decreased integration in

transcriptional active regions in vitro, did not result in lower viral

load [23]. In addition, there was no correlation between low

LEDGF/p75 mRNA expression and CD4 decline. Previous in

vitro studies revealed that LEDGF/p75 knockdown might be

rescued by HRP2, which harbors a similar IN-binding domain

[29]. Consequently, the expression of HRP2 was investigated to

assess whether low levels of LEDGF/p75 are correlated with

higher levels of HRP2 and to see if this rescue mechanism is also

present in vivo, but this was not observed. In vitro studies revealed

that low levels of LEDGF/p75 are sufficient to completely rescue

HIV-1 integration [58]. Other still unknown factors or a more

important effect of LEDGF/p75 during early replication might

provide further explanation for the observed lack of correlation

between LEDGF/p75 expression levels and disease outcome in

chronically infected patients. It must be noted that mRNA was

extracted from PBMCs, containing not only CD4+ but also CD8+
and B-lymphocytes, and therefore representing average expression

levels of these cells. The obtained results did not motivate us to

further analyze the 59 UTR and promoter region of PSIP1.

Because of the limited phenotypic effect of non-coding SNPs (on

for instance tertiary structure) and the observed conservation of

the complete coding region of LEDGF/p75, our data can provide

further validation of the LEDGF/p75 – IN interaction as a

promising target for antiretroviral treatment. The relatively stable

expression of their target shows that LEDGINs could be broadly

applicable and provide a good and durable inhibitory effect.

In general, the results of this study underscore the importance of

detecting rare variants in genes with a high probability of

influencing disease outcome in distinct populations. In contrast

with Genome-wide association studies, which are designed to

reveal genotype-phenotype relations with common variants, rare

variants which show an impact in well-chosen and defined patient

populations can help elucidate functional roles of the gene of

interest.

Supporting Information

Table S1 Overview of primers, cycling conditions and
reference sequences. Overview of primers and cycling

conditions for the different PSIP1 gene fragments, including all

reference genes used for gene expression analysis. The Ensembl

transcript and protein ID of the different PSIP1 gene products

from humans and four primates is listed as well.

(DOCX)

Figure S1 Average expression stability of reference
genes. Average expression stability of the reference genes used

in the gene expression assays. Values are calculated with the

GeNorm software on at least 15 samples. The gene stability

measure M (Y-axis) is the average pairwise variation V of a gene

(as indicated in X-axis) with all other genes.

(TIF)
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