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Studies employing the budding yeast Saccharomyces cerevisiae as a model organism
have provided deep insights into molecular mechanisms of cellular and organismal
aging in multicellular eukaryotes and have demonstrated that the main features of
biological aging are evolutionarily conserved. Aging in S. cerevisiae is studied by
measuring replicative or chronological lifespan. Yeast replicative aging is likely to model
aging of mitotically competent human cell types, while yeast chronological aging is
believed to mimic aging of post-mitotic human cell types. Emergent evidence implies
that various organelle-organelle and organelle-cytosol communications play essential
roles in chronological aging of S. cerevisiae. The molecular mechanisms underlying
the vital roles of intercompartmental communications in yeast chronological aging have
begun to emerge. The scope of this review is to critically analyze recent progress in
understanding such mechanisms. Our analysis suggests a model for how temporally
and spatially coordinated movements of certain metabolites between various cellular
compartments impact yeast chronological aging. In our model, diverse changes in
these key metabolites are restricted to critical longevity-defining periods of chronological
lifespan. In each of these periods, a limited set of proteins responds to such changes of
the metabolites by altering the rate and efficiency of a certain cellular process essential
for longevity regulation. Spatiotemporal dynamics of alterations in these longevity-
defining cellular processes orchestrates the development and maintenance of a pro-
or anti-aging cellular pattern.

Keywords: yeast, chronological aging, interorganelle communications, macromolecular damage, cellular
proteostasis, hormesis, programmed cell death, signal transduction

INTRODUCTION

Studies of the budding yeast Saccharomyces cerevisiae have been instrumental in discovering
genes, signaling pathways, and chemical compounds that influence cellular and organismal aging
in evolutionarily distant eukaryotes (Fontana et al., 2010; Kaeberlein, 2010; Longo et al., 2012;
Arlia-Ciommo et al., 2014a,b). These studies have revealed that the key aspects of the aging process
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and mechanisms of its modulation by certain genetic, dietary, and
pharmacological interventions have been conserved in the course
of evolution (Eisenberg et al., 2009; Fontana et al., 2010; Arlia-
Ciommo et al., 2014a; Denoth Lippuner et al., 2014; Medkour
et al., 2016a). One paradigm of aging in yeast is replicative aging.
It is believed to imitate aging of mitotic human cell types capable
of dividing (Steinkraus et al., 2008; Kaeberlein, 2010; Longo et al.,
2012; Denoth Lippuner et al., 2014; McCormick et al., 2015),
although recent findings suggest that yeast replicative aging may
also serve as a suitable model for the aging of post-mitotic
tissues and for the aging of whole organism in the nematode
C. elegans and humans (Ghavidel et al., 2015; McCormick
et al., 2015; Janssens and Veenhoff, 2016). A body of evidence
supports the notion that diverse interorganelle communications
influence yeast replicative aging (Beach et al., 2012; Hughes and
Gottschling, 2012; Henderson et al., 2014; Janssens et al., 2015;
Hughes et al., 2016). This evidence has been comprehensively
discussed elsewhere (Jazwinski, 2012, 2013, 2014, 2015; Jazwinski
and Kriete, 2012). Another paradigm of aging in yeast is
chronological aging. It is likely to mimic aging of post-mitotic
human cell types incapable of dividing (Burtner et al., 2009,
2011; Kaeberlein, 2010; Longo et al., 2012; Arlia-Ciommo et al.,
2014a), although there is evidence that yeast chronological
aging may converge with yeast replicative aging into a single
aging process (reviewed in Arlia-Ciommo et al., 2014b; see also
Mirisola and Longo, 2012; Murakami et al., 2012; Polymenis
and Kennedy, 2012; Delaney et al., 2013; Molon et al., 2015).
Recent findings indicate that many organelle-organelle and
organelle-cytosol communications impact yeast chronological
aging (Goldberg et al., 2009a; Titorenko and Terlecky, 2011;
Beach et al., 2012; Beach and Titorenko, 2013; Leonov and
Titorenko, 2013). Mechanisms underlying the essential roles of
such intercompartmental communications in yeast chronological
aging have begun to emerge. Here, we critically analyze recent
progress in understanding these mechanisms.

SPATIOTEMPORAL DYNAMICS OF
INTERCOMPARTMENTAL
COMMUNICATIONS DEFINE THE
CHRONOLOGY OF CELLULAR AGING IN
YEAST

Recent studies have revealed that various intercompartmental
communications (i.e., organelle-organelle and organelle-cytosol)
play essential roles in chronological aging of yeast cultured
in media with glucose as the only carbon source (Beach and
Titorenko, 2011; Beach et al., 2012, 2015a; Leonov and Titorenko,
2013; Medkour and Titorenko, 2016b). A model for how such
communications impact yeast chronological aging is depicted
schematically in Figure 1. Our model includes the notion that the
longevity-defining intercompartmental communications involve
unidirectional and bidirectional movements of a distinct set of
metabolites between mitochondria and the cytosol, mitochondria
and peroxisomes, mitochondria and the nucleus, peroxisomes
and the nucleus, mitochondria and vacuoles, the endoplasmic

reticulum (ER) and the plasma membrane (PM), the ER and the
cytosol, the PM and the cytosol, the PM and vacuoles, the ER
and lipid droplets (LD), and LD and peroxisomes (Figure 1).
The intracellular concentrations of such metabolites and/or the
rates of their movement between cellular compartments undergo
age-related changes. In our model, different changes of the
key metabolites are temporally restricted to several longevity-
defining periods; the term “checkpoints” has been coined to
describe these critical periods in yeast chronological lifespan
(Burstein et al., 2012; Kyryakov et al., 2012; Arlia-Ciommo
et al., 2014a; Beach et al., 2015a,b) (Figure 1). Most of these
checkpoints occur early in life of chronologically aging yeast
cells, during diauxic (D), and post-diauxic (PD) growth phases.
Some of the checkpoints are late-life checkpoints that exists
in the non-proliferative stationary (ST) phase of culturing. At
each of these checkpoints, the changes of the key metabolites
are detected by a distinct set of checkpoint-specific proteins
called “master regulators” (Arlia-Ciommo et al., 2014a; Beach
et al., 2015a). Our model further posits that each of these master
regulators can respond to a change of the detected key metabolite
by altering the rate and efficiency of a certain cellular process
essential for longevity regulation (Figure 1). By establishing
the rates and efficiencies of different longevity-defining cellular
processes throughout chronological lifespan, the checkpoint-
specific master regulators set up a pro- or anti-aging cellular
pattern (Arlia-Ciommo et al., 2014a; Beach et al., 2015a).

At checkpoint 1, which exists early in D growth phase, two
oxidative reactions of the pentose phosphate pathway in the
cytosol and four enzymatic reactions in mitochondria create
NADPH (Cai and Tu, 2012; Barral, 2013; Brandes et al., 2013;
Arlia-Ciommo et al., 2014a) (Figure 1). NADPH provides
reducing equivalents for the synthesis of amino acids, fatty
acids, and sterols (Fraenkel, 2011; Cai and Tu, 2012). NADPH
is also a donor of electrons for thioredoxin and glutathione
reductase systems. Both these reductase systems contribute to
the establishment and maintenance of an anti-aging cellular
pattern because they protect many thiol-containing proteins
from oxidative damage; such thiol-containing proteins reside in
the nucleus, mitochondria and cytosol (Barral, 2013; Brandes
et al., 2013) (Figure 1).

Glycerol is produced by glucose fermentation in the cytosol
(Fraenkel, 2011). At checkpoint 2, glycerol plays an important
role in the establishment and maintenance of an anti-aging
cellular pattern by affecting the following cellular processes: (1)
glucose fermentation to glycerol weakens its fermentation to
ethanol and acetic acid, both known to be pro-aging metabolites
in yeast; (2) glucose fermentation to glycerol enables to sustain
the NAD+/NADH ratio that slows yeast chronological aging;
and (3) glycerol increases resistance to acute oxidative, thermal,
and osmotic stresses that accelerate yeast chronological aging
(Burtner et al., 2009; Wei et al., 2009; Arlia-Ciommo et al., 2014a)
(Figure 1).

In the cytosol of chronologically “young” yeast progressing
through D and PD growth phases, the non-reducing disaccharide
trehalose is synthesized from glucose (Goldberg et al., 2009b;
Kyryakov et al., 2012). The rate of such synthesis sustains cellular
trehalose homeostasis and is modulated by the efficiency of
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FIGURE 1 | A model for how various organelle-organelle and organelle-cytosol communications impact yeast chronological aging. These
communications involve movements of certain metabolites between various cellular compartments. Different changes in these metabolites are temporally restricted
to longevity-defining periods called checkpoints. At each checkpoint, the changes of these metabolites are detected by certain master regulator proteins. Because
each of the master regulator proteins modulates certain longevity-defining cellular processes, a coordinated in space and time action of these proteins orchestrates
the development and maintenance of a pro- or anti-aging cellular pattern. See text for details. Ac-Carnitine, acetyl-carnitine; Ac-CoA, acetyl-CoA; AcOH, acetic acid;
DAG, diacylglycerol; EtOH, ethanol; FFA, free (non-esterified) fatty acids; m5c-tRNAs, 5-methylcytosine tRNAs; PKA, protein kinase A; PM, the plasma membrane;
ROS, reactive oxygen species; TAG, triacylglycerols; TCA, tricarboxylic; TORC, target of rapamycin complex; tRNAs, transfer RNAs.

coupled mitochondrial respiration (Ocampo et al., 2012). The
efficiency of such respiration is, in turn, modulated by the rate
of peroxisome-to-mitochondria transfer of citrate and acetyl-
carnitine (Epstein et al., 2001; Traven et al., 2001; Hiltunen
et al., 2003; Titorenko and Terlecky, 2011; Arlia-Ciommo et al.,
2014a). At checkpoint 3, trehalose is essential for maintaining an
anti-aging pattern of cellular proteostasis because it attenuates
the misfolding, aggregation and oxidative damage of newly
synthesized polypeptides (Goldberg et al., 2009b; Kyryakov et al.,
2012; Arlia-Ciommo et al., 2014a) (Figure 1).

During D and PD growth phases, the intracellular
concentration of hydrogen peroxide (H2O2) in chronologically
aging yeast depends on the efficiencies with which this major
reactive oxygen species (ROS) is produced by and released from
mitochondria and peroxisomes (Goldberg et al., 2010; Mirisola

and Longo, 2013; Schroeder et al., 2013; Schroeder and Shadel,
2014). If the concentration of H2O2 at checkpoint 4 is sustained
at a sub-lethal (“hormetic”) level, it elicits the establishment of an
anti-aging cellular pattern by stimulating the master regulators
Gis1, Msn2, and Msn4. In the nucleus, these three transcriptional
factors activate expression of genes that encode proteins involved
in heat-shock and DNA-damage responses, ROS decomposition,
cell cycle progression and transition to quiescence, autophagy,
maintenance of cell wall integrity, trehalose synthesis and
degradation, glycogen synthesis and degradation, glycolysis
and gluconeogenesis, the pentose phosphate pathway, glycerol
and amino acid synthesis, ergosterol synthesis, maintenance
of glutathione and thioredoxin homeostasis, methylglyoxal
detoxification, maintenance of heavy metal ion homeostasis,
potassium transport, and mitochondrial electron transport; these
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proteins are needed for resistance to thermal, oxidative, osmotic,
low pH, carbon source starvation, sorbic acid, high ethanol
concentration, and DNA-damage stresses (Martínez-Pastor et al.,
1996; Schmitt and McEntee, 1996; Boy-Marcotte et al., 1998;
Causton et al., 2001; Fabrizio et al., 2001) (Figure 1).

At checkpoint 5, H2O2 produced by and released from
mitochondria and peroxisomes modulates a signaling pathway
which includes the DNA damage response kinases Tel1 and
Rad53 (both of which are anti-aging master regulators) and
the histone demethylase Rph1 (a pro-aging master regulator)
(Mirisola and Longo, 2013). If the concentration of H2O2 at
this checkpoint is sustained at a hormetic level, it stimulates
the Tel1-depenent phosphorylation/activation of Rad53, which in
response phosphorylates and inactivates Rph1 (Schroeder et al.,
2013; Schroeder and Shadel, 2014). The resulting inactivation of
Rph1 establishes an anti-aging cellular pattern because it allows
to attenuate the Rph1-dependent transcription of subtelomeric
chromatin regions in the nucleus, thereby lessening the extent
of telomeric DNA damage (Mirisola and Longo, 2013; Schroeder
et al., 2013; Schroeder and Shadel, 2014) (Figure 1).

During D and PD growth phases, the amino acids aspartate,
asparagine, glutamate, and glutamine are synthesized from
intermediates of the TCA cycle in mitochondria (Fraenkel, 2011;
Cai and Tu, 2012). After being released into the cytosol, these
amino acids stimulate protein kinase (PK) activity of the TOR
(target of rapamycin) complex 1 (TORC1) at the surface of
vacuoles (Crespo et al., 2002; Powers et al., 2006; Jewell et al.,
2013; Conrad et al., 2014; Shimobayashi and Hall, 2014; Swinnen
et al., 2014). Following its activation, TORC1 acts as a pro-aging
master regulator at checkpoint 6 by phosphorylating the nutrient-
sensory PK Sch9 and the Tap42 protein. Once phosphorylated,
Sch9 and Tap42 accelerate the pro-aging process of protein
synthesis in the cytosol by stimulating ribosome biogenesis
and augmenting translation initiation (Hinnebusch, 2005; Huber
et al., 2009; Conrad et al., 2014; Swinnen et al., 2014; Eltschinger
and Loewith, 2016) (Figure 1). The TOR complex 2 (TORC2)
at the PM also functions as a pro-aging master regulator at
checkpoint 6. If activated, TORC2 phosphorylates the PK Ypk1.
After being phosphorylated, Ypk1 stimulates the synthesis of
complex sphingolipids in the ER. These sphingolipids then
stimulate the PKs Pkh1 and Pkh2, both of which in response
phosphorylate Sch9 to intensify the pro-aging process of protein
synthesis in the cytosol (Roelants et al., 2004; Liu et al., 2005;
Urban et al., 2007; Huang et al., 2014; Eltschinger and Loewith,
2016; Teixeira and Costa, 2016) (Figure 1).

At checkpoint 7, the amino acids aspartate, asparagine,
glutamate, and glutamine are released from mitochondria and
activate TORC1 at the surface of vacuoles. Active TORC1 sets
off a pro-aging cellular pattern by phosphorylating Sch9, which
then attenuates the anti-aging process of protein synthesis in
mitochondria (Bonawitz et al., 2007; Pan and Shadel, 2009;
Conrad et al., 2014; Shimobayashi and Hall, 2014; Swinnen et al.,
2014) (Figure 1).

At checkpoint 8, the efflux of the amino acids aspartate,
asparagine, glutamate and glutamine from mitochondria,
resulting activation of TORC1 at the vacuolar surface and
subsequent phosphorylation of Sch9 cause a retention of the

nutrient-sensory PK Rim15 in the cytosol (Wanke et al., 2008;
Smets et al., 2010). Because under such conditions Rim15 cannot
enter the nucleus, it is unable to stimulate Msn2, Msn4, and
Gis1; these three transcriptional activators can orchestrate an
anti-aging transcriptional program in the nucleus only if they
are stimulated by Rim15 (Wanke et al., 2008; Smets et al., 2010;
Conrad et al., 2014; Shimobayashi and Hall, 2014; Swinnen
et al., 2014) (Figure 1). Furthermore, protein kinase A (PKA)
activity at the cytosolic leaflet of the PM also contributes to the
establishment of a pro-aging cellular pattern at checkpoint 8.
This PK activity inhibits nuclear import of Msn2 and Msn4,
thus turning off an anti-aging transcriptional program driven –
in a Rim15-dependent manner – by these two transcriptional
activators (Medvedik et al., 2007; Lee et al., 2008; Smets et al.,
2010; Conrad et al., 2014) (Figure 1). Moreover, a study on a
methionine restriction-induced delay of yeast chronological
aging implies that the excess of methionine can elicit a pro-
aging cellular pattern at checkpoint 8 by activating the tRNA
methyltransferase Ncl1 in the cytosol (Johnson and Johnson,
2014). This decreases the concentration of non-methylated
tRNAs, attenuates the efflux of cytochrome C (Cyc1) from
mitochondria and mitigates nuclear import of the cytosolic
Rtg1/Rtg2/Rtg3 heterotrimeric transcriptional factor, which is
required for the stimulation of an anti-aging transcriptional
program in the nucleus (Johnson and Johnson, 2014) (Figure 1).

If TORC1 at the surface of vacuoles is activated by the
release of the amino acids aspartate, asparagine, glutamate, and
glutamine from mitochondria at checkpoint 9, active TORC1
phosphorylates the autophagy-initiating protein Atg13 (Laplante
and Sabatini, 2012; Conrad et al., 2014; Shimobayashi and Hall,
2014; Swinnen et al., 2014). At this checkpoint, Atg13 can
also be phosphorylated by PKA kinase activity confined to the
cytosolic face of the PM (Yorimitsu et al., 2007; Stephan et al.,
2009, 2010). The TORC1- and PKA-driven phosphorylation of
Atg13 at checkpoint 9 inhibits autophagosome formation in the
cytosol, thus suppressing the anti-aging process of autophagy
(Yorimitsu et al., 2007; Stephan et al., 2009, 2010; Shimobayashi
and Hall, 2014) (Figure 1). Furthermore, a study on the
methionine restriction-induced delay of yeast chronological
aging revealed that the excess of methionine in the cytosol
can trigger a pro-aging cellular pattern at checkpoint 9 because
it weakens autophagy, either by stimulating TORC1 at the
vacuolar surface or by attenuating autophagosome formation in
the cytosol (Ruckenstuhl et al., 2014). Such methionine-driven
weakening of autophagy accelerates aging by decreasing the
extent of vacuolar acidification and by increasing acetic acid
accumulation in cultural medium (Wu et al., 2013; Johnson and
Johnson, 2014) (Figure 1). Moreover, mitochondria, peroxisomes
and the cytosol house individual reactions for the synthesis
of the polyamine spermidine (Minois et al., 2011; Beach and
Titorenko, 2013; Minois, 2014). At checkpoint 9, spermidine
inhibits the histone acetyltransferases Iki3 and Sas3 (Eisenberg
et al., 2009). Although such spermidine-driven inhibition of
Iki3 and Sas3 causes global decline in the acetylation of histone
H3 and silencing of numerous genes in the nucleus, histones
in the promoter regions of several ATG (autophagy) genes
get acetylated under these conditions (Eisenberg et al., 2009;
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Morselli et al., 2009, 2011; Madeo et al., 2010). The resulting
selective activation of transcription of these genes at checkpoint 9
promotes the anti-aging process of autophagy (Figure 1). Also,
a fraction of acetic acid in the cytosol can be imported into
the nucleus and then converted into acetyl-CoA in the Acs2-
dependent reaction (Eisenberg et al., 2014). At checkpoint 9,
this acetyl-CoA selectively represses transcription of nuclear ATG
genes, thus suppressing the anti-aging process of autophagy
(Eisenberg et al., 2014; Schroeder et al., 2014) (Figure 1).

Chronologically aging yeast cells produce acetic acid as
follows: (1) it is generated as the alternative product of glucose
fermentation in the cytosol; and (2) it is formed in the Ald4-
dependent reaction in mitochondria, from which acetic acid can
be released into the cytosol (Burtner et al., 2009; Fraenkel, 2011;
Longo et al., 2012; Arlia-Ciommo et al., 2014a). At the late-life
checkpoint 10 in ST phase, a pool of acetic acid in the cytosol
accelerates yeast chronological aging because it elicits an age-
related form of apoptotic programmed death (Burtner et al., 2009,
2011; Longo et al., 2012; Murakami et al., 2012; Arlia-Ciommo
et al., 2014a) (Figure 1).

While at the early-life checkpoint 3 trehalose is essential
for maintaining an anti-aging pattern of cellular proteostasis
(see above), this non-reducing disaccharide sets off a pro-aging
cellular pattern at the late-life checkpoint 11 in ST phase. This is
because in chronologically “old” yeast cells, which do not grow
or divide, trehalose covers hydrophobic amino acid side chains
of misfolded and unfolded proteins (Goldberg et al., 2009b;
Kyryakov et al., 2012; Arlia-Ciommo et al., 2014a). Such side
chains are needed to be recognized by a group of molecular
chaperones that help to refold these misfolded and unfolded
proteins (Chen et al., 2011; Lindquist and Kelly, 2011; Taylor
and Dillin, 2011; Kim et al., 2013). By competing with molecular
chaperones for binding to such clusters of hydrophobic amino
acids, trehalose attenuates the anti-aging process of maintaining
cellular proteostasis (Goldberg et al., 2009b; Kyryakov et al., 2012;
Arlia-Ciommo et al., 2014a) (Figure 1).

At the late-life checkpoint 12 in ST phase, the excessive
accumulation of free (non-esterified) fatty acids (FFA) and
diacylglycerol (DAG) in cellular membranes accelerates yeast
chronological aging because it triggers an age-related form of
programmed cell death called liponecrosis (Goldberg et al.,
2009a,b; Arlia-Ciommo et al., 2014a, 2016; Richard et al., 2014)
(Figure 1). ATP, which is produced mainly in mitochondria,
slows age-related liponecrosis by providing energy needed for
the detoxification of FFA in the ER through the incorporation of
FFA into triacylglycerols (TAG) and other neutral lipids (Arlia-
Ciommo et al., 2014a; Richard et al., 2014; Sheibani et al.,
2014). Ethanol, a product of glucose fermentation, accelerates
age-related liponecrosis by suppressing peroxisomal oxidation

of FFA that are generated in LD due to lipolysis of TAG and
other neutral lipids (Goldberg et al., 2009a,b; Arlia-Ciommo et al.,
2014a; Beach et al., 2015a). The sirtuin deacetylase Sir2 promotes
ethanol accumulation by inactivating the Adh2 isoform of
alcohol dehydrogenase, which is required for ethanol catabolism
(Fabrizio et al., 2005) (Figure 1).

CONCLUSION

In this review, we analyzed mechanisms through which
temporally and spatially coordinated organelle-organelle and
organelle-cytosol communications impact yeast chronological
aging. Our analysis indicates that these communications are
integrated into a convoluted network involving unidirectional
and bidirectional movements of certain metabolites between
cellular compartments. Different changes in the intracellular
concentrations and the rates of movement of these metabolites
are restricted to critical longevity-defining periods of
chronological lifespan called checkpoints. Certain proteins
known as master regulators can detect the changes of the
key metabolites at each of these checkpoints. The checkpoint-
specific master regulator proteins contribute to setting up
a pro- or anti-aging cellular pattern because each of these
proteins modulates certain longevity-defining cellular processes.
Future work will aim at understanding how certain dietary
and pharmacological interventions known to delay aging can
modulate information flow within the intricate network of
intercompartmental communications.

AUTHOR CONTRIBUTIONS

PD and VT wrote the text. VT prepared the figure.

FUNDING

This work was supported by grant RGPIN 2014-04482 from
the NSERC of Canada. PD was supported by the Concordia
University Graduate Fellowship Award.

ACKNOWLEDGMENTS

We are grateful to all laboratory members for stimulating
discussions. We apologize to those whose work has not been
cited owing to space limitations. VT is a Concordia University
Research Chair in Genomics, Cell Biology and Aging.

REFERENCES
Arlia-Ciommo, A., Leonov, A., Piano, A., Svistkova, V., and Titorenko, V. I.

(2014a). Cell- autonomous mechanisms of chronological aging in the
yeast Saccharomyces cerevisiae. Microbial Cell 1, 164–178. doi: 10.15698/
mic2014.06.152

Arlia-Ciommo, A., Piano, A., Leonov, A., Svistkova, V., and Titorenko,
V. I. (2014b). Quasi-programmed aging of budding yeast: a
trade-off between programmed processes of cell proliferation,
differentiation, stress response, survival and death defines yeast
lifespan. Cell Cycle 13, 3336–3349. doi: 10.4161/15384101.2014.
965063

Frontiers in Genetics | www.frontiersin.org 5 September 2016 | Volume 7 | Article 177

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00177 September 24, 2016 Time: 15:39 # 6

Dakik and Titorenko Interorganelle Communications in Yeast Aging

Arlia-Ciommo, A., Svistkova, V., Mohtashami, S., and Titorenko, V. I.
(2016). A novel approach to the discovery of anti-tumor pharmaceuticals:
searching for activators of liponecrosis. Oncotarget 7, 5204–5225. doi:
10.18632/oncotarget.6440

Barral, Y. (2013). A new answer to old questions. Elife 2:e00515. doi:
10.7554/eLife.00515

Beach, A., Burstein, M. T., Richard, V. R., Leonov, A., Levy, S., and Titorenko,
V. I. (2012). Integration of peroxisomes into an endomembrane system
that governs cellular aging. Front. Physiol. 3:283. doi: 10.3389/fphys.2012.
00283

Beach, A., Leonov, A., Arlia-Ciommo, A., Svistkova, V., Lutchman, V., and
Titorenko, V. I. (2015a). Mechanisms by which different functional states
of mitochondria define yeast longevity. Int. J. Mol. Sci. 16, 5528–5554. doi:
10.3390/ijms16035528

Beach, A., Richard, V. R., Bourque, S., Boukh-Viner, T., Kyryakov, P., Gomez-
Perez, A., et al. (2015b). Lithocholic bile acid accumulated in yeast mitochondria
orchestrates a development of an anti-aging cellular pattern by causing
age-related changes in cellular proteome. Cell Cycle 14, 1643–1656. doi:
10.1080/15384101.2015.1026493

Beach, A., and Titorenko, V. I. (2011). In search of housekeeping pathways that
regulate longevity. Cell Cycle 10, 3042–3044. doi: 10.4161/cc.10.18.16947

Beach, A., and Titorenko, V. I. (2013). Essential roles of peroxisomally produced
and metabolized biomolecules in regulating yeast longevity. Subcell. Biochem.
69, 153–167. doi: 10.1007/978-94-007-6889-5_9

Bonawitz, N. D., Chatenay-Lapointe, M., Pan, Y., and Shadel, G. S. (2007). Reduced
TOR signaling extends chronological life span via increased respiration and
upregulation of mitochondrial gene expression. Cell Metab. 5, 265–277. doi:
10.1016/j.cmet.2007.02.009

Boy-Marcotte, E., Perrot, M., Bussereau, F., Boucherie, H., and Jacquet, M. (1998).
Msn2p and Msn4p control a large number of genes induced at the diauxic
transition which are repressed by cyclic AMP in Saccharomyces cerevisiae.
J. Bacteriol. 180, 1044–1052.

Brandes, N., Tienson, H., Lindemann, A., Vitvitsky, V., Reichmann, D.,
Banerjee, R., et al. (2013). Time line of redox events in aging postmitotic cells.
Elife 2:e00306. doi: 10.7554/eLife.00306

Burstein, M. T., Kyryakov, P., Beach, A., Richard, V. R., Koupaki, O., Gomez-
Perez, A., et al. (2012). Lithocholic acid extends longevity of chronologically
aging yeast only if added at certain critical periods of their lifespan. Cell Cycle
11, 3443–3462. doi: 10.4161/cc.21754

Burtner, C. R., Murakami, C. J., Kennedy, B. K., and Kaeberlein, M. (2009).
A molecular mechanism of chronological aging in yeast. Cell Cycle 8, 1256–
1270. doi: 10.4161/cc.8.8.8287

Burtner, C. R., Murakami, C. J., Olsen, B., Kennedy, B. K., and Kaeberlein, M.
(2011). A genomic analysis of chronological longevity factors in budding yeast.
Cell Cycle 10, 1385–1396. doi: 10.4161/cc.10.9.15464

Cai, L., and Tu, B. P. (2012). Driving the cell cycle through metabolism. Annu. Rev.
Cell Dev. Biol. 28, 59–87. doi: 10.1146/annurev-cellbio-092910-154010

Causton, H. C., Ren, B., Koh, S. S., Harbison, C. T., Kanin, E., Jennings,
E. G., et al. (2001). Remodeling of yeast genome expression in response
to environmental changes. Mol. Biol. Cell 12, 323–337. doi: 10.1091/mbc.12.
2.323

Chen, B., Retzlaff, M., Roos, T., and Frydman, J. (2011). Cellular strategies
of protein quality control. Cold Spring Harb. Perspect. Biol. 3:a004374. doi:
10.1101/cshperspect.a004374

Conrad, M., Schothorst, J., Kankipati, H. N., Van Zeebroeck, G., Rubio-Texeira, M.,
and Thevelein, J. M. (2014). Nutrient sensing and signaling in the yeast
Saccharomyces cerevisiae. FEMS Microbiol. Rev. 38, 254–299. doi: 10.1111/1574-
6976.12065

Crespo, J. L., Powers, T., Fowler, B., and Hall, M. N. (2002). The TOR-controlled
transcription activators GLN3, RTG1, and RTG3 are regulated in response to
intracellular levels of glutamine. Proc. Natl. Acad. Sci. U.S.A. 99, 6784–6789.

Delaney, J. R., Murakami, C., Chou, A., Carr, D., Schleit, J., Sutphin, G. L., et al.
(2013). Dietary restriction and mitochondrial function link replicative and
chronological aging in Saccharomyces cerevisiae. Exp. Gerontol. 48, 1006–1013.
doi: 10.1016/j.exger.2012.12.001

Denoth Lippuner, A., Julou, T., and Barral, Y. (2014). Budding yeast as a model
organism to study the effects of age. FEMS Microbiol. Rev. 38, 300–325. doi:
10.1111/1574-6976.12060

Eisenberg, T., Knauer, H., Schauer, A., Büttner, S., Ruckenstuhl, C., Carmona-
Gutierrez, D., et al. (2009). Induction of autophagy by spermidine promotes
longevity. Nat. Cell Biol. 11, 1305–1314. doi: 10.1038/ncb1975

Eisenberg, T., Schroeder, S., Andryushkova, A., Pendl, T., Küttner, V., Bhukel, A.,
et al. (2014). Nucleocytosolic depletion of the energy metabolite acetyl-
coenzyme A stimulates autophagy and prolongs lifespan. Cell Metab. 19,
431–444. doi: 10.1016/j.cmet.2014.02.010

Eltschinger, S., and Loewith, R. (2016). TOR complexes and the
maintenance of cellular homeostasis. Trends Cell Biol. 26, 148–159. doi:
10.1016/j.tcb.2015.10.003

Epstein, C. B., Waddle, J. A., Hale, W., Davé, V., Thornton, J., Macatee, T. L., et al.
(2001). Genome-wide responses to mitochondrial dysfunction. Mol. Biol. Cell
12, 297–308. doi: 10.1091/mbc.12.2.297

Fabrizio, P., Gattazzo, C., Battistella, L., Wei, M., Cheng, C., McGrew, K.,
et al. (2005). Sir2 blocks extreme life-span extension. Cell 123, 655–667. doi:
10.1016/j.cell.2005.08.042

Fabrizio, P., Pozza, F., Pletcher, S. D., Gendron, C. M., and Longo, V. D. (2001).
Regulation of longevity and stress resistance by Sch9 in yeast. Science 292,
288–290. doi: 10.1126/science.1059497

Fontana, L., Partridge, L., and Longo, V. D. (2010). Extending healthy life span –
from yeast to humans. Science 328, 321–326. doi: 10.1126/science.1172539

Fraenkel, D. G. (2011). Yeast Intermediary Metabolism. Cold Spring Harbor, NY:
Cold Spring Harbor Laboratory Press.

Ghavidel, A., Baxi, K., Ignatchenko, V., Prusinkiewicz, M., Arnason, T. G.,
Kislinger, T., et al. (2015). A genome scale screen for mutants with
delayed exit from mitosis: Ire1-independent induction of autophagy integrates
ER homeostasis into mitotic lifespan. PLoS Genet. 11:e1005429. doi:
10.1371/journal.pgen.1005429

Goldberg, A. A., Bourque, S. D., Kyryakov, P., Boukh-Viner, T., Gregg, C.,
Beach, A., et al. (2009a). A novel function of lipid droplets in regulating
longevity. Biochem. Soc. Trans. 37, 1050–1055. doi: 10.1042/BST0371050

Goldberg, A. A., Bourque, S. D., Kyryakov, P., Gregg, C., Boukh-Viner, T.,
Beach, A., et al. (2009b). Effect of calorie restriction on the metabolic
history of chronologically aging yeast. Exp. Gerontol. 44, 555–571. doi:
10.1016/j.exger.2009.06.001

Goldberg, A. A., Richard, V. R., Kyryakov, P., Bourque, S. D., Beach, A.,
Burstein, M. T., et al. (2010). Chemical genetic screen identifies lithocholic
acid as an anti-aging compound that extends yeast chronological life span
in a TOR-independent manner, by modulating housekeeping longevity
assurance processes. Aging (Albany NY). 2, 393–414. doi: 10.18632/aging.
100168

Henderson, K. A., Hughes, A. L., and Gottschling, D. E. (2014). Mother-daughter
asymmetry of pH underlies aging and rejuvenation in yeast. Elife 3:e03504. doi:
10.7554/eLife.03504

Hiltunen, J. K., Mursula, A. M., Rottensteiner, H., Wierenga, R. K., Kastaniotis,
A. J., and Gurvitz, A. (2003). The biochemistry of peroxisomal beta-oxidation
in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Rev. 27, 35–64. doi:
10.1016/S0168-6445(03)00017-2

Hinnebusch, A. G. (2005). Translational regulation of GCN4 and the general
amino acid control of yeast. Annu. Rev. Microbiol. 59, 407–450. doi:
10.1146/annurev.micro.59.031805.133833

Huang, X., Withers, B. R., and Dickson, R. C. (2014). Sphingolipids
and lifespan regulation. Biochim. Biophys. Acta 1841, 657–664. doi:
10.1016/j.bbalip.2013.08.006

Huber, A., Bodenmiller, B., Uotila, A., Stahl, M., Wanka, S., Gerrits, B., et al. (2009).
Characterization of the rapamycin-sensitive phosphoproteome reveals that
Sch9 is a central coordinator of protein synthesis. Genes Dev. 23, 1929–1943.
doi: 10.1101/gad.532109

Hughes, A. L., and Gottschling, D. E. (2012). An early age increase in vacuolar pH
limits mitochondrial function and lifespan in yeast. Nature 492, 261–265. doi:
10.1038/nature11654

Hughes, A. L., Hughes, C. E., Henderson, K. A., Yazvenko, N., and
Gottschling, D. E. (2016). Selective sorting and destruction of mitochondrial
membrane proteins in aged yeast. Elife 5:e13943. doi: 10.7554/eLife.
13943

Janssens, G. E., Meinema, A. C., González, J., Wolters, J. C., Schmidt, A., Guryev, V.,
et al. (2015). Protein biogenesis machinery is a driver of replicative aging in
yeast. Elife 4: e08527. doi: 10.7554/eLife.08527

Frontiers in Genetics | www.frontiersin.org 6 September 2016 | Volume 7 | Article 177

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00177 September 24, 2016 Time: 15:39 # 7

Dakik and Titorenko Interorganelle Communications in Yeast Aging

Janssens, G. E., and Veenhoff, L. M. (2016). Evidence for the hallmarks of
human aging in replicatively aging yeast. Microbial Cell 3, 263–274. doi:
10.15698/mic2016.07.510

Jazwinski, S. M. (2012). The retrograde response and other pathways of
interorganelle communication in yeast replicative aging. Subcell. Biochem. 57,
79–100. doi: 10.1007/978-94-007-2561-4_4

Jazwinski, S. M. (2013). The retrograde response: when mitochondrial
quality control is not enough. Biochim. Biophys. Acta 1833, 400–409. doi:
10.1016/j.bbamcr.2012.02.010

Jazwinski, S. M. (2014). The retrograde response: a conserved compensatory
reaction to damage from within and from without. Prog. Mol. Biol. Transl. Sci.
127, 133–154. doi: 10.1016/B978-0-12-394625-6.00005-2

Jazwinski, S. M. (2015). Mitochondria to nucleus signaling and the role of ceramide
in its integration into the suite of cell quality control processes during aging.
Ageing Res. Rev. 23, 67–74. doi: 10.1016/j.arr.2014.12.007

Jazwinski, S. M., and Kriete, A. (2012). The yeast retrograde response as a model of
intracellular signaling of mitochondrial dysfunction. Front. Physiol. 3:139. doi:
10.3389/fphys.2012.00139

Jewell, J. L., Russell, R. C., and Guan, K. L. (2013). Amino acid signalling upstream
of mTOR. Nat. Rev. Mol. Cell Biol. 14, 133–139. doi: 10.1038/nrm3522

Johnson, J. E., and Johnson, F. B. (2014). Methionine restriction activates
the retrograde response and confers both stress tolerance and lifespan
extension to yeast, mouse and human cells. PLoS ONE 9:e97729. doi:
10.1371/journal.pone.0097729

Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464,
513–519. doi: 10.1038/nature08981

Kim, Y. E., Hipp, M. S., Bracher, A., Hayer-Hartl, M., and Hartl, F. U. (2013).
Molecular chaperone functions in protein folding and proteostasis. Annu. Rev.
Biochem. 82, 323–355. doi: 10.1146/annurev-biochem-060208-092442

Kyryakov, P., Beach, A., Richard, V. R., Burstein, M. T., Leonov, A., Levy, S., et al.
(2012). Caloric restriction extends yeast chronological lifespan by altering a
pattern of age-related changes in trehalose concentration. Front. Physiol. 3:256.
doi: 10.3389/fphys.2012.00256

Laplante, M., and Sabatini, D. M. (2012). mTOR signaling in growth control and
disease. Cell 274–293. doi: 10.1016/j.cell.2012.03.017

Lee, P., Cho, B. R., Joo, H. S., and Hahn, J. S. (2008). Yeast Yak1
kinase, a bridge between PKA and stress-responsive transcription factors,
Hsf1 and Msn2/Msn4. Mol. Microbiol. 70, 882–895. doi: 10.1111/j.1365-
2958.2008.06450.x

Leonov, A., and Titorenko, V. I. (2013). A network of interorganellar
communications underlies cellular aging. IUBMB Life 65, 665–674. doi:
10.1002/iub.1183

Lindquist, S. L., and Kelly, J. W. (2011). Chemical and biological approaches
for adapting proteostasis to ameliorate protein misfolding and aggregation
diseases: progress and prognosis. Cold Spring Harb. Perspect. Biol. 3:a004507.
doi: 10.1101/cshperspect.a004507

Liu, K., Zhang, X., Lester, R. L., and Dickson, R. C. (2005). The sphingoid long chain
base phytosphingosine activates AGC-type protein kinases in Saccharomyces
cerevisiae including Ypk1, Ypk2, and Sch9. J. Biol. Chem. 280, 22679–22687.
doi: 10.1074/jbc.M502972200

Longo, V. D., Shadel, G. S., Kaeberlein, M., and Kennedy, B. (2012). Replicative
and chronological aging in Saccharomyces cerevisiae. Cell Metab. 16, 18–31. doi:
10.1016/j.cmet.2012.06.002

Madeo, F., Tavernarakis, N., and Kroemer, G. (2010). Can autophagy promote
longevity? Nat. Cell Biol. 12, 842–846. doi: 10.1038/ncb0910-842

Martínez-Pastor, M. T., Marchler, G., Schüller, C., Marchler-Bauer, A., Ruis, H., and
Estruch, F. (1996). The Saccharomyces cerevisiae zinc finger proteins Msn2p and
Msn4p are required for transcriptional induction through the stress response
element (STRE). EMBO J. 15, 2227–2235.

McCormick, M. A., Delaney, J. R., Tsuchiya, M., Tsuchiyama, S., Shemorry, A.,
Sim, S., et al. (2015). A comprehensive analysis of replicative lifespan in 4,698
single-gene deletion strains uncovers conserved mechanisms of aging. Cell
Metab. 22, 895–906. doi: 10.1016/j.cmet.2015.09.008

Medkour, Y., Svistkova, V., and Titorenko, V. I. (2016a). Cell-nonautonomous
mechanisms underlying cellular and organismal aging. Int. Rev. Cell Mol. Biol.
321, 259–297. doi: 10.1016/bs.ircmb.2015.09.003

Medkour, Y., and Titorenko, V. I. (2016b). Mitochondria operate as signaling
platforms in yeast aging. Aging (Albany NY). 8, 212–213.

Medvedik, O., Lamming, D. W., Kim, K. D., and Sinclair, D. A. (2007). MSN2 and
MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in
Saccharomyces cerevisiae. PLoS Biol. 5:e261. doi: 10.1371/journal.pbio.0050261

Minois, N. (2014). Molecular basis of the ‘anti-aging’ effect of spermidine and
other natural polyamines – a mini-review. Gerontology 60, 319–326. doi:
10.1159/000356748

Minois, N., Carmona-Gutierrez, D., and Madeo, F. (2011). Polyamines in aging and
disease. Aging (Albany NY). 3, 716–732. doi: 10.18632/aging.100361

Mirisola, M. G., and Longo, V. D. (2012). Acetic acid and acidification accelerate
chronological and replicative aging in yeast. Cell Cycle 11, 3532–3533.

Mirisola, M. G., and Longo, V. D. (2013). A radical signal activates
the epigenetic regulation of longevity. Cell Metab. 17, 812–813. doi:
10.1016/j.cmet.2013.05.015

Molon, M., Zadrag-Tecza, R., and Bilinski, T. (2015). The longevity in
the yeast Saccharomyces cerevisiae: a comparison of two approaches for
assessment the lifespan. Biochem. Biophys. Res. Commun. 460, 651–656. doi:
10.1016/j.bbrc.2015.03.085

Morselli, E., Galluzzi, L., Kepp, O., Criollo, A., Maiuri, M. C., Tavernarakis, N., et al.
(2009). Autophagy mediates pharmacological lifespan extension by spermidine
and resveratrol. Aging (Albany NY). 1, 961–970. doi: 10.18632/aging.100110

Morselli, E., Mariño, G., Bennetzen, M. V., Eisenberg, T., Megalou, E.,
Schroeder, S., et al. (2011). Spermidine and resveratrol induce autophagy by
distinct pathways converging on the acetylproteome. J. Cell Biol. 192, 615–629.
doi: 10.1083/jcb.201008167

Murakami, C., Delaney, J. R., Chou, A., Carr, D., Schleit, J., Sutphin, G. L.,
et al. (2012). pH neutralization protects against reduction in replicative
lifespan following chronological aging in yeast. Cell Cycle 11, 3087–3096. doi:
10.4161/cc.21465

Ocampo, A., Liu, J., Schroeder, E. A., Shadel, G. S., and Barrientos, A.
(2012). Mitochondrial respiratory thresholds regulate yeast chronological life
span and its extension by caloric restriction. Cell Metab. 16, 55–67. doi:
10.1016/j.cmet.2012.05.013

Pan, Y., and Shadel, G. S. (2009). Extension of chronological life span by reduced
TOR signaling requires down-regulation of Sch9p and involves increased
mitochondrial OXPHOS complex density. Aging (Albany NY). 1, 131–145. doi:
10.18632/aging.100016

Polymenis, M., and Kennedy, B. K. (2012). Chronological and replicative lifespan
in yeast: do they meet in the middle? Cell Cycle 11, 3531–3532. doi:
10.4161/cc.22041

Powers, R. W., Kaeberlein, M., Caldwell, S. D., Kennedy, B. K., and Fields, S.
(2006). Extension of chronological life span in yeast by decreased TOR pathway
signaling. Genes Dev. 20, 174–184. doi: 10.1101/gad.1381406

Richard, V. R., Beach, A., Piano, A., Leonov, A., Feldman, R., Burstein,
M. T., et al. (2014). Mechanism of liponecrosis, a distinct mode of
programmed cell death. Cell Cycle 13, 3707–3726. doi: 10.4161/15384101.2014.
965003

Roelants, F. M., Torrance, P. D., and Thorner, J. (2004). Differential roles of PDK1-
and PDK2- phosphorylation sites in the yeast AGC kinases Ypk1, Pkc1 and
Sch9. Microbiology 150, 3289–3304. doi: 10.1099/mic.0.27286-0

Ruckenstuhl, C., Netzberger, C., Entfellner, I., Carmona-Gutierrez, D.,
Kickenweiz, T., Stekovic, S., et al. (2014). Lifespan extension by methionine
restriction requires autophagy-dependent vacuolar acidification. PLoS Genet.
10:e1004347. doi: 10.1371/journal.pgen.1004347

Schmitt, A. P., and McEntee, K. (1996). Msn2p, a zinc finger DNA-binding
protein, is the transcriptional activator of the multistress response in
Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 93, 5777–5782. doi:
10.1073/pnas.93.12.5777

Schroeder, E. A., Raimundo, N., and Shadel, G. S. (2013). Epigenetic silencing
mediates mitochondria stress-induced longevity. Cell Metab. 17, 954–964. doi:
10.1016/j.cmet.2013.04.003

Schroeder, E. A., and Shadel, G. S. (2014). Crosstalk between mitochondrial stress
signals regulates yeast chronological lifespan. Mech. Ageing Dev. 135, 41–49. doi:
10.1016/j.mad.2013.12.002

Schroeder, S., Pendl, T., Zimmermann, A., Eisenberg, T., Carmona-Gutierrez, D.,
Ruckenstuhl, C., et al. (2014). Acetyl-coenzyme A: a metabolic master regulator
of autophagy and longevity. Autophagy 10, 1335–1337. doi: 10.4161/auto.28919

Sheibani, S., Richard, V. R., Beach, A., Leonov, A., Feldman, R., Khelghatybana, L.,
et al. (2014). Macromitophagy, neutral lipids synthesis and peroxisomal fatty

Frontiers in Genetics | www.frontiersin.org 7 September 2016 | Volume 7 | Article 177

http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive


fgene-07-00177 September 24, 2016 Time: 15:39 # 8

Dakik and Titorenko Interorganelle Communications in Yeast Aging

acid oxidation protect yeast from “liponecrosis”, a previously unknown form of
programmed cell death. Cell Cycle 13, 138–147. doi: 10.4161/cc.26885

Shimobayashi, M., and Hall, M. N. (2014). Making new contacts: the mTOR
network in metabolism and signalling crosstalk. Nat. Rev. Mol. Cell Biol. 15,
155–162. doi: 10.1038/nrm3757

Smets, B., Ghillebert, R., De Snijder, P., Binda, M., Swinnen, E., De Virgilio, C.,
et al. (2010). Life in the midst of scarcity: adaptations to nutrient availability
in Saccharomyces cerevisiae. Curr. Genet. 56, 1–32. doi: 10.1007/s00294-009-
0287-1

Steinkraus, K. A., Kaeberlein, M., and Kennedy, B. K. (2008). Replicative aging
in yeast: the means to the end. Annu. Rev. Cell Dev. Biol. 24, 29–54. doi:
10.1146/annurev.cellbio.23.090506.123509

Stephan, J. S., Yeh, Y. Y., Ramachandran, V., Deminoff, S. J., and Herman,
P. K. (2009). The Tor and PKA signaling pathways independently target the
Atg1/Atg13 protein kinase complex to control autophagy. Proc. Natl. Acad. Sci.
U.S.A. 106, 17049–17054. doi: 10.1073/pnas.0903316106

Stephan, J. S., Yeh, Y. Y., Ramachandran, V., Deminoff, S. J., and Herman,
P. K. (2010). The Tor and cAMP-dependent protein kinase signaling pathways
coordinately control autophagy in Saccharomyces cerevisiae. Autophagy 6, 294–
295. doi: 10.4161/auto.6.2.11129

Swinnen, E., Ghillebert, R., Wilms, T., and Winderickx, J. (2014). Molecular
mechanisms linking the evolutionary conserved TORC1-Sch9 nutrient
signalling branch to lifespan regulation in Saccharomyces cerevisiae. FEMS Yeast
Res. 14, 17–32. doi: 10.1111/1567-1364.12097

Taylor, R. C., and Dillin, A. (2011). Aging as an event of proteostasis collapse. Cold
Spring Harb. Perspect. Biol. 3:a004440. doi: 10.1101/cshperspect.a004440

Teixeira, V., and Costa, V. (2016). Unraveling the role of the Target of Rapamycin
signaling in sphingolipid metabolism. Prog. Lipid Res. 61, 109–133. doi:
10.1016/j.plipres.2015.11.001

Titorenko, V. I., and Terlecky, S. R. (2011). Peroxisome metabolism and cellular
aging. Traffic 12, 252–259. doi: 10.1111/j.1600-0854.2010.01144.x

Traven, A., Wong, J. M., Xu, D., Sopta, M., and Ingles, C. J. (2001).
Interorganellar communication. Altered nuclear gene expression profiles in a
yeast mitochondrial DNA mutant. J. Biol. Chem. 276, 4020–4027.

Urban, J., Soulard, A., Huber, A., Lippman, S., Mukhopadhyay, D., Deloche, O.,
et al. (2007). Sch9 is a major target of TORC1 in Saccharomyces cerevisiae. Mol.
Cell 26, 663–674. doi: 10.1016/j.molcel.2007.04.020

Wanke, V., Cameroni, E., Uotila, A., Piccolis, M., Urban, J., Loewith, R., et al.
(2008). Caffeine extends yeast lifespan by targeting TORC1. Mol. Microbiol. 69,
277–285. doi: 10.1111/j.1365-2958.2008.06292.x

Wei, M., Fabrizio, P., Madia, F., Hu, J., Ge, H., Li, L. M., et al. (2009). Tor1/Sch9-
regulated carbon source substitution is as effective as calorie restriction
in life span extension. PLoS Genet. 5:e1000467. doi: 10.1371/journal.pgen.
1000467

Wu, Z., Song, L., Liu, S. Q., and Huang, D. (2013). Independent and additive effects
of glutamic acid and methionine on yeast longevity. PLoS ONE 8:e79319. doi:
10.1371/journal.pone.0079319

Yorimitsu, T., Zaman, S., Broach, J. R., and Klionsky, D. J. (2007). Protein
kinase A and Sch9 cooperatively regulate induction of autophagy in
Saccharomyces cerevisiae. Mol. Biol. Cell 18, 4180–4189. doi: 10.1091/mbc.E07-
05-0485

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2016 Dakik and Titorenko. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) or licensor are credited and that the original publication in this journal
is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Genetics | www.frontiersin.org 8 September 2016 | Volume 7 | Article 177

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.frontiersin.org/Genetics/
http://www.frontiersin.org/
http://www.frontiersin.org/Genetics/archive

	Communications between Mitochondria, the Nucleus, Vacuoles, Peroxisomes, the Endoplasmic Reticulum, the Plasma Membrane, Lipid Droplets, and the Cytosol during Yeast Chronological Aging
	Introduction
	Spatiotemporal Dynamics Of Intercompartmental Communications Define The Chronology Of Cellular Aging In Yeast
	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References


