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Functional stratification of cancer drugs through integrated
network similarity
Seyma Unsal-Beyge 1 and Nurcan Tuncbag 2,3✉

Drugs not only perturb their immediate protein targets but also modulate multiple signaling pathways. In this study, we explored
networks modulated by several drugs across multiple cancer cell lines by integrating their targets with transcriptomic and
phosphoproteomic data. As a result, we obtained 236 reconstructed networks covering five cell lines and 70 drugs. A rigorous
topological and pathway analysis showed that chemically and functionally different drugs may modulate overlapping networks.
Additionally, we revealed a set of tumor-specific hidden pathways with the help of drug network models that are not detectable
from the initial data. The difference in the target selectivity of the drugs leads to disjoint networks despite sharing a similar
mechanism of action, e.g., HDAC inhibitors. We also used the reconstructed network models to study potential drug combinations
based on the topological separation and found literature evidence for a set of drug pairs. Overall, network-level exploration of
drug-modulated pathways and their deep comparison may potentially help optimize treatment strategies and suggest new drug
combinations.
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INTRODUCTION
Transformation of normal cells to tumor cells is a multi-stage
process where multiple signaling pathways and biomolecular
connections alter1–7. Response to drug treatment is highly
dependent on cellular and physiological factors in cancer, and
many drugs have multiple targets8. Molecular heterogeneity across
tumor types may result in different signaling alterations in
response to the same drug9–11. Moreover, drugs simultaneously
perturb multiple pathways besides their immediate targets.
Therefore, network-based approaches may unveil many unknowns
about drug response across various cancer types12–14. Integrative
multi-omic approaches can provide a realistic view of network-
level alterations toward developing better treatment strategies
against the complexity and heterogeneity of cancer15–19.
Network-based strategies were previously used to investigate

protein–drug and protein–protein interactions. Topological
separation of disease modules within the human interactome
was studied to elucidate disease–disease interactions12. In a
similar line, network proximity of drug targets in the human
interactome was shown to predict drug–disease interactions for
drug repurposing13. Cheng et al. calculated the closest distances
between drug targets and disease genes and used patient-
specific data to investigate the effects of drugs on different
diseases14. Ritz et al. developed PathLinker to reconstruct
signaling pathways, which finds multiple shortest paths from
receptors to transcriptional regulators in a reference protein
interactome20. Wu et al. used BioNetGen software21 to model a
detailed rule-based biochemical network of VEGF-mediated eNOS
signaling pathway and interpreted the effects of an angiogenic
inhibitor (thrombospondin-1, TSP1)22. Halasz et al. studied signal
transduction networks in colorectal cancer by integrated network
reconstruction using a Bayesian mechanistic modeling algo-
rithm23. Naldi et al. combined weighted shortest paths and
random walk methods24, and Buffard et al. used this method to
identify significant pathways by integrating phosphoproteomic

data from cancer cells25. Scoring topological proximity between
disease proteins in a reference interactome was previously used
to prioritize disease genes, infer new drug targets, identify drug
efficacy, and predict phenotypic outcomes26–31. One challenge in
network-based approaches is the incompleteness of human
interactome. It has many false negatives32 and is biased to well-
studied proteins. Previous works have combined link prediction
approaches with network-based studies to overcome this
challenge33–36.
Many cancer drugs eventually lead to resistance and cause

adverse effects when applied continuously and with high
doses37,38. Therefore, combinatorial drug treatment approaches
are rigorously studied to eliminate or reduce resistance,
recurrence, and possible side effects39–44. Effective drug combi-
nations can be predicted with the help of network topology-
based analysis of drug–disease interactions and inference of
affected pathways45.
These approaches have the overarching aim of better under-

standing molecular alterations in diseases, how drugs act within
the cell, and finding the best treatment options. In this study, we
further elaborate on perturbed networks to mechanistically
understand the similarities and differences of drugs. Conceptually
we (i) grouped cancer drugs at the network level beyond their
immediate targets, (ii) evaluated the alterations of drug modula-
tion in different cell lines, and (iii) suggested potential drug
combinations based on topological separation of the networks.
For this purpose, we used an integrative approach based on
reverse engineering principles that combine a link prediction
strategy to modify the underlying interactome and the solution of
the prize-collecting Steiner forest problem to reconstruct drug and
cell line-specific networks. All-pair comparison of the recon-
structed networks shows that chemically and functionally different
drugs may modulate shared pathways. We next considered these
reconstructed networks for coherence with the available drug
response data and possible drug combination prediction.
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Thus, these network models are rich resources for examining
different aspects of drug actions at the pathway level in different
cancer types.

RESULTS
Overview of the method
We used transcriptomic and phosphoproteomic data of five
cancer cell lines treated with 89 drugs and the associated control
treatment (Connectivity Map Project - CMap) to understand the
drugs’ signaling level differences and commonalities system-
atically. We obtained the upstream regulators - the set of
transcription factors—of the significantly expressed genes for
each cell line-drug pair from transcriptomic data. Additionally, we
retrieved the targets of each drug from CMAP Drug Repurposing
tool46, which combines the data from DrugBank, PubChem, and
other drug-related databases. Finally, we merged the set of
transcription factors, phosphoprotein hits, and drug targets to
obtain the list of seed proteins of each cell line-drug pair for the
network modeling. In Fig. 1, we conceptually illustrate our
integrative approach.
Although we started with 89 drugs and five cell lines, the

number of proteins in the seed list is very low for some drugs,
making the network modeling not feasible. We have also tested
less stringent thresholds to enlarge the size of the seed list.
However, we still could not overcome this issue for some drugs
(i.e., decitabine, ginkgetin in A549 and YAPC, vemurafenib, and
tacrolimus in MCF7 and PC3 cells). Therefore, we continued with
70 drug treatments on five cell lines. We calculated Tanimoto
similarities and MACCS key distances of these 70 drugs
(Supplementary Fig. 1 and Supplementary Note 1) to label their
chemical similarities and their mechanism of action (Supplemen-
tary Fig. 2) to use as a reference in our analysis.
To discover the hidden mechanisms underlying the effects of

drugs, we integrated the seed proteins list (drug targets,
transcription factors, and phosphoproteins) with the human
interactome using Omics Integrator47 software. Edge weights in
the human interactome (iRefWeb v13.0) represent confidence
scores of interactions and are calculated by the MI-Score function.
We additionally refined the human interactome with several
approaches to decrease the impact of false positive and false
negative interactions. Additionally, the link prediction followed by
cellular localization filters enriched the interactome (see Methods).
Omics Integrator solves the prize-collecting Steiner Forest (PCSF)
problem to reconstruct optimal subnetworks by integrating the
list of seed proteins (terminal set) and a reference interactome.
The performance of the network modeling approaches is highly
dependent on the interactome, parameter tuning, and inclusion of
known biological insights. Omics Integrator has a better perfor-
mance compared to all pairs shortest paths, page rank, and heat
diffusion approaches when rigorous parameter tuning is applied
and multiple suboptimal solutions are merged. This modification
increases the precision and recall of PCSF48. Additionally, PCSF can
reconstruct a network from a single list of seed nodes whereas
other powerful approaches such as PathLinker20 and Response-
Net49 require two sets of inputs. Because of its good performance
among other methods requiring only a single seed list, we
selected Omics Integrator as the main tool for network
reconstruction. In this study, we merged the outputs of multiple
parameter sets and refined the underlying interactome to
reconstruct better networks. The terminal set size varies between
6 and 214 across the cell line-drug pairs, and the representation of
phosphoproteins is relatively limited (max of 20 hits). Proteins have
weights reflecting their importance in the terminal set based on
their type. Transcription factors were weighted based on the mean
of their target gene expressions. Phosphoproteins were weighted
based on the absolute fold change compared to the control.

Drug targets have a uniform weight inferred from the overall
weight distribution of all proteins.
In total, we constructed 236 subnetworks from the combina-

tion of 70 drugs and five cell lines. However, not all cell lines have
the same number of subnetworks. Out of 236 networks, cell line
A375 has 70, A549 has 46, MCF7 has 43, PC3 has 59, and YAPC
has 18 drug-specific subnetworks (Supplementary Fig. 3a).
Topological characteristics of the drug networks can give clues
about the connectivity of the modulated proteins. We summar-
ized the topological properties of networks for each cell line in
Supplementary Fig. 4. We found that the final network size is
dependent on the number of altered proteins/genes from multi-
omic data rather than the centrality of the drug targets in the
interactome (summarized in Supplementary Note 2 and Supple-
mentary Fig. 5).
We initially quantified the node level overlap between network

pairs where extensive overlap means similar network neighbor-
hood. 98.4% of network pairs share at least one protein.
Therefore, a comparison solely based on the overlapping nodes
and node frequencies does not allow us to understand the
comprehensive modulation of drugs (Supplementary Fig. 3 and
Supplementary Note 2).
The reconstructed networks preserve more detailed informa-

tion about the drug effects beyond the common proteins and
their association with cancer pathways. If two drug networks
highly overlap, these drugs’ action and phenotypic outcomes
may be potentially similar. We applied the network-based
separation approach, developed by Menche et al.50, to reveal
disease–disease relations on each drug network pair within and
across cell lines to explore the network-level separation. The
separation score represents how close two networks are. This
topology-based comparison calculates the average shortest
distances between the nodes in each network in the reference
interactome (see Methods). The topological overlap of two drug
networks in a cell line reflects their similarities at the pathway
level. We found several overlapping subnetworks for drug pairs
that do not have common target proteins or similar chemical
structures, such as BIX-01338, entinostat, etoposide. The similarity
between the networks modulated by these drugs was found
statistically significant based on a hypergeometric test (Supple-
mentary Data 1).
We next compared the application of the separation score

method on reconstructed networks against the application on
only seed proteins. The distribution of separation scores based on
only seed proteins mostly in the negative range. The difference
between two applications arises from the intermediate (Steiner)
nodes added via the network reconstruction. These intermediate
proteins can potentially reveal the off-target effects of drugs
(Supplementary Fig. 6 and Supplementary Note 3).
Moreover, we investigated the contribution of link prediction

results in reconstructed networks. We observed that predicted
edges constitute very low percentages of total edge count in the
networks, and they do not cause any spurious proteins to be
included in the networks. On the other hand, predicted edges can
be considered as the noise introduced to the reference
interactome. Their small contribution to the reconstructed net-
works shows the robustness to this noise (Supplementary Note 4,
Supplementary Table 1, and Supplementary Data 2).

Chemically and functionally different drugs may modulate
overlapping networks
Transforming the networks into a matrix of separation scores
(Supplementary Data 3) and clustering represents the overlaps
of the networks as drug modules. We observed that the network
overlap of some drugs is very high in specific cell lines such as
A375, MCF7, and PC3, although their chemical similarity is
limited. All-pair separation scores of drug modules in A375
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(skin melanoma) cell line are illustrated in Fig. 2a with
corresponding MoA similarities (T1= same MoA, T2= different
MoA). We noticed that the chemically and functionally different
drugs modulate similar networks. Separation score of network
pairs in other cell lines can be found in Supplementary Fig. 7. For
example, we observed that tacedinaline and geldanamycin have
overlapping networks in the A375 cell line, suggesting similar
signaling output despite their different targets or mechanism of
action (separation score=−0.61, Fig. 2b).

Tacedinaline is a selective HDAC1 inhibitor, while geldanamycin
is a heat-shock protein (HSP) inhibitor targeting HSP90AB1 and
HSP90AA1 proteins. Effects of HDAC inhibitor and HSP90 inhibitor
drugs on HDACs and HSPs and the potential interplay between
HDACs (especially HDAC6) and HSP90 has been highlighted in
several studies51–57. In our analysis, two drugs share several
downstream transcription factors (i.e., HIF1A, HSF1, CEBPA, CEBPB,
AR, and FOXO1/3) in the reconstructed networks. We then linked
these drug targets to cancer phenotypes using CancerGeneNet58
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Fig. 1 Overview of the study. a Initial data includes transcriptional and phosphoproteomic data of small molecule-perturbed five cancer cell
lines, known drug-target proteins, and human protein–protein interaction network. b Each cell line-drug pair’s dataset is processed to
reconstruct its corresponding subnetwork. Drugs modulate various pathways in different cancer cell lines, and induced cellular mechanisms of
perturbed cancer cells can be revealed by omics data integration. c Omics Integrator software is used to discover the hidden connections
underlying the effects of drugs, which needs two kinds of inputs: (i) seed proteins and (ii) reference interactome. Seed proteins are collected
from the omics data in part (a). Reference interactome is processed with several approaches to decrease the impact of false positive and false
negative interactions. Self-loops and lowly expressed genes are filtered. Afterwards, link prediction (LP) strategy is applied which is followed
by cellular localization filters. Omics Integrator software produces optimal subnetworks for each cell line and drug-specific condition. d Finally,
all subnetworks are collected, and pairwise separation scores are calculated to later use for comparison studies.
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which calculates the shortest paths between genes and pheno-
types. We found that the downstream transcription factors of
HDAC1 and HSP90s are shared on the path toward cell death and
differentiation phenotypes (Fig. 2b sub-panel). The intersection of
tacedinaline and geldanamycin networks in A375 is enriched in
several pathways such as MAPK, AMPK, and TGF-beta signaling
pathways. Moreover, transcriptomic data of two drugs are highly
correlated. Despite the high overlap, they have some disjoint
pathways enriched in each specific network. Tacedinaline affects

chemokine, neurotrophin, ErbB, TNF, FoxO, PPAR, prolactin, and
thyroid hormone signaling pathways that are not present in the
geldanamycin network (Fig. 2c).
To systematically evaluate the performance of this method, we

classified the drug pairs having the same MoA and similar
resulting networks as true positives (TP) and drug pairs having
different MoA and overlapping networks as false positives (FP). We
defined drug pairs having the same MoA and separated networks
as false negatives (FN) and drug pairs having different MoA and

Fig. 2 Cell line-based network separation score matrix and network comparison case study. a Heatmap showing network-based
separation scores(sAB) among 70 drugs on A375 cell line. Drugs are hierarchically clustered based on the pairwise separation scores, and the
lower diagonal is colored on the scale of sAB. The upper triangle of the heatmap highlights the four distinct classes defined based on the cell
line and MoA types (T1: same cell types and MoAs; T2: same cell types but different MoAs; T3: different cell types but the same MoAs; T4:
different cell types and MoAs). Colors on the x-axis refer to the MoA of each column mapped on the right of the heatmap. b Merged network
maps of Tacedinaline and Geldanamycin on A375. Blue nodes represent proteins common in both networks. Yellow nodes are the proteins
unique to Tacedinaline, and pink nodes are the proteins unique to Geldanamycin. Drug-target proteins, nodes coming from seed proteins,
and intermediate (Steiner) nodes are shown as V-shaped, ellipse-shaped, and round rectangular-shaped, respectively. Edges present in
iRefWeb human interactome are solid lines, and LP-predicted edges are dashed lines. Line width reflects edge weight. Nodes with borders are
transcription factors. Sub-panel: downstream transcription factors of HDAC1 and HSP90s shared within cancer phenotypes (found using
CancerGeneNet). c Signaling pathways enriched in Geldanamycin and Tacedinaline networks on A375.
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separated networks as true negatives (TN). We plotted the ROC
curve and Precision-Recall curve using different threshold values
(Supplementary Fig. 8 and Supplementary Data 4). Because the
data is imbalanced (200 positive cases—pairs with same MoA,
6017 negative cases—pairs with different MoA), the best
performance is found based on Matthews Correlation Coefficient
(MCC). The best performance is achieved when the separation
score threshold is selected as −0.45. (precision= 0.138, recall=
0.400, accuracy= 0.900, sensitivity= 0.400, specificity= 0.917,
TPR= 0.400, FPR= 0.083, F1-score= 0.205, MCC= 0.192). Same
MoA and overlapping networks are expected, but the interesting
cases are the drug pairs with different MoA and overlapping
networks. We, therefore, further studied the literature to find
evidence about mechanistic similarities among FP drug pairs. This
evidence strengthens our claim that even drugs with different
MoA can perturb similar pathways (Supplementary Table 2).
Despite being an FP based on the ground-truth, the synergistic
behavior of decitabine and entinostat was previously shown in the
activation of FoxO159.
There are network pairs following the ground-truth, i.e., drugs

having the same MoA and overlapping networks. One example of
drugs with the same MoA is sirolimus and OSI-027, which are
selective mTOR inhibitors. Phase I clinical trials of OSI-027 were
completed in 2013 for the investigation of patients with advanced
solid tumors or lymphoma. It has activity on pancreatic ductal
adenocarcinoma as an inhibitor of cell proliferation60. The
networks of sirolimus and OSI-027 in A375 cells highly overlap
(ss=−0.562). They have many common proteins and shared
signaling pathways such as MAPK signaling, PI3K-Akt signaling,
and cGMP-PKG signaling pathways. However, the OSI-027 network
has specifically an enrichment of Hippo signaling, Jak-STAT
signaling pathways, while sirolimus differs from OSI-027 with the
enrichment of Wnt signaling, ErbB signaling pathways, and some
immunity-related pathways such as Toll-like receptor signaling
pathway (Supplementary Fig. 9A, B).
Selumetinib and PD-0325901(Mirdametinib) are MEK inhibitors

targeting MAP2K1. We showed a consistent similarity between
two drugs for the same cancer types. The separation scores
between two drugs reach up to −0.64 in YAPC (pancreatic cancer)
(Supplementary Fig. 9C, D). However, these drugs may perturb
separated networks in different cancer types. For example, the
separation score between PD-0325901 in the PC3 cell line and
selumetinib in the YAPC cell line is 0.48 that implies dissimilar
networks. While the affected pathways are FoxO, VEGF, ErbB
cAMP, Rap1, Ras, and GnRH signaling pathways in PD-0325901
treated PC3 network, Jak-STAT, TGF-beta, PI3K-Akt, TNF, and Wnt
signaling pathways are enriched in selumetinib treated YAPC
network (Supplementary Fig. 9E, F).

Target selectivity of the drug pairs determines the network
separation, despite having the same MoA
The analysis of drug modulation in a cell line-specific manner
helped determine a subset of drugs acting similarly in A375, MCF7,
and PC3 (Supplementary Data 5). Afterward, we measured the
separation of the drugs across different cell lines to discover if the
same subset of drugs similarly acts in various tumor types. We
compared the separation scores of drug pairs from 236 networks
(Fig. 3a) by dividing them into the same cell line and the different
cell line groups. Next, we checked if two similar drugs in the same
cell line act similarly in different cancer types. The results show
that the network level overlap between drug pairs in the same cell
line is preserved across different cell lines, but their separation is
relatively higher. For example, resveratrol and geldanamycin were
highly overlapping in the A375, MCF7, and PC3 cell lines (in A375,
separation score=−0.60; in MCF7, separation score=−0.47; in
PC3, separation score=−0.54), but their overlap is lower across
cell lines such that separation score between A375-resveratrol and

MCF7-geldanamycin is −0.40 and separation score between A375-
resveratrol and PC3-geldanamycin is −0.43. Another aspect of this
difference is the target selectivity of the drugs. Two examples of
this phenomenon are the HDAC inhibitors and JAK inhibitors.
RGFP-966 is a slow-on/slow-off, competitive and selective

HDAC3 inhibitor. Tacedinaline selectively targets HDAC1. Other
HDAC inhibitors are Belinostat, Entinostat, Trichostatin-a, and
Vorinostat. Network separation scores of these HDAC inhibitors
across the cell lines vary based on the target selectivity. We
observed both overlapping and non-overlapping networks
depending on the cell types. Belinostat, Trichostatin-a, and
Vorinostat networks usually have partially overlapping regions in
all cell types, as these drugs are in the same structural group, and
expected to behave similarly. Tacedinaline treatment activates
similar mechanisms on A375, MCF7, and PC3 cells and separation
scores are negative. However, network of Tacedinaline on YAPC
cells is relatively distant to an other cell networks. Separation score
of Tacedinaline networks on A375 and YAPC cells is 0.38. YAPC-
Tacedinaline network is a small network. It is not significantly
enriched for any pathways other than Osteoclast differentiation
which is recently shown to be induced in pancreatic cancer-
derived exosomes61. In contrast, the A375-Tacedinaline network is
enriched in several critical signaling pathways such as MAPK, ErbB,
FoxO, TGF-beta, and TNF signaling pathways (Fig. 3b, c). However,
RGFP-966 treatment on A375, MCF7, and PC3 results in separated
networks that are distant to each other and to the networks of
other HDAC inhibitors. RGFP-966 networks have very low
overlapping regions across different cell lines (MCF7-PC3:0.42,
A375-PC3:0.28, and A375-MCF7:0.45). Selectivity of RGFP-966 on
HDAC3 among all HDAC proteins may result in the induction of
various pathways in different cell types. When RGFP-966 is
compared to Belinostat, Entinostat, Trichostatin-a, and Vorinostat,
the most distant networks have a separation score around 0.4, and
these networks generally belong to A375 and PC3 cells. For
example, the PC3-RGFP-966 network is separated from A375-
Trichostatin-a with a score of 0.46. Two networks are not
commonly enriched in any pathway, while PC3-RGFP-966 is only
enriched in the cell cycle, but A375-Trichostatin-a is enriched in
estrogen, neurotrophin, and TNF signaling pathways (Supplemen-
tary Fig. 10A, B). As Tacedinaline is the other selective HDAC
inhibitor, RGFP-966 and Tacedinaline treatments cause more
distant PPI networks. RGFP-966 in PC3 and Tacedinaline in A375
networks are the most distant pair with a separation score of 0.62.
They only have three proteins in common, and there are no
commonly affected pathways (Supplementary Fig. 10C, D).
Among three JAK inhibitors, ruxolitinib, tofacitinib, and TG-

101348 (fedratinib), only TG-101348 is known for its selectivity to
JAK2 protein. The rest targets with varying affinities JAK1, JAK2,
JAK3, and TYK2 proteins62–67. According to our results, same drug
may modulate different subnetworks in different cell lines, but still
by keeping a marginal overlap. To facitinib and ruxolitinib
networks have the most distant network pairs with separation
scores of 0.68 in A375 and 0.46 in PC3, respectively. In A375, they
only share the target proteins, JAK1 and JAK2. The tofacitinib
network differs from ruxolitinib with the enrichment of Jak-STAT,
ErbB, and PI3K-Akt signaling pathways. In PC3, they share two
more proteins other than JAK1/2 while the ruxolitinib network is
enriched in the AMPK signaling pathway, and the tofacitinib
network is only enriched in the Jak-STAT signaling pathway. A
relatively low separation score (−0.147) is obtained from networks
of TG-101348- and tofacitinib-treated A549 cells. Two networks
share 23 proteins besides the target proteins, and commonly
induced pathways include Jak-STAT and Notch signaling path-
ways. However, TG-101348 and tofacitinib networks have a
separation score of 0.4 in A375, and the Jak-STAT signaling
pathway is commonly enriched while the A375-tofacitinib network
differs from TG-101348 with ErbB, mTOR, PI3K-Akt signaling
pathways (Supplementary Fig. 11).
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Fig. 3 Network separation score matrix and a network comparison case study for Tacedinaline on two different cell lines. a Heatmap of
network-based separation scores(sAB) among 236 cell line-drug pairs. Drugs are hierarchically clustered based on the separation scores and
color keys are shown by sAB. The upper triangle of the heatmap highlights the four distinct classes defined based on the cell line and MoA
types (T1: same cell types and MoAs; T2: same cell types but different MoAs; T3: different cell types but the same MoAs; T4: different cell types
and MoAs). Colors on the x-axis refer to the MoA of each column mapped on the right of the heatmap. b Merged network maps of
Tacedinaline on A375 and YAPC. Blue nodes represent proteins common in both networks. Yellow nodes are the proteins unique to A375, and
pink nodes are the proteins unique to YAPC. Drug-target proteins, nodes coming from seed proteins, and Steiner nodes are shown as V-
shaped, ellipse-shaped, and round rectangular-shaped, respectively. Edges present in iRefWeb human interactome are solid lines, and LP-
predicted edges are dashed lines. Line width reflects edge weight. Nodes with borders are transcription factors. c Signaling pathways
enriched in Tacedinaline networks on A375 and YAPC.
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Topologically separated drug networks may guide the use of
drug combinations
Modulating orthogonal sets of proteins or pathways simulta-
neously is an effective strategy for finding drug combinations.
Modulated pathways are usually topologically close enough to
perturb the disease module commonly. This can be described as
targeting a disease through multiple signaling pathways11,68.
Therefore, networks play an essential role in identifying drug
combinations. Cheng et al. showed the efficacy of drug
combinations using drug targets and disease proteins by
calculating their separation mapped on the interactome45. Given
two drugs, if each drug module overlaps with a disease module
and these two drug modules are topologically separated, this is
defined as complementary exposure45. They demonstrated six
classes of drug combination-disease interactions from FDA-
approved or experimentally validated pairs and found one class
correlates with therapeutic effects (complementary exposure). In
our study, we found the intersection between our network models
and the drug combinations provided in Cheng et al. Our
reconstructed drug networks include many hidden proteins and
modulated omic hits besides the drug targets. Therefore, the
coverage of the networks is higher than the drug modules
described in previous studies. In our analysis, we considered the
disease module as the set of cancer driver genes (obtained from
Cancer Genome Interpreter69). We defined a rule where if two
drug networks have at least one cancer driver protein in common
and each has a topologically disjoint region, then the combination
of these drugs can be effective. (Fig. 4a). We only have four drug
pairs intersecting with Cheng et al., but when we consider them
per cell type, we could analyze seven drug pairs in total.

The separation scores of seven cases vary between −0.09 and
0.675. Network pairs in this analysis share a limited number of
nodes (min three, max 16 proteins). KEGG pathway enrichment of
these drug networks shows that each drug modulates a different
region of the interactome so that different signaling pathways are
perturbed. Therefore, we suggest that their combination may be
effective (Supplementary Figs. 12, 13).
Considering these seven cases and the concept of comple-

mentary exposure as a guideline, we rated other drug pairs in our
dataset with similar criteria. If two networks are separated (ss >0.0)
and share less than two common enriched pathways and the
networks are not in small size (number of nodes >40), and at least
one is a large network (number of nodes >100), then these drug
pairs have potential to be used in combination. Given these
criteria, we found 1441 potential drug combinations out of 6217
possible cell line–drug network pairs. Some of these drug pairs
were previously supported in the literature for their use in
combination therapy. The top-ranking drug pair was I-BET-762 and
lenalidomide in A375 cell line. Two networks are separated with a
score of 0.693, and they do not share any common signaling
pathways. Lenalidomide network is enriched in several essential
pathways such as PI3K-Akt, ErbB, MAPK, Ras, Rap1, VEGF, and FoxO
signaling pathways, while the I-BET-762 network is enriched in
Jak-STAT signaling and transcriptional misregulation in cancer
pathways (Fig. 4b). Three proteins are shared between these
networks. Among them, “BRAF” is a cancer driver protein. These
networks also contain different disease-related proteins (Fig. 4c).
The combination of lenalidomide with CPI-203, a primary amide
analog of (+)-JQ1 and having the same mechanism of action as I-
BET-762, is shown to synergistically induce cell death in
bortezomib-resistant mantle cell lymphoma70. Similar activities

Fig. 4 A case study for combinatorial cancer drug pairs. a The overlaps of drug and disease modules together with cell line-drug pair
networks. b Signaling pathway enrichments of Lenalidomide and I-BET-762 networks on A375. cMerged network maps of Lenalidomide and I-
BET-762 treated A375 cell lines and the subnetwork that includes cancer driver genes. Yellow nodes represent commonly found proteins in
two cell line-drug pair networks, blue nodes represent proteins unique to the A375-I-BET-762 network, and pink nodes represent proteins
unique to the A375-Lenalidomide network.
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of BET inhibitors and lenalidomide are reported in different
studies of multiple myeloma71,72.
Other examples within the top-ranking 100 predicted drug pairs

are geldanamycin and tofacitinib (A375, ss= 0.656), trichostatin-a
and tofacitinib (A375, ss= 0.562), and resveratrol and ginkgetin
(PC3, ss= 0.53). HSP90 and JAK2 inhibition was shown to
synergistically overcome resistance to JAK2-TKI in human myelo-
proliferative neoplasm cells73. Tofacitinib targets JAK proteins
nonspecifically; however, selective JAK2 inhibitor TG-101348 was
also predicted in combination with tofacitinib. Moreover, HDAC
and JAK dual inhibition were previously studied to improve
treatment strategies74–77. Resveratrol and ginkgetin combination
was also shown to suppress VEGF-induced angiogenesis in
colorectal cancer synergistically78.

Topological separation between drug networks across cell
lines gives clues about their sensitivity levels
Next, we associated the network models with the drug sensitivity
of the cell lines. For this purpose, we collected drug sensitivity
scores of cell lines deposited in the Genomics of Drug Sensitivity
in Cancer (GDSC) Database79. The intersection of GDSC and CMap
datasets results in five drugs that at least one cell line is
significantly resistant or sensitive to. A375 is sensitive to CHIR-
99021 and PD-0325901. CHIR-99021 has reconstructed networks in
three cell lines (A375, MCF7, and PC3). PD-0325901 has recon-
structed networks in four cell lines (A375, A549, PC3, and YAPC).

Trichostatin-a has networks in two cell lines (MCF7 and A375), and
MCF7 is significantly sensitive to Trichostatin-a. Thus, we can
compare these networks to better understand the changes in
sensitivity of cell lines to these drugs. PC3 is resistant to
Staurosporine and YAPC is resistant to Dinaciclib. Since there
may be several processes underlying the resistance of cells and we
can not directly infer these mechanisms from our reconstructed
networks, we focused only on the drugs that cell lines are sensitive
to (CHIR-99021, PD-0325901, and Trichostatin-a).
If a drug has dissimilar network models across different cell

lines, sensitivity to that drug may also vary (Fig. 5a). Since
Trichostatin-a(TSA) has highly overlapping networks across three
cell lines, we could not observe this pattern for sensitive MCF7
across A375 and PC3. MCF7-TSA network differs from others with
active TGF-beta signaling and cell cycle pathways, while A375 is
differently enriched in MAPK signaling, neurotrophin signaling,
estrogen signaling, TNF signaling pathways, and PC3 differs with
Jak-STAT signaling and AMPK signaling pathways. TSA targets
class I and class II HDACs. Treatment with HDAC inhibitors is
reported to restore TGF-beta signaling in breast cancer80, so it is
expected to observe that the TGF-beta signaling pathway is
enriched in MCF7 cells (Fig. 5b). The higher difference between z-
scores implies the more separated networks in CHIR-99021 and
PD-0325901 modulation. Therefore, analyzing the networks of
these drugs and exploring enriched pathways may give clues
about the resistance to these drugs. PD-0325901, to which A375
cells are sensitive, is a selective MAP2K1 (MEK1) inhibitor directly

Fig. 5 Analysis of drugs that cell lines are sensitive to. a Separation scores for network pairs of each drug in sensitive cell lines and non-
sensitive cell lines versus drug sensitivity plot. Drugs are shown in different shapes and cell lines are shown in different colors. b, c Signaling
pathways enriched in drug networks per cell type: Trichostatin-a and PD-0325901, respectively. d Regression plot of pairwise separation scores
and drug sensitivity score differences for conditions in which one drug of two cell line-drug pair networks has a negative z-score on its
corresponding cell line and the other drug has a positive z-score on its corresponding cell line and in which the separation score is higher
than −0.45.
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related to cell proliferation. Given the MEK1 is central in RAS/RAF/
MEK/ERK pathway, it is upstream of several cellular mechanisms
for cell proliferation and cell survival. In networks of two cell lines
whose z-scores are close to the resistance threshold, YAPC and
PC3, we observed several modulated pathways as expected. While
the neurotrophin signaling pathway is enriched in all cells, PC3
cells differ with several pathways such as cGMP-PKG signaling,
sphingolipid signaling, Rap1, Ras signaling, VEGF signaling,
Oxytocin signaling, FoxO signaling, and Fc epsilon RI signaling.
Sphingolipid signaling is shown to be involved in the resistance of
prostate cancer cell lines to antineoplastic drug treatment (z-score
of PC3 is 1.95, very close to the resistance threshold)81 (Fig. 5c).
We also analyzed all possible relationships between z-score

differences and separation scores. We could find z-scores of 30
drugs and calculated pairwise z-score differences of those with cell
line-drug networks and their associated separation scores. After
filtering for pairs with one negative z-score and one positive z-
score, and separation scores higher than −0.45, we performed a
regression analysis and observed a moderately positive correlation
such that separation score increases with increasing delta z-scores
(R= 0.29, p value= 0.011) (Fig. 5d).

DISCUSSION
Modulation of drug targets is not local when the complex
interactions between molecules are considered within the cell.
The impact can diffuse to distant parts or modulate several
pathways simultaneously. Drugs perturb their specific network,
which can be used to detect pathway-level similarities between
drugs. We, therefore, reconstructed networks of cancer drugs by
integrating transcriptomic, phosphoproteomic, and drug targets
with protein–protein interactions using Omics Integrator. We
modified the underlying reference interactome with gene
expression data and predicted interactions to have a cell line-
specific interactome. The resulting drug networks recover hidden
intermediate proteins besides the initial seed proteins to explore
their connectedness. We hypothesize that the topological overlap
between the drug network pairs on the reference interactome can
be a solid basis for identifying their pathway-level similarities. Our
topological and pathway-level analysis of 236 reconstructed
networks from five cell lines and 70 drugs demonstrated that
chemically and functionally different drugs may modulate over-
lapping networks, which can not be revealed conventional
comparisons based on drug properties. For example, tacedinaline
and geldanamycin target different proteins, but their networks in
A375 cell line share a module consisting of common transcription
factors leading to cell death and differentiation phenotypes.
Another example is drugs targeting same proteins and modulat-
ing separated networks i.e., sirolimus and OSI-027. Sirolimus
network is enriched in Wnt, cAMP, ErbB, and FoxO signaling
pathways, while OSI-027 network is differently enriched in Jak-
STAT and Hippo signaling pathways in A375 cells. Besides
exploring the different drugs in the same tumor type, we can
also compare the network-level impact of a drug across multiple
cell lines. Tacedinaline, one of the HDAC inhibitors, modulates
MAPK, ErbB, FoxO, TGF-beta pathways in the A375 cell line in the
reconstructed network while these pathways are absent in the
network of YAPC cell line. Additionally, the target selectivity of
the drugs is a strong signature of the separation of the networks.
We, therefore, specifically investigated the networks of HDAC
inhibitors and JAK inhibitors. Networks of drugs, such as
vorinostat, belinostat, trichostatin-a, targeting the same HDAC
proteins have overlapping regions in almost all cancer cells. On
the other hand, the network of RGFP-966, which targets
HDAC3 selectively, is topologically distant from other HDAC
inhibitor networks in different cancer types.
As evidenced by Menche et al.50 that the overlap of the disease

modules can quantify the molecular similarity of the diseases, we

applied this quantification to interpret the drug similarities and
eventually the effects of potential drug combinations. Treatment
strategies combining drugs are used to decrease adverse effects
and to prevent resistance to drugs82–85. Therefore, we compared
our drug network models with experimentally validated drug
combinations. Recently, the DREAM AstraZeneca-Sanger drug
combination prediction challenge provided a large combinatorial
cell line screening dataset. The challenge was open to methods to
predict synergistic drug combinations, i.e., machine learning or
network-based approaches86–89. In this study, we found that the
experimentally synergistic drug pairs modulate topologically
separated networks. Using their separation scores, common
pathway enrichments, and network sizes, we rated cell line–drug
network pairs and found 1441 drug pairs out of 6217 possible
pairs. These predictions can be further used to experimentally
study their synergy on specific conditions and provide guidance
to finding alternatives to currently used drug pairs. In the future,
we will integrate our network-level results with learning-based
approaches to better understand the pharmacodynamics of drugs.
Another use of drug network models is to understand the drug

resistance mechanisms. To reveal the differences between
sensitive and resistant cells to a given drug, we compared their
reconstructed networks. Cell lines' networks, that are perturbed by
the same drug and have different response, have limited or no
topological overlap. Therefore, pathway-level comparison and the
topological analysis of drug networks may potentially guide in
drug response predictions.
In summary, we leveraged networks to find similarities and

disparities between drugs within and across multiple cancer cell
lines. Further, these reconstructed networks are used for under-
standing drug response and combinations. We believe that
network-based approaches are fundamental in interpreting the
drug actions in tumors and integrating multi-omic data. This study
was directly devoted to this task.

METHODS
Data
The “omic” data is obtained from Connectivity Map (CMap), which contains
1.3 M L1000 data for nine different core cell types, treated with 27,927
perturbagens. Within CMap, the Touchstone V1.1 dataset contains 8388
perturbagens (well-annotated genetic and small-molecular perturbagens)
for nine cell lines for three time points and three replicates; and P100
dataset contains proteomic data for six different core cell types, treated
with 90 perturbagens90,91. In addition to transcriptional data (L1000),
proteomic and phosphoproteomic data for a subset of these perturbagens
have been recently released (P100, released on 4/13/18). P100 dataset was
used in our study, which contains already filtered transcriptional and
phosphoproteomic data for the same set.
The P100 dataset represents three different read-outs (phosphosignal-

ing (P100), chromatin modifications (GCP), and transcriptional changes
(L1000)) of the same 90 small-molecule perturbations in six cell lines. The
duration of treatment was 3 h for P100, 24 h for GCP, and 6 h for L1000.
These data were available at multiple levels of processing: level 1 is
fluorescence intensity (for L1000) or mass spectrometry extracted ion
chromatogram traces (for P100, GCP); level 2 is gene expression or
proteomic values without normalization; level 3 is normalized; and level 4
is differential (i.e., each sample is compared to all other samples on a
plate). We used normalized (level3) data of L1000 and P100 for five cancer
cell lines in our studies.
L1000 assay measures transcription levels of 978 genes (referred to as

Landmark genes) and 80 control transcripts directly. It then infers the
expression levels of the remaining 11,350 genes via Ordinary Least
Square (OLS) regression. From 11,350 inferred genes, 9196 genes are
considered well inferred and called Best Inferred Genes (BING). We used
landmark genes in the terminal set preparation procedure. Phospho-
proteomic data generated by the P100 assay consists of 96 phosphosites
and is a reduced representation of phosphoproteomics, targeting
common signaling pathways.
The drug-target interactions are retrieved mainly from CLUE Drug

Repurposing tool46, which curates information from several databases such
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as DrugBank & PubChem (https://clue.io/repurposing-app). The recon-
structed networks have been oriented through these targets for each drug.
We also have the edge-weighted protein–protein interaction network

for the network modeling part retrieved from iRefWeb, v13.0 reference
human interactome, which has 15,404 nodes (proteins) and 175,820
weighted edges (protein interactions) without self-loops. The weights of
edges represent how real interaction is based on the MI-Score function.

Calculation of Tanimoto and MACCS key distance similarities
For 70 drugs listed with network reconstruction studies, SMILES signatures
are collected from chemical databases such as PubChem and DrugBank. All
pairwise Tanimoto and MACCS key similarities are calculated with the
open-source RDkit Python module92. Hierarchical clustering on similarity
matrices is performed with the Morpheus tool of BROAD institute with the
parameters as the metric is “Euclidean distance” and linkage method is
“average” (https://software.broadinstitute.org/morpheus/).

Network modeling approach
For network reconstruction purposes, a solution to the prize-collecting
Steiner tree problem was searched through Omics Integrator software19 to
find an optimum tree. Nodes obtained from the experiments (terminal
nodes) and nodes not detected in experiments and obtained by the
algorithm (Steiner nodes) were determined by this process. Let G= (V, E, c,
p) be an undirected graph, with the vertices/nodes V associated with non-
negative prizes p(v), and with the edges E associated with non-negative
costs c(e). The Prize-Collecting Steiner Tree problem (PCST) consists of
finding a connected subgraph T= (V′, E′) of G, that minimizes the weight
of T, which is the sum of its edge costs plus the sum of the penalties of the
vertices of G outside of the solution.
Omics Integrator is a software package that applies the prize-collecting

Steiner forest (PCSF) approach to construct the most biologically relevant
protein–protein interaction network. This tool is efficient in the integration
of different omics data using interactome data.
There are two distinct tools within the Omics Integrator package: Garnet

and Forest. To integrate different experimental results derived from mRNA,
proteins, metabolites, etc., measurements, Garnet and Forest complement
each other and use omics data either gathered from experiments or
derived from several databases. In this study, only the Forest tool was used.
Forest tool constructs the interaction network by using user-defined

omic data that is the list of proteins/genes together with their importance
(prizes), and by using interactome data together with their significance
levels. Each protein/gene given as input to the Forest tool is defined as
“terminal”. If necessary, Forest can add extra nodes from the interactome
data called “Steiner” nodes. When constructing the network, the algorithm
optimizes the score by calculating the sum of prizes of nodes not included
plus the costs of edges included. The algorithm seeks to minimize the
score to find the most optimum and biologically relevant protein–protein
interaction network. There is always a possibility to include “hub” nodes,
highly-connected nodes. Forest uses a generalized prize function to decide
whether these “hub” nodes are, in fact, essential and should be included in
the network or not. This generalized prize function assigns negative
weights to nodes according to the number of connections they have in the
interactome. The function is:

p0 vð Þ ¼ β � p vð Þ � μ � degree vð Þ (1)

where β and µ are scaling parameters and degree(v) is the number of
connections of node v in the interactome. β is used to calibrate the effect
of terminal nodes, and µ is used to calibrate the effect of hub nodes. µ is 0
in the default parameters where hub correction is disabled; if it is
increased, the algorithm tries to exclude these hub nodes. β enables the
algorithm to include terminal nodes, and increasing β facilitates more
terminal nodes to be included in the final network.
Given a directed, partially directed, or undirected network G(V, E, c(e), p′

(v)), it is aimed to find a forest F(VF, EF) that minimizes the objective
function:

f 0 Fð Þ ¼
X

v∉VF
p0 vð Þ þ

X
eEF

c eð Þ þ ω � κ (2)

where p′ (v) is defined in Eq.1, c(e) is the cost of each edge, κ is the number
of trees in the forest, and ω is another scaling parameter which is a uniform
edge cost of each node connected to dummy node.
The forest tool has six PCSF parameters; however, ω, β, and D are the ones

that at least need to be defined by the user. D is the depth parameter which
is the maximum path length from v0 to terminal nodes. The other three

optional parameters are µ, g (reinforcement parameter, default is 1e-3), and
garnetBeta (scales the Garnet output prizes relative to the provided protein
prizes, default is 0.01).
Transcriptional and phosphoproteomic datasets (P100) were used to

model protein–protein interaction networks. Gene expression data allows
detecting transcription factors while phosphoproteomic data allows
differentiating active and inactive proteins. By integrating these two data
types and drug-target data, multilayer networks were constructed. For
parameter tuning purposes, we run the algorithm for each combination of
D= 10, µ= [0.00, 0.005, 0.01, 0.015, 0.02, 0.025, … , 1.0], β= [2, 3, 4, 5, 10],
and ω= [1, 2, 3]. After collecting all the networks, we chose the ones with
the highest number of terminal nodes and the minimum number of “hub”
proteins (degree >100) and then merged all of these networks to get the
final cell line-drug network.

Preparation of terminal sets as an input for network
reconstruction method
All statistical analyses were performed with the python scipy93 module.
L1000 data includes fluorescence values of several replicas for transcrip-
tional measurements of both drug-treated samples and DMSO treated
samples as control. These two conditions for each landmark (genes directly
measured by L1000 assay) gene were compared with one way-Anova
method after verifying the assumptions and p values for each landmark
gene are collected. The p values for each gene as drug-treated condition
compared against control condition is generated, genes that have lower
p value than the selected threshold were collected and labeled as
“significantly transcribed genes”. These “significantly transcribed genes”
are listed for each cell line-drug pair. Also, log2 fold changes of average
transcription values of each gene compared to the control condition are
calculated and stored to be later used in the prize designation of terminals.
From L1000 data, by using the “significantly transcribed genes” list and

transcription factor regulatory network94, we found out transcription
factors that are regulating any of the genes in our list. If a transcription
factor regulates at least three of the genes in the significant gene list, we
used it as a terminal, and mean log2 fold changes of interactors of these
transcription factors are used as their prizes. From P100 data, “significantly
phosphorylated proteins” are collected using the phosphosites passing the
p value threshold (p < 0.05).
Lastly, these two lists were joined together, prioritizing those coming

from proteomic data. Also, the targets of the drug of interest were
appended to the terminal set with a uniform weight inferred from the
overall weight distribution of all proteins.

Application of link prediction strategy on the interactome
Link prediction is another step of the input file preparation. Firstly,
interactome was processed to exclude hub proteins that have degree >900
and more than ten standard deviations away from the mean (“UBC”, “APP”,
“ELAVL1”, “SUMO2“, “CUL3”) as defined in ref. 95. These hub proteins
constitute 13,738 interactions in the reference interactome. All edges that
include at least one of these hub proteins were excluded. After, the
interactome was processed for each drug treatment in which the edges
having at least one protein with transcription level, fluorescence
measurement, below a threshold were excluded. L1000 data have
expression values for each gene that is inferred from direct measurements
of landmark genes. For each drug treatment, expression values lie between
0.0 and 15.0. The threshold was set as 2.0, and edges with at least one
protein whose expression value is below 2.0 were excluded. iRefWeb
interactome and L1000 genes share 11,002 genes in common. After
excluding low expressed proteins, condition-specific interactomes
included ~160,800 interactions.
After processing with expression values, the link prediction approach is

applied. Adamic/Adar scoring method was selected because this link
prediction method is known for its ability to weigh rarer features more
heavily and exclude hubs. The scoring formula of Adamic/Adar is as below:

Score x; yð Þ ¼
X

w 2Neighbors xð Þ\Neighbors yð Þð Þ
1

log jNeighbors wð Þj (3)

Edge predictions were scored based on the processed interactome
(interactome without hub proteins and low expressed genes). Then the same
number of best scoring predictions as the edges found in the processed
interactome were taken for further filtering based on subcellular location
information. Localization information was gathered from the Human Protein
Atlas. Using this information, predictions in which two proteins that do not
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have any common location were filtered out. The predictions in which at
least one of the proteins do not have any localization information were
collected since it is currently unknown and it has a possibility to be found in
the same location with other protein and the predictions in which two
proteins having at least one common location were also included in the
artificial edge list. After filtering according to the subcellular localization, the
remaining predicted edges were appended to the processed interactome by
scaling their scores between 0.0 and 0.5. Their scaled scores were assigned as
edge weight.

Comparison of reconstructed networks
Topology-based comparison. Menche et al., 2015 reported a pairwise
network similarity scoring method based on mapping drug networks on
the interactome and scoring their overlap50. They calculate the relative
distances of two networks in the interactome. The separation score is
measured based on the below formula:

sAB � dABh i � dAAh i þ dBBh i
2

(4)

Where sAB is the separation score of networks A and B, dAB is the shortest
distances between A-B proteins, and dAA and dBB are the shortest distances
between proteins within A and B, respectively. If a protein is common
between both networks (A and B), the distance dAB of that protein is 0.
For our comparison purposes, this separation scoring method is used.

Several separation score matrices were prepared to be able to compare
drug networks on different levels. As there are different cell lines, there are
matrices for each cell line that effects of drug treatments were compared
within a cell type. Separation score matrices for each drug were also
prepared to compare the drug’s effect based on the cell type. Finally, a
separation score matrix containing scores of pairwise network comparisons
of all cell line-drug pair combinations was prepared to have a broader idea.
All matrices are subjected to hierarchical clustering using python scipy.
cluster.hierarchy module.

Pathway-based comparison. Reconstructed networks are subjected to
functional analyses based on their KEGG pathway enrichments. Pathway
enrichments are calculated using DAVID source code96. All significantly
enriched pathways (p < 0.05) are collected for each network and signaling
pathways are filtered to be later used for comparison purposes.

Calculation of topological features of the reconstructed networks. The
number of nodes, number of edges, average degree, average shortest path
lengths, density, and diameter of the networks are calculated with python
using the Networkx97 module.

Hypergeometric tests. Hypergeometric tests are used to analyze the
significance of the network overlaps. For this purpose, hypergeom method
of python scipy.stats module is used. The parameters of this method are x,
M, n, N that are defined as the number of nodes common in both
networks, number of nodes in the larger network, number of nodes in the
smaller network, and number of total nodes found in the human
interactome, respectively.
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