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B cells are the core components of humoral immunity. Amature B cell can serve

in multiple capacities, including antibody production, antigen presentation, and

regulatory functions. Forkhead box P3 (FoxP3)-expressing regulatory T cells

(Tregs) are key players in sustaining immune tolerance and keeping

inflammation in check. Mounting evidence suggests complex

communications between B cells and Tregs. In this review, we summarize

the yin-yang regulatory relationships between B cells and Tregsmainly from the

perspectives of T follicular regulatory (Tfr) cells and regulatory B cells (Bregs).

We discuss the regulatory effects of Tfr cells on B cell proliferation and the

germinal center response. Additionally, we review the indispensable role of

B cells in ensuring homeostatic Treg survival and describe the function of Bregs

in promoting Treg responses. Finally, we introduce a new subset of Tregs,

termed Treg-of-B cells, which are induced by B cells, lake the expression of

FoxP3 but still own immunomodulatory effects. In this article, we also

enumerate a sequence of research from clinical patients and experimental

models to clarify the role of Tfr cells in germinal centers and the role of

convention B cells and Bregs to Tregs in the context of different diseases.

This review offers an updated overview of immunoregulatory networks and
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unveils potential targets for therapeutic interventions against cancer,

autoimmune diseases and allograft rejection.

KEYWORDS

regulatory T cells, B cells, T follicular regulatory cells, regulatory B cells (bregs),
humoral responses, germinal center, treg-of-B cells

1 Introduction

Regulatory T cells (Tregs) are a unique subpopulation of

CD4+ T cells, with FoxP3+ cells being their most prominent

version. In vivo, the generation of Tregs occurs in two

different ways. The first and major pathway occurs in the

thymus where medullary thymic epithelial cells (mTECs) help

drive CD4+Foxp3+ T cells to thymus-derived Tregs (tTregs) by

presenting self-antigens (Abbas et al., 2013; Lucas et al., 2016).

The autoimmune regulator (AIRE) within mTECs is a

transcription factor triggering the expression of tissue-

restricted antigens (Lucas et al., 2016). The second pathway

operates in the periphery, where naive CD4+Foxp3- T cells

interact with cognate antigens and transform into periphery-

derived Tregs (pTregs) (Abbas et al., 2013) (Figure 1).

Although Tregs only make up a small portion of the

peripheral T cell pool, they play an indispensable role in

maintaining immune homeostasis and self-tolerance.

B cells, as another protagonist of this article, originate from

bone marrow and are key components of humoral immune

responses (Arnon et al., 2013). Mature B cells can be assigned

into B-1 B cells and B-2 B cells, and B-2 B cells can be further

FIGURE 1
The interplay between B cells and Treg. In addition to thymic mTEC and BM-DCs that act as APCs to promote to produce Tregs, thymus B cells
expressing CD80, CD86 and MHC II, also function like APC cells. Their BCRs capture autoantigens. Interaction of TCR-MHC II-peptide and
CD28−CD80/CD86 between B cells and CD4+ T cells lead to the production of thymic CD25+Foxp3- pre-Tregs, which then advance into Foxp3+
mature Tregs. In the periphery, naive CD4+Foxp3- T cells may interact with immune cells such as Breg and then transform into periphery-
derived Tregs. Both thymus-derived Tregs and periphery-derived Tregs would circulate into lymphoid organs, where they will transform into Tfr cells
and exert suppressive functions on the humoral immunity via controlling metabolic pathways of both B cells and Tfh cells. The differentiation of Tfr
cells occurs in a stepwise manner. The first step involves interactions with dendritic cells (DCs) that initiate imprinting on the Tfr cell development,
and the second step is interaction with B cells to strengthen Tfr cell signaling. Tfh, Tfr and GC B cells own complicated and elaborate regulatory
interrelationship. Tfh cells deliver positive function to B cells for affinity-matured antibody production. Besides, Tfh cells themselves help drive the
formation of Tfr cells. Conversely, Tfr cells can not only act directly on B cells but also suppress Tfh cells to indirectly act on B cells by preventing the
co-stimulation and cytokines needed to promote B cell proliferation. Furthermore, Tfr cells can physically disrupt of Tfh-B cell communication. The
figures are portrayed with the help from website Servier Medical Art (smart.servier.com).
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divided into marginal zone cells (MZ B) and follicular B cells

(FO B) (Arnon et al., 2013). A steady stream of research has

confirmed the close connection between B cells and Tregs and

revealed their complex regulatory relationship. On the one

hand, Tregs repress humoral immunity by inhibiting B cells

(Bennett et al., 2001; Jang et al., 2011), while on the other

hand, not only can B cells regulate the proliferation of naïve

CD4+ T cells by presenting antigen and co-stimulatory

molecules, B cells can also regulate the proliferation and

function of Tregs (Ellis and Braley-Mullen, 2015).

Germinal centers (GCs) are specialized structures in

B cell follicles (Berek et al., 1991). Upon immunization or

(and) infection, GCs transiently form and maintain for weeks

to months, which occurs in peripheral lymphoid organs like

dLN and Peyer’s patch (Berek et al., 1991). Mature GCs are

micro-anatomically divided into the light zone (LZ) and dark

zone (DZ) (Chung et al., 2011). In DZ, after several rounds of

cellular division, the FO B cells go through somatic

hypermutation. Upon receiving stimulus, the B cells

migrate from the DZ to the LZ to go through Class-switch

recombination (CSR) and selection with the help of follicular

dendric cells, Tfh cells and Tfr cells (Rathanaswami et al.,

2005; Chung et al., 2011). Finally, these B cells successfully

mature into plasma cells with high-affinity antibodies or

memory B cells that can be activated once they meet with

the same antigens (Rathanaswami et al., 2005). T follicular

regulatory (Tfr) cells are a special subgroup of Tregs residing

in lymphoid follicles synchronously expressing the molecules

belonging to follicular helper T (Tfh) cells and Tregs. Tfr cells

have been found to interact with B cells and regulate germinal

center responses (Wollenberg et al., 2011). In mice lacking

Tfr cells, B cell-associated severe adaptive humoral immune

response disorders and autoimmunity disorders have been

witnessed (Fu et al., 2018). But the mechanism underlying the

regulatory role of Tfr cells to B cells still remains unclear.

Regulatory B cell (Breg) is a broad term to describe B cells

with regulatory function (Mauri and Bosma, 2012). Although

rare, Bregs still play an essential role in maintaining immune

tolerance (Mauri and Bosma, 2012). Among all the regulatory

roles of Bregs, their function to promote the expansion of Treg

is eye-catching (Wang et al., 2014; Lu et al., 2017; Tarique

et al., 2018; Gao et al., 2019). Bregs have been widely identified

as key regulators of autoimmunity, tumors and infection

(Iwata et al., 2011; Mohammed et al., 2013; Wang et al.,

2014; Woo et al., 2014; Wang et al., 2020a), and a series of

reports verified that the peripheral blood of patients with

diseases contained Bregs, suggesting clinical significance and

possible therapeutic targets (Iwata et al., 2011; Mohammed

et al., 2013; Wang et al., 2014; Woo et al., 2014; Wang et al.,

2020a).

Furthermore, a special subset of Tregs without the expression of

FoxP3 but still owning regulatory features has been identified (Xie

et al., 2015). Since they are induced by Naïve B cells, they are also

termed Treg-of-B cells. The Treg-of-B cells exert their function

mainly through cell:cell contact manner and shelter mice from

various immune disorders (Chien and Chiang, 2017).

Here in this article, we focus on the interplay between B cells and

Tregs. Particularly, we summarize the influences of Tfr cells on B cells

inGCB cells and germinal center responses, introduce Bregs and their

interactionwithTregs, and review special CD4+ Foxp3- Treg-of-B cells

(Xie et al., 2015). Besides, we list a series of research from clinical

patients and experimentalmodels to illustrate the functions of Tfr cells

in diseases and elucidate the regulation of Bregs to Tregs in the context

of different diseases, trying to unveil potential therapeutic targets to

help the patients in need.

2 Suppressive effects of tregs on
B cell and humoral immunity

2.1 Suppression of B cells by Tregs

B cells can serve two major functions in their capacities as

antigen-presenting cells (APCs) and antibody-secreting cells, both of

which can be suppressed by Tregs. To this end, early studies

demonstrated that Tregs can suppress humoral immune responses

both in humans andmice (Bennett et al., 2001; Jang et al., 2011). Treg

deficiency is directly correlated with an increased IgE response to food

antigens and allergens in mice (Lin et al., 2005). Patients with

polyendocrinopathy enteropathy X-linked syndrome (IPEX), an

immune dysregulation syndrome which was found to have

mutations in FOXP3, were associated with high-titers of class-

switched autoantibodies (Bennett et al., 2001). In addition, Tregs

can suppress theAPC function of B cells, as B cells fromTreg-deficient

mice induce more CD43, Ki-67 and granzyme B from CD8+ T cells

than B cells from Treg-sufficient mice (Walker and Sansom, 2011;

Moore et al., 2019).

2.2 The mechanisms underlying
suppression of B cells by Tregs

Molecules like Cytotoxic T lymphocyte antigen-4(CTLA-

4), transforming growth factor-beta (TGF-β), Fas Ligand

(FasL), perforin, granzyme B and Programmed Cell Death

Protein 1(PD-1) involve in suppressing B cells by Treg.

CTLA-4 is a critical inhibitory molecule that binds to

CD86 and CD80 accompanied by higher affinities than

CD28. CTLA-4 has cell-intrinsic functions, but on Tregs,

it functions in a cell-extrinsic fashion by outcompeting

CD28 to deny the availability of CD80 and CD86 for co-

stimulation of conventional T cells (Walker and Sansom,

2011). Tekguc et al. demonstrated that CTLA-4 within Tregs

would deplete the CD80/CD86 expression in activated B cells

through extracting them via CTLA-4-dependent trogocytosis

(Tekguc et al.). Abatacept is a recombinant protein of CTLA-
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4 that binds to CD86 and CD80 without inducing

downstream signaling in human B cells (Lorenzetti et al.,

2019). In patients with Rheumatoid Arthritis (RA), the

abatacept treatment leads to reduced plasmablast counts,

decreased frequency of self-reactive memory B cells and

curtailed serum lgG (Lorenzetti et al., 2019), suggesting

that CTLA-4 help Tregs repress B cells.

TGF-β is another inhibitory molecule and is widely secreted by

various cell types, while glycoprotein-A repetitions predominant

(GARP), type I transmembrane cell surface docking receptors

interacting with latent TGF-β to modulate its activation, is

especially expressed in Tregs (Tran et al., 2009). TGF-β exerts

inhibitory functions on both human and murine B cells and

suppresses IgG class switching, but surprisedly promotes the

production of lgA (Kehrl et al., 1986; Kehrl et al., 1991). The

promotion of IgA by TGF-β is due to activated Runx3 and

Smads binding to tandem-repeat elements of α-germline

transcript to induce transcription (Park et al., 2001). Additionally,

Treg-secreting suppressive molecules, such as lL-10 and IL-35

modulate the proliferation and activation of B cells (Deaglio

et al., 2007; Yang et al., 2020).

Beyond the suppressive molecules describe above, cytotoxic

molecules like FasL, perforin and granzyme B enforce Treg-

mediated suppression of B cells. Rapetti et al. reported that in

healthy subjects, suppressing B cells by Tregs required FasL

(Rapetti et al., 2015). The expression of Fas in B cells decreased

following the interaction with Tregs. The decrease reflects its

internalization through an endosomal pathway (Eramo et al.,

2004) and the internalization is the prerequisite for apoptosis

(Algeciras-Schimnich et al., 2002). Apart from FasL, Zhao et al.

revealed that antigen-presenting B cells were killed by Tregs in

perforin- and granzyme B-dependent manner (Zhao et al., 2006)

and bystander B cells were not affected by Tregs (Zhao et al., 2006).

Recent studies implied that the interaction of PD-1 and

PD-L1 could also play a role in Treg-induced B cell apoptosis

(Okamura et al., 2015; Gotot et al., 2018). Antigen-specific PD-

L1+ pTregs, characterized by the absence of Helios and

Neuropilin-1, reside in the autoantigen-draining lymph nodes.

Upon encountering autoantigen-specific B cells, these Tregs

induce the expression of PD-L1 in B cells and suppress the

auto-reactive B cells through PD-1-PD-L1 signaling-induced

apoptosis (Gotot et al., 2018).

3 The introduction of follicular
regulatory T cells and its interaction
with B cells

3.1 Phenotype of follicular regulatory
T cells

Tfr cells are a subgroup of Tregs residing in the follicles and

being identified as CXCR5hi PD-1hi CD25low Foxp3+ Bcl-6hi

Blimp1low T cells (Botta et al., 2017; Ritvo et al., 2017). They

synchronously express molecules belonging to Tfh cells and

Tregs (Wollenberg et al., 2011; Sayin et al., 2018). The

molecules related to Tregs (Sayin et al., 2018) are FoxP3,

Glucocorticoid-induced tumor necrosis factor receptor-related

protein (GITR), PR domain zinc finger protein 1(Prdm1), and

CTLA-4. On the other hand, Tfr cells resemble Tfh cells

phenotypically in many ways, including their expression of

B-cell lymphoma 6 (Bcl-6), inducible Co-Stimulator (ICOS)

and C-X-C motif chemokine receptor 5(CXCR5). However,

Tfr cells do not express cytokines like interleukin-21 and

interleukin-4. Whether Tfr cells are closer to Tfh cells or

Tregs, lineage-wise is under debate. On the one hand, in Tfr

cells, Bcl-6 decides the transcriptome of Tfr cells more efficiently

than Foxp3. Besides, both Tfr cells and Tfh cells lack the

expression of CD25, while the expression of CD25 in Tregs is

sufficient. On the other hand, Tfr cells approximate to Tregs

functionally. They both exert inhibitory effects to prevent

exaggerated immune responses, and the TCR repertoire of Tfr

cells is more similar to Tregs (Maceiras et al., 2017). Moreover,

the expression of Bcl-6 in Tfr cells is far less than that in Tfh cells.

3.2 The differentiation of follicular
regulatory T cells

Tfr cells are mostly derived from natural Tregs outside the

thymus (Wollenberg et al., 2011). Additionally, Tfr cells can also

be induced from naïve CD4+ T cells when the conditions induce

naïve CD4+ T cells expressing Foxp3 (Nian et al., 2021). The

differentiation of Tfr cells occurs in a stepwise manner. Firstly,

Tregs interact with dendritic cells (DCs) to initiate imprinting on

the Tfr cell development. Then, precursor Tfr cells migrate

toward the B-cell zone, where they interact with B cells to

generate fully functional effector Tfr cells (Figure 1) (Sage

et al., 2014a). Apart from DCs and B cells, Tfh cells also help

drive the formation of Tfr cells (Figure 1) (Essig et al., 2017).

Molecules like ICOS, CD28, and mTORC1 positively

promote the differentiation of Tfr (Figure 2). ICOS exerts

indispensable roles in the development of Tfr cells. Activation

of ICOS facilitates the interaction of p85α with intracellular

osteopontin (OPN-i). Then, OPN-i translocates to the nucleus

and interacts with Bcl-6 to interface ubiquitin-dependent

degradation of Bcl-6 (Leavenworth et al., 2015). Mammalian

target of rapamycin complex 1 (mTORC1)-related signals also

exert essential roles in the differentiation of Tfr cells (Xu et al.,

2017a). Blocking mTORC1 signaling using rapamycin inhibits

the initial conversion of Tregs to Tfr cells, and overexpression of

Bcl6 or TCF1 can reverse this poorly differentiated state in

Raptor-deficient Tregs (Xu et al., 2017a). Besides, the

interaction between CD28 on Tfr cells and CD80 on B cells is

also demanded for optimal differentiation of Tfr cells as Cd28-/-

mice lack Tfr cells (Linterman et al., 2011).
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On the contrary, signalings from co-inhibitory molecules

CTLA4 and PD-1 reversely regulate the differentiation of Tfr

cells (Miyazaki et al., 2014; Botta et al., 2017; Jandl et al., 2017)

(Figure 2). PD-L1 on B cells andDCsmediates inhibitory signaling

to Tfr cells and suppresses the early differentiated stage of Tfr cells

from Tregs. Interference of PD-1-PD-L1 interaction increases the

number of Tfr cells (Zeng et al., 2020). CTLA-4 also harms the

differentiation of Tfr cells, as Tfr cells expand in blood and lymph

nodes when depletion of CTLA-4 is induced 3 days before

immunization (Sage et al., 2014b).

IL-21, cytokines created by Tfh cells, Th17 and NK cells,

profoundly affects the function of Tfh cells, plasmablasts, and

plasma cells in GCs (Søndergaard and Skak, 2009; Spolski and

Leonard, 2010; Alahgholi-Hajibehzad et al., 2017). However, the

relationship between IL-21 and Tfr cells is not clear. So far, we

knew that the production of IL-21 was inhibited by Tfr cells and

IL-21 played an essential role in negatively modulating Tregs

(Fabrizi et al., 2014), but the impact of IL-21 on the development

Tfr cells remained controversial. Research made by Peter T Sage

et al. exhibited that IL-21 suppressed the cell cycling of Tfr cells

using in vitro experiments (Sage et al., 2016). The development of

Tfr cells involves a transition from CD25+ state to CD25− state

(Botta et al., 2017) and CD25+ Tregs localized in the T cell zone

act as a precursor population and regulate earlier stages of B cell

responses (Botta et al., 2017). But Peter T Sage et al. sorted

CD4+ICOS+CXCR5+Foxp3+CD19− or

CD4+ICOS+CXCR5+GITR+CD19− as Tfr cells, ignoring that

cells with different levels of CD25 represented different cells

subtypes (Sage et al., 2016). Thus, in my opinion, their conclusion

can’t represent the real effect of IL-21 on Tfr cells. Jandl et al.

demonstrated that lack of IL-21 augmented the percentage and

absolute number of FoxP3+ Treg and CD25+CXCR5+ precursor

Tfr cells, but had no influence to CD25− mature Tfr cells. They

also pointed out that IL-21 signaling was able to reduce the

expression of CD25 on Tfr cells (Jandl et al., 2017). Thus, we

think that IL-21 exerts a unique function in the development of

Tfr cells. It does restrict the proliferation of precursor Tfr cells,

but meanwhile sustain the development of mature Tfr cells

(Figure 2). Referring to that IL-21 exerts its function via JAK/

STAT, MAPK and PI3K pathway (Habib et al., 2002; Spolski and

Leonard, 2008), we infer that the influence of IL-21 on Tfr cells is

probably in a Tfr cell-intrinsic manner, and notably, this

FIGURE 2
The differentiation of Tfr cells. Tfr cells are primarily derived from Tregs. ICOS signaling promotes the differentiation of Tfr cells. The p85α-OPN-
i axis requires ICOS for the Bcl-6-dependent differentiation of Tfr cells. The interactions of CD28 on Tregs and CD80 on B cells is also required for
optimal differentiation of Tfr cells. MTORC1 signaling elevates TCF1 to induce the differentiation of Tfr cells. lL-21 also has a positive effect on the
number of Tfr cells. On the contrary, co-inhibitory molecules, CTLA4 and PD-1, negatively regulate the differentiation of Tfr cells. Bcl-6 and
Blimp-1 are a pair of opposites. IL-2 signaling activates STAT5 and induces the expression of Blimp-1 while Bcl-6 restricts the expression of the
receptor of IL-2, CD25.
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intracellular function is exclusively for Tfr cells, but not for non-

follicular Treg (Jandl et al., 2017).

Bcl-6 and Blimp-1 exert essential but opposing functions

for the development of Tfr cells (Johnston et al., 2009). Bcl-6

is significantly upregulated in Tfr cells while Blimp-1 is

significantly down-regulated (Botta et al., 2017; Ritvo

et al., 2017). At the apex of the infection, high

concentrations of lL-2 preclude Tfr cell maturation by

augmenting Blimp-1 expression and suppressing Bcl-6

expression (Botta et al., 2017) (Figure 2). However, once

the inflammatory response is relieved and IL-2

concentrations drop, some precursor Tfr cells reduce

CD25 expression and increase Bcl-6 expression,

promoting the transformation into Tfr cells (Botta et al.,

2017; Wing et al., 2017). Blimp-1 is known as an antagonist

of Bcl-6 and can also be suppressed by Bcl-6 (Cimmino et al.,

2008). Bcl-6 restricts the expression of CD25 (Jandl et al.,

2017) and the low IL-2-CD25 signaling in Tfr cells

downregulate Blimp-1 in a STAT5-dependent manner

(Ballesteros-Tato et al., 2012; Johnston et al., 2012)

(Figure 2). Although Blimp-1 is downregulated in Tfr

cells, it is indeed indispensable. Partial reduction of

Blimp-1 results in increased numbers of Tfr cells, while

Tfr cells with total absence of Blimp-1 loss suppressive

function (Shen et al., 2019; Xie et al., 2019).

The decreased CD25 is a hallmark to identify Tfr cells.

Mature Tfr cells were characterized as CD25-Foxp3+ cells

located mostly in the center B cell follicle (Chung et al.,

2011). As we mentioned above, IL-21 signaling and Bcl-6 are

able to downregulate the expression of CD25. Our team

previously demonstrated that ubiquitin-specific peptidase 18

(USP18) was able to lower the expression of CD25 on Tregs,

but whether USP18 was included in the differentiation of Tfr cells

was unknown (Yang et al., 2021). Additionally, IL-2-

CD25 signaling promotes the expansion of Tregs through

activating phosphorylated STAT5 to bind both the promoter

and intron of the FOXP3 gene (Mao et al., 2019). As Tfr cells

mature, the interaction between IL-2 and the CD25 cells

gradually decreases. However, Foxp3 expression in mature Tfr

cells remains high. This implies that multiple mechanisms

function in regulating the expression of Foxp3. Firstly, except

CD25, Tfr cells express CD122, the IL-2 receptor β chain

presenting in both high- and intermediate-affinity IL-2

receptors (Yuan et al., 2018). Secondly, tonic IL-2/

STAT5 signaling may be enough to prevent the

downregulation of Foxp3 in Tfr cells (Mao et al., 2019).

Thirdly, IL-2 is able to activate Mammalian STE20-like kinase

1 (MST1) and activated Mst1 has the potential to sense and

amplify the IL-2-STAT5 pathway in Trges (Shi et al., 2018).

Lastly, it has also been reported that IL-7, IL-15 and ICOS are

able to participate in the stabilization of Foxp3+ cells lacking IL-2/

STAT5 signaling (Vang et al., 2008; Gratz et al., 2013; Raynor

et al., 2013).

3.3 The function of follicular regulatory
T cells in the germinal center

Tfr cells can inhibit GC B cells from producing antibodies

and adjust class-switch recombination (CSR). When B cells are

cultured with Tfh cells alone, the proportion of plasma cells and

the amount of IgG are high74. However, after adding Tfr cells to

this co-culture, the proportion of plasma cells and the amount of

IgG are remarkably reduced (Liang et al., 2020). The elaborate

effect of Tfr cells on self-reactive B cells or external antigen-

specific B cells is under debate. To be sure, Tfr cells can modulate

the responses of autoantibodies-secreting B cells. In circulating

blood from systemic lupus erythematosus (SLE) patients, the

proportion of Tfr cells declined and the proportion of Tfh

elevated (Xu et al., 2017b), and the aberrant Tfh/Tfr ratios is

positively associated with the level of anti-double-stranded DNA

(dsDNA) antibody in serum from SLE patients (Xu et al., 2017b).

Nevertheless, the relationship between Tfr cells and adaptive

humoral immune responses is controversial. Botta et al.

demonstrated that depletion of Tfr cells only advanced the

accumulation of self-reactive B cells, but did not remarkably

impact influenza-specific B cells (Botta et al., 2017), which was

consistent with the notion that the TCR repertoire of Tfr cells

more likely interact with self-antigens (Maceiras et al., 2017).

However, other experiments revealed that Tfr cells could exert

regulatory function on B cell responses after immunization with

soluble antigens (Aloulou et al., 2016). Here, we are inclined to

favor the latter opinion.

Firstly, we discuss the relationship between Tfr cells and

adaptive humoral immune responses. BothWu et al. and Fu et al.

confirmed that Tfr cells regulated adaptive humoral immune

responses by using Bcl6fl/fl Foxp3Cre mouse model (Bcl6FC) to

reduce the number of Tfr cells and impair the localization of Tfr

cells in GCs (Wu et al., 2016; Fu et al., 2018). Interestingly, the

two teams found a common fact that the Bcl6FC mice showed no

alteration in the proportion and number of Tfh cells and GC

B cells after immunization in dLNs and spleen in comparison

with control mice (Wu et al., 2016; Fu et al., 2018), which

demonstrates that the effect of Tfr cells on the number of GC

B cells is limited, and it is more likely for Tfr cells to achieve a

regulatory role in adaptive humoral immune responses by

affecting the function of GC B cells. other research also

reported that Tfr cells permitted activation of B cells but

inhibited effector responses, like CSR and antibody

production (Sage et al., 2016). Clement developed different

CXCR5IRES−LoxP-STOP-LoxP-DTR Foxp3IRES−CreYFP mouse models

(TFR–DTR mouse strain), in which Tfr cells were selectively

depleted following administration of diphtheria toxin (Clement

et al., 2019). Compared with Bcl6FC mice, Tfr-DTR mice

mimicked the normal immune responses more efficiently.

From Tfr-DTR models, Clement et al. found that Tfr cells

regulated the development of GC B cells and the generation

of antigen-specific antibodies at an early stage before the
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development of the GCs, whereas their effects were negligible

once the GCs was initiated. However, Wing et al. suggested that

the very early stage of the GC response was controlled by Tregs

which resided in the T-cell zone, rather than by precursor Tfr

cells at the T-B border or mature Tfr cells in the follicle (Wing

et al., 2017). Interference at this phase would augment a mass of

GC B and Tfh cells and preserve the antigen specificity of the

response, as well as inducing the generation of both extraneous-

and auto-reactive antibodies. And the later stage of the GC

response was modulated by mature Tfr cells in follicles (Wing

et al., 2020). The precise timing when Tfr cells exert function

needs further identification.

As for the role of Tfr cell in secondary immune response,

different immunization models draw different conclusions. Fu

et al. found that Tfr cells limited immune responses to persistent

antigens since memory B cell differentiation and antibody

affinity maturation were magnified in Bcl6FC (Fu et al., 2018).

However, Clement et al. demonstrated that Tfr cells helped to

augment secondary immune response, as the affinity of antigen-

specific antibodies was improved during the memory response in

TFR–DTR mouse (Clement et al., 2019). Likewise, in Wu et al.‘s

research, When the Bcl6FCmouse model was treated with HIV-1

gp120 vaccine in a “prime-boost” manner, IgG antibodies

showed a remarkably decreased affinity to antigen, but the

concentration of anti-gp120 IgG was normal (Wu et al.,

2016). Thus, in vaccine-challenged Bcl6FC mouse models, Tfr

cells behaved favorably in retaining the affinity of anti-specific

IgG antibodies (Wu et al., 2016). Probably, these differences

relate to the models used in their respective studies. In summary,

we think that Tfr cells can suppress the formation of antigen-

specific antibody-secreting cells (ASCs) and regulate the

secondary immune response.

Tfr cells are also closely associated with autoimmunity. In

general, Tfr cells damped the occurrence of self-reactive B cells

and restrict the antibody responses to self-antigens. 6-week-old

Bcl6FC mice without any additional treatment had the same

numbers of Tfh cells and GC B cells as in the WT mice (Fu et al.,

2018). However, at 12 weeks, the Bcl6FC mice had increased

numbers of Tfh cells and GC B cells in the spleen, MLNs and

pLNs (Fu et al., 2018). Furthermore, as Bcl6FC mice aged,

inflammatory cells penetrated organs and high concentrations

of serum autoreactive antibodies were detected (Fu et al., 2018).

Cytokines produced by the CD4+ T cells, such as IL-4 and IFN-γ
together with IL-17A, did not change significantly between 30-

week-old Bcl6FC and control mice, suggesting that the deficiency

of Tfr cells directly acts on B cells with selective effects on GC

reactions (Wu et al., 2016). The existence of Foxp3 CD25+

precursor Tfr cells accounts for the age-related differences

seen in Bcl6FC mice. Precursor Tfr cells reside at the T-B

border and function to constrain the development and activity

of Tfh cells and B cells in LNs (Sayin et al., 2018). Thus, these cells

likely compensate for the lack of Tfr cells in Bcl6FC mice at the

early stage. Likewise, in TFR–DTR mice treated with diphtheria

toxin before immunization, self-reactive IgG and IgE were

detected compared with control mice (Clement et al., 2019).

3.4 Molecular mechanisms included in the
modulation of follicular regulatory T cells

Next, we delve into the mechanism of Tfr cells regulating

B cells. Roughly speaking, Tfr cells function directly on B cells

and suppress Tfh cells to indirectly act on B cells by preventing

the co-stimulation and cytokines needed to promote B cell

proliferation (Figure 1) (Chung et al., 2011). Here in this

section, we mainly discuss how Tfr cells directly act on B cells.

CTLA-4, TGF-β and neuritin are essential for Tfr cells to

suppress GC B cells. Tfr cells damped antibody responses partly

in a CTLA- 4-dependent manner (Sage et al., 2014b) (Figure 3).

In mice lacking CTLA-4 in Tregs, Wing et al. observed expanded

numbers of plasma cells and memory B cells, and raised serum

IgE (Wing et al., 2014). Tregs can exert suppressive functions

outside GCs by outcompeting CD28 and downregulating

CD86 expression in CTLA-4-dependent manners. However, in

GCs, CTLA-4 decides the suppressive functions of Tfr without

altering the expression of CD80 or CD86 (Sage et al., 2014b). Tfr

cells regulate the antibody responses in TGF-β-dependent ways,
too. (Sayin et al., 2018) (Figure 3). It was reported that the TGF-β
signaling was able to interrupt Tfh cell accumulation in follicles

and repress autoantibody production (McCarron and Marie,

2014). Besides, the TGF-β signaling induces the IgA class

switching (Cong et al., 2009). Neuritin, a highly conserved

neuropeptide, is also identified as a regulator of Tfr cell-

mediate inhibitory effect (Gonzalez-Figueroa et al., 2021). Tfr

cells are able to express neuritin, which is then absorbed by B cells

and then triggers phosphorylation of numerous proteins like

lRS1 and 4E-BP1, augments the generation of Bcl-6 and

downregulates the generation of Blimp-1 on GC B cells to

suppress the maturation of GC B cells, prevent the

development of self-reactive B cells and prevent the output of

ε germ line transcripts (ε-GLTs) required for CSR to IgE

(Gonzalez-Figueroa et al., 2021). IRS1 phosphorylation is

needed for the maturation of GC B cells and CSR against IgE

(Keegan et al., 2018). 4E-BP1 phosphorylation, the downstream

of mTOR signal, is essential for B cells to migrate to the dark zone

to undergo somatic mutation (Ersching et al., 2017).

In addition to inhibiting the GC response, Tfr cells can also

exert positive regulation on the GC response. The optimal

development of GC B cells requires IL-10 from Tfr cells

(Laidlaw et al., 2017) (Figure 3). Tfr cell-derived IL-10

promotes the production and nuclear translocation of

FOXO1 in B cells (Laidlaw et al., 2017). Elevated

FOXO1 activates the transcription of multiple genes like

CXCR4, which is needed for GC B cells to migrate into the

dark zone (Sander et al., 2015). It is worth noting that Treg-

derived IL-10 also initiates STAT3 (Laidlaw et al., 2017) to
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modulate the development of GC B cells. Our team also has

confirmed the importance of STAT3 for GC B cells, as in

Mb1Crestat3flox/flox mice, a model with STAT3 specifically

deficient in B cells, GC B cells were decreased (Du et al.,

2021). Depletion of STAT3 was able to upregulate

miRNA146A and then promoted 14-3-3σ, a central hub

protein, to upregulate the class-switch DNA recombination

(CSR) to IgE in B cells (Du et al., 2021).

Tfr cells own some self-adjusting mechanisms to regulate

their inhibitory function of themselves. Apart from inhibiting Tfr

cell proliferation, PD-1 signaling can also repress the repressive

function of Tfr cells (Figure 3) (Sage et al., 2013). Data showed

that Tfr cells from Pdcd1-/- mice controlled antibody production

more effectively both in vitro and in vivo (Sage et al., 2013). PD-1

reduction in Tfr cells triggers strong TCR signals, leading to a

substantial-stop signal which prolongs the communication of

B cells with Tfr cells (Fife et al., 2009).

Thus, Tfr cells have complex roles in modulating the GC

responses. They alter the expression of specific molecules and

change pathways associated with the metabolism of GC B cells but

maintain their transcriptional signatures (Sage et al., 2016). GC B cells

in the LZ elevate Myc expression via interacting with antigens, trigger

the cell cycle and thenmove to the dark zone (DZ) to completemitosis

(Calado et al., 2012). In vitro, Tfr cells can alter the mTOR and Myc

pathways in B cells (Sage et al., 2016). Additionally, Sage et al. used

ATAC-sequencing to assess chromatin accessibility of GC B cells

suppressed by Tfr cells and found the Aicda, Myc and Pou2afl were

inaccessible, suggesting epigenetic modification (Sage et al., 2016).

These modification affectes the transcription of genes encoding the

upstream metabolic regulators of B cells.

FIGURE 3
Molecular mechanisms involved in the modulation of follicular regulatory T cells. Tfr cells monitor B cells both through cell: cell contact and
cytokines. Tfr cells can alter vital signal pathway in B cells, such as mTOR and Myc pathways, and trigger epigenetic modification. CTLA-4 mediates
the suppressive function of Tfr cells without altering the expression of B7-1 or B7-2. Besides, Tfr cells may regulate GC B cells in a TGF-β-dependent
way. On the contrary, PD-1 can inhibit the repressive function of Tfr cells. PD-1 reduction in Tfr cells triggers a strong TCR signal, leading to a
substantial stop signal which prolongs the communication of B cell with Tfr cells. IL-10 form Tfr cells exerts positive functions on the GC response.
IL-10 can promote the production and nuclear translocation of FOXO1. Elevated FOXO1 activate the transcription of multiple genes. cytotoxic Tfh
cells secrete abundant granzyme B, which could demolish GC B cells. Tfr cells are capable of suppressing cytotoxic Tfh cells and sustaining the
homeostasis of the GC response. Neuritin from Tfr cells is absorbed by B cells and then triggers phosphorylation of proteins like lRS1 and 4E-BP1,
augments the expression of Bcl-6 and downregulates the expression of Blimp-1 on GC B cells to suppress the maturation of GC B cells, prevent the
formation of self-reactive B cells and prevent class switch recombination (CSR) to IgE.
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Tfr cells are not the only Tregs in follicles. Canete et al.

described a novel cell population in follicles named CD25+ Tf

cells, which lacked the expression of FoxP3 and were identified as

CXCR5hiPD-1hiCD25+CD127- cells (Cañete et al., 2019). Though

the deficiency of FoxP3, CD25+ Tf cells are still viewed as a

subpopulation of Treg, since these cells express CTLA-4 and lack

the secretion of IL-2 (Cañete et al., 2019). CD25+ Tf cells are

abundant in tonsils and are the primary source of IL-10 among

human Tregs. CD25+ Tf-derived IL-10 can act on GC B cells and

inhibit ε-GLTs to dampen CSR to IgE (Cañete et al., 2019).

Besides, CD25+ Tf can also act on Tfh cells in a non-IL-10-

dependent fashion to reduce the expression of Bcl-6, CD40L and

IL-21 and indirectly limits the development of GC B cells (Cañete

et al., 2019).

Next, we briefly introduce some newfound indirect functions

of Tfr cells. Tfr cells can modulate Tfh-mediated GC B cell death

and physically disrupt Tfh-B cell communication (Figure 1). In

Bcl6fl/flFoxp3Cre mice, a new subpopulation of Tfh cells with

cytotoxicity was found (Ritvo et al., 2017) (Figure 3). These

cells express abundant granzyme B to induce GC B cell death

(Ritvo et al., 2017). Thus, Tfr cells may suppress the cytotoxic Tfh

cells and maintain GC B cells. Besides, during the inhibition

process, Tfr cells physically disrupt the association between Tfh

and B cells (Sage et al., 2014a; Sage and Sharpe, 2015).

In GCs, the phenotype of cells is not fixed and Tfh cells may

transfer into Tfr cells in a particular micro-environment. And the

transformation from Tfh cells to Tfr cells also influences GC

B cells. Hao et al. demonstrated that in ex vivo co-culture system

involving Tfh cells and B cells, additional treatment of IL-2

leaded STAT3 and STAT5 selectively bounding to the loci of

FoxP3 and Bcl-6. The repressive histone modification marker

H3K27me3 was also inhibited in Tfh cells. Ultimately, the Tfh

cells transformed into Tfr cells to exert inhibitory effects on

B cells (Hao et al., 2021).

3.5 Diseases involved in modulation of
follicular regulatory T cells and their
effects on germinal centers

Next, we mainly study the roles of Tfr cells in diseases. Tfr

cells play essential regulatory functions in autoimmune diseases.

In the peripheral circulation of patients with myasthenia gravis

(MG), primary biliary cholangitis (PBC) and autoimmune

hepatitis (AIH), the population of Tfr cells is significantly

increased to confront self-reactive responses, and the number

of Tfh cells reduced, and in general, the ratio of Tfh/Tfr cells is

dramatically decreased (Wen et al., 2016; Zheng et al., 2017;

Liang et al., 2020). In patients with MG, as the patients get severe,

more Tfr cells are activated to regulate the self-reactive rsponses

(Wen et al., 2016). Moreover, in MG patients, Glucocorticoid

(GC) therapy relieves clinical symptoms, and the imbalance of

the circulating Tfh/Tfr ratio is restored (Wen et al., 2016).

In AIH patients, levels of Tfr cells are significantly higher,

which is positively correlated with serum concentrations of TGF-

β and IL-10, and inversely correlated with the frequency of

circulating Tfh cells and serum immunoglobulin (Liang et al.,

2020). This phenomenon demonstrates that Tfr cells exert an

immunoregulatory role in human beings by regulating

immunoglobulin production (Liang et al., 2020). In the

Systemic lupus erythematosus (SLE) mouse model, Bcl6FC

mice develop a strong elevation of auto-reactive IgA titers,

which resembles the high titers of IgA anti-dsDNA antibodies

in patients with SLE that cause joint abnormalities and kidney

injury (Villalta et al., 2013).. Likewise, in the Empty Sella

Syndrome (ESS) model, Bcl6FC mice exhibit increased auto-

reactive antibodies (Wu et al., 2016). These phenomena support

the notion that Tfr cells exert vital roles in controlling the GC

responses in autoimmune disease (Wu et al., 2016).

Tfr cells play a central mechanism to suppress the IgE-

mediated allergies (Gonzalez-Figueroa et al., 2021). Reduced

frequencies of Tfr cells have also been observed in the tonsils

and peripheral circulation of patients with allergic rhinitis

(Schulten et al., 2018; Yao et al., 2019). in vitro, Tfr cells from

allergic rhinitis patients retain the potential to suppress the

generation of IgA, IgM, IgG, except for IgE (Yao et al., 2019).

In vivo, Tfr cells control the infiltration of immune cells during

allergen sensitization, which modulates antigen-specific IgE

responses (Clement et al., 2019). Thus, Tfr cells could

potentially be a targeted therapy for allergen immunotherapy,

as the increased Tfr cells are positively associated with improved

clinical outcomes (Schulten et al., 2018; Yao et al., 2019).

3.6 Tregs with chimeric antigen receptor
technology

Tregs have essential roles in suppressing immune responses.

How to utilize the suppressive properties in treating patients with

autoimmune diseases, allergies, graft-versus-host diseases

(GvHD) as well as cancers has become a priority in research.

Researchers have succeeded in using adoptive transfer of ex vivo

expanded polyclonal Tregs into subjects to inhibit GvHD after

transplantation of allogeneic hematopoietic stem cells (Brunstein

et al., 2011; Theil et al., 2015). The therapeutic effect is promising,

but the risks of nonspecific immunosuppression are obvious.

Chimeric Ag receptor-expressing T (CAR-T) cell therapy has

been widely used in treating B-cell lymphoma patients. Based on

CAR-T technology, adoptive transfer of CAR Tregs can be an

alternative to ex vivo expanded polyclonal Tregs.

Yoshimura et al. successfully established a method for

producing and culturing CD19-CAR CD45RA + Tregs (Imura

et al., 2020). They first enriched and purified naive/resting Tregs

(CD45RA+ Tregs) and infected them with CD19-CAR

retroviruses. Then the infected Tregs were selected out and

amplified for 8 days through culturing with human CD19+
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K562 cells and IL-2l (Imura et al., 2020). CD19-CAR CD45RA+

Tregs maintain the expression of Helios, CTLA-4 and IL-10 like

regular Treg and can persist for a long time. Abundant surface

latency-associated peptides (LAP) and GARP are also expressed

in CD19-CAR CD45RA+ Tregs. Most importantly, unlike

prevailing CAR T cells, CAR Tregs have few cytotoxic

activities. In vitro experiments show that CD19-CAR Tregs

inhibit the generation of antibodies via TGF-β signaling

(Imura et al., 2020). Furthermore, in the xenogeneic GvHD

model, CD19-CAR Tregs repress the generation of antibodies

and inhibit the differentiation of mature B cells to plasma cells

without harming or killing B cells. Thus, compared to CD8+ CAR

T cells, CD19-CAR Tregs are safer and can be a new therapeutic

method in autoimmunity.

Hemophilia A (HA) patients with therapeutic FVIII

treatment eventually generate anti-factor VIII (FVIII)

neutralizing antibodies. Zhang et al. developed a modified

CAR Tregs to induce specific tolerance and decrease the

secretion of neutralizing antibodies (Zhang et al., 2018). They

developed a B cell-targeting antibody receptor (BAR) with an

extracellular domain comprising immunodominant FVIII C2 or

A2103. This was done using retroviruses to transduce BAR into

Tregs to form BAR-Tregs. Such BAR-Tregs can directly aim at

FVIII-specific B cells to prevent anti-FVIII antibody secretion

upon FVIII immunization (Zhang et al., 2018).

4 Regulating Tregs by B cells

4.1 The abundance and function of Tregs
differ, in the presence or absence of
B Cells

Except that Tregs influence B cells, in turn, studies

demonstrates that the number and frequency of Tregs are

also affected by B cells. Gene-modified B cell-deficient mice

with treatment of dextran sulfate sodium (DSS) showed a

decreased number of Tregs and demonstrated more severe

colitis, compared with B cell-sufficient mice, and adaptive

transfer of B cells into the B cell-deficient mice with colitis

fixed the number of Treg (Lund and Randall, 2010; Weber

et al., 2010; Wang et al., 2015). The same results can be

extracted from B cell-deficient (μMT)mice with Friend Virus

infection (Moore et al., 2017). In MOG protein-induced EAE

mice with the treatment of CD-20, the depletion of B cells was

correlated with the decreased Treg both in peripheral

lymphoid organs and within the central nervous system

(Lund and Randall, 2010; Weber et al., 2010; Wang et al.,

2015). In B-cell-deficient mice with EMT-6 mammary

adenocarcinoma cells, the population of Tregs in the

spleen, tumor draining lymph nodes, and tumor bed were

remarkably declined compared to wild-type mice. However,

Yu et al. showed that the absolute number of Tregs in the

spleen was higher in mice with SAT plus those treated with

anti-CD20 (Yu et al., 2012). In our opinion, Particular

autoimmune models and inflammatory circumstances may

influence whether Tregs are elevated, declined or unchanged

after B cell depletion.

Apart from the impact in quantity, the function and

surface molecules of Tregs are also affected by B cells. The

suppressive effects of Tregs in mice deficient with B cells is

more potent than that of Tregs in B cell-sufficient mice (Ellis

and Braley-Mullen, 2015). The capacity of Tregs from anti-

CD20 treated mice in suppressing experimental arthritis is

greater than Tregs from untreated mice (Hamel et al., 2011;

Ellis and Braley-Mullen, 2015). Tregs from B cell-depleted

NOD. H-2h4 mice are superior in their capacity to repress

spontaneous autoimmune thyroiditis (SAT) compared to

Tregs from WT mice (Ellis and Braley-Mullen, 2015). In

SLE or mixed cryoglobulinemia vasculitis patients, the

functions of Tregs are improved after B cell depletion

therapy by rituximab (Lund and Randall, 2010). However,

in myelin oligodendrocyte glycoprotein (MOG) -induced EAE

mice, Tregs from B cell-depleted mice and wild type have

indistinguishable suppressive function (Hoehlig et al., 2012).

Part of the reason for this difference is that the formation of

EAE induced by MOG peptide does not require B cells, while

B cells are essential for the development of SAT (Hoehlig et al.,

2012; Ray et al., 2012). Tregs from B cell-depleted mice show

significant differences in surface molecules compared with B

cell-sufficient mice, such as TNF receptor II(TNFRII), GITR

and CD27 (Ellis and Braley-Mullen, 2015). However, the

phenotypic differences do not appear to correlate with

differences in function (Ellis and Braley-Mullen, 2015).

Interestingly, the influence of B cells on Tregs appears to

be temporal, since adding B cells to co-cultures of Tregs and

effector T cells (Teff) prior to Treg/Teff interaction induces

Treg activation. Conversely, adding B cells after Treg/Teff

interaction has no effect (Braley-Mullen and Yu, 2000; Yu

et al., 2012). Thus, B cells intervene with the Treg/Teff

stimulation during a restricted window of time before the

interaction between Treg and Teff has started.

4.2 Distinguished effects of B cells on
Tregs

As immune regulatory cells, Tregs suppress cytotoxic

CD8+ T cells, CD4+ T cells and B cells (Hori et al., 2003).

Counterintuitively, these targets act on Treg cells. CD4+ T

cell-derived IL-2 is necessary for the expansion of Tregs

(Bayer et al., 2009). Also, membrane-bound TNF-α from

activated cytotoxic CD8+ T cells ligate to corresponding

receptors on the Tregs (Joedicke et al., 2014). B cells play

essential roles in the early development of Tregs. The

development of Tregs involves two stages. First of all, the
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interaction of TCR-MHC II-peptide and CD28−CD80/

CD86 results in the production of thymic CD25+Foxp3-

pre-Tregs. Then, pre-Tregs advance into mature

CD25+Foxp3+ Tregs via an IL-2-dependent process

(Figure 1) (Lio and Hsieh, 2008). The thymus contains a

low frequency of B cells in the medulla which express more

CD80, CD86 and MHC II than splenic B cells (Lu et al., 2015)

(Figure 1). B cells in the thymus function like APC cells. Their

BCRs capture autoantigens and trigger the negative selection

of auto-reactive thymocytes by eliminating auto-reactive

thymocytes (Lu et al., 2015). Thymic B cells act during the

first stage of Treg development, from thymic CD4+ T cells to

pre-Treg cells, but do not aid in the development of pre-Tregs

into mature Tregs (Lu et al., 2015).

Next, we carefully summarize the mechanisms of B cells

acting on Tregs. B cells are able to inhibit Tregs via interferon-

gamma (IFN-γ). In mice with experimental arthritis, interferon-

gamma (IFN-γ) from B cells is found to inhibit Tregs (Ellis and

Braley-Mullen, 2017) (Figure 4), and the absence of B-cell-

derived IFN-γ facilitates the transformation of CD4+ T cells

into Tregs (Olalekan et al., 2015). GITR ligand (GITR-L), IL-33,

Chemokine (C-X-Cmotif) ligand 9(CXCL9) and B cell activating

factor (BAFF) from B cells exert helpful effects on Tregs

(Figure 4). Reports demonstrated that GITR-L on B cells

maintained Tregs at a sufficient level to inhibit EAE (Ray

et al., 2012). In mice with overexpression of GITR-L in

B cells, the population of Tregs is remarkably increased (van

Olffen et al., 2009). Besides, in mice with EAE who received anti-

CD20 IgG1, researchers have identified a new B cell subset BDL,

which only expressed low levels of IgD (Ray et al., 2019). BDL

cells functioned as regulatory cells and were involved in the

recovery from EAE by inducing Treg proliferation and

maintaining Treg homeostasis via the expression of GITR-

L121. Thus, the GITR-L signal positively regulates Tregs.

However, some research drew the opposite conclusion, in

which GITR-L signaling in B cells blocked the expansion and

function of Tregs during allograft transplantation (Olson et al.,

2004; Ephrem et al., 2013; Nowakowska and Kissler, 2016). This

phenomenon can be partly explained by that some Tregs induced

during allograft transplantation are pTregs rather than tTregs

(Olson et al., 2004; Ephrem et al., 2013; Nowakowska and Kissler,

2016). Interestingly, when B cells are cultured with Tregs in a 1:

1 ratio, blocking GlTR-L can partially inhibit B cells from

prompting Treg expansion (Moore et al., 2017). When B cells

are cultured with Tregs at a 10:1 B cell to Treg ratio, similar to the

physiological distribution, inhibition of GlTR-L does not

typically change the proliferation of Tregs (Moore et al.,

2017). Mature B cells with dysregulated Notch1-activation are

FIGURE 4
mechanism of promoting Treg by B cells. IFN-γ fromB cells inhibits Tregs. GITR-L on B cells maintains Tregs at a sufficient level. Notch signaling
induces the expression of IL-33. IL-33 binding to ST2 to favor the production of Treg. CD11b signal in B cells induce the production of CXCL9which is
capable of recruiting Tregs. BAFF can also promote Tregs.
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associated with increased numbers of Tregs and Th2 cell-related

cytokines in an IL-33-dependent manner (Arima et al., 2018)

(Figure 4). Activation of Notch signaling positively correlates

with the expression of IL-33 125. Meanwhile, ST2, the IL-33

receptor, is expressed by Tregs. IL-33 binds to ST2 of Tregs to

increase the production of Treg–associated cytokines, strengthen

TGF-β-mediated differentiation of Tregs and provide an

indispensable signal for Treg maintenance in inflammatory

tissues (Schmitz et al., 2005; Schiering et al., 2014; Han et al.,

2015; Arima et al., 2018). And blocking IL-33 abrogates Treg

responses triggered by B cells. CD11b+ B cells in PPs during

colitis are capable of recruiting Tregs into PPs via the production

of CXCL9 (Wang et al., 2018a) (Figure 4). B cell activating factor

(BAFF), belonging to the TNF superfamily, is known for

enhancing B cell survival and differentiation. Interestingly,

BAFF can also promote Tregs (Figure 4) (Walters et al.,

2009). The frequency of Tregs is increased in mice

overexpressing BAFF (B6. BTg) compared to WT mice. As

discussed above, in μMT mice, the number of Tregs decreased

due to the deficiency of B cells (Moore et al., 2017). However, the

increased Treg response is absent when irradiated B6. BTg mice

are given bone marrow from μMT mice (Walters et al., 2009).

Thus, it is difficult to determine whether BAFF augments Tregs

in B6. BTg mice or not. Yu et al. showed that both BAFF and

B cells contributed to Tregs numbers in vivo. The contribution of

B cells does not depend on the presence of BAFF, while the

contribution of BAFF is strictly B cell dependent (Stohl and Yu,

2020).

5 Regulatory B cells

5.1 Introduction of regulatory B cells

Bregs is actually a term to describe B cells with regulatory

functions (Mauri and Bosma, 2012). They are rare but have an

essential role in maintaining immune tolerance (Mauri and

Bosma, 2012). IL-10 is the defining hallmark of Bregs. But as

an intracellular factor, IL-10 is not an adequate marker for

identification (Mauri and Bosma, 2012). In fact, mouse and

human Bregs lack reliable surface markers or lineage-limited

biomarkers comparable with Foxp3 in Tregs, thus the immune

regulation of Bregs remains unclear. Nowadays, eGFP reporter

mice, which express eGFP under the control of the IL-10

promoter, is used to identify IL-10-producing Bregs (Rosser

et al., 2014; Piper et al., 2019). Some scholars suggest that

Bregs may be in a responsive state, and all B cells have the

potential to produce IL-10 under certain environments (Shen

et al., 2014). Different Breg subsets been comprehensively

reviewed by wang et al. (Wang et al., 2020a).

Bregs have been widely identified as key regulators of

autoimmunity, tumors and infection (Iwata et al., 2011;

Mohammed et al., 2013; Wang et al., 2014; Woo et al., 2014;

Wang et al., 2020a). The role of Bregs in autoimmunity has

nothing to do with autoantibody production but is strongly

associated with cytokine secretion such as IL-35, IL-10 and

TGF-β (Wang et al., 2014). Mice with IL-10-deficient B cells

form severe EAE, and the symptoms are alleviated through

adoptive transfer of IL-10-generating B cells from WT

(Fillatreau et al., 2002). The anomalous augmentation of Bregs

inhibits immune responses via impairing T-cell responses (Choi

et al., 2017). Bregs have been found in both hematologic tumors

and various solid tumors (Iwata et al., 2011; Mohammed et al.,

2013; Woo et al., 2014). They promote tumor growth via

interactions with multiple immune cells within the carcinoma

microenvironment, such as tumor-associated macrophagocytes,

CD4+ and CD8+ T cells, natural killer (NK) cells, and myeloid-

derived suppressor cells (MDSC). Moreover, Bregs can directly

interact with tumor cells (Iwata et al., 2011). In mice with Babesia

microti infection, the proportion of Bregs and Tregs are elevated

and adoptive transfer of Babesia microti infection induced Bregs

to recipient mice increase the susceptibility to Babesia microti

infection (Wang et al., 2020a).

5.2 The differentiation of regulatory B cells

The induction of Brges has been widely discussed. Cell: cell

contacts involving BCR signal and CD40−CD40L interaction,

and cytokines like BAFF, IFN-α, IL-35, IL-1β, IL-21, and IL-6

are needed for the expression of IL-10 and development of

Bregs. Earlier studies demonstrated that BCR engaging with

lipopolysaccharide induces B cells to express IL-10, suggesting

that BCR signal played an essential part in the proliferation of

Bregs (Tian et al., 2001). This process is related to Aryl

hydrocarbon receptor (AhR), which is highly expressed in

IL-10+ Bregs compared with IL-10- regular B cells (Piper et al.,

2019). Intracellularly, AhR binds to transcriptional start sites

(TSS) of the ll-10 locus in Bregs (Piper et al., 2019).

Plasmacytoid dendritic cells (pDCs) induce the expansion

of Bregs from immature B cells via IFN-α and

CD40−CD40L stimulation (Yoshizaki et al., 2012; Menon

et al., 2016). Interestingly, Bregs, in turn, suppress IFN-α
from pDCs via lL-10 and inhibit pDC activation, thus forming

regulatory feedback between Bregs and pDCs (Menon et al.,

2016). BAFF, binding to the receptor in B cells to activate AP-

1, can transmit a positive signal to the induction of the Breg in

marginal zone regions (Yang et al., 2010).

IL-35 belongs to the IL-12 family and consists of an α subunit
IL-12p35 and a β subunit Ebi3. IL-35 binds to the IL-35 receptor
on B cells to promote the differentiation of Bregs through

stimulating STAT1/STAT3 (Wang et al., 2014). STAT3 is

associated with the production of IL-10. Treatment with RSV,

a powerful depressor of phosphorylated STAT3, successfully

decreased the formation of pSTAT3 and prevented the

generation of Bregs (Lee-Chang et al., 2013). Mice deficient in
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IL-35 or defective in IL-35-signaling show fewer Bregs than wild-

type mice (Shen et al., 2014; Wang et al., 2014; Kang et al., 2020).

Interestingly, Bregs generate IL-35 as well. The pairing of IL-

12p35 and Ebi3 is not the necessary condition for IL-35 to

promote Bregs. Egwuagu et al. demonstrated that only subunit

IL-12p35 or only subunit Ebi3 could also exert some of the

immune-regulatory properties of IL-35 (Dambuza et al., 2017;

Ma et al., 2019).

Notably, Gut microbiota has a distinctive role in promoting

Bregs. Rosser et al. demonstrated that the percentage and number

of Bregs were promoted by gut microbiota in the spleen and

mesenteric lymph nodes in an IL-1β and IL-6 dependent

manners (Shaw et al., 2012; Rosser et al., 2014). Additionally,

Mishima et al. showed that enteric microbiota preferentially

induced Bregs in the intestine through TLR2/MYD88/PI3K

pathway (Mishima et al., 2019). In vitro, the treatment of

bacteria-derived oligodeoxynucleotides(CpG) transforms

human B cells in buffy coats into Breg-like cells (Gallego-

Valle et al., 2018). The Breg-like cells own elevated Breg-

related markers, like IL-10, CD71 and PD-1, and exert

suppressive functions (Gallego-Valle et al., 2018). Female

MRL/lpr mice treated with DNA from the gut microbiota

show elevated Bregs in both the mesenteric lymph node and

spleen (Mu et al., 2020).

IL-21 from Tfh cells is important for inducing the

expression of IL-10 in Bregs, as the supernatants from

cultured Tfh cells including IL-21 induce the IL-10

production and treatment of anti-IL-21 antibodies blocks

this effect (Yang et al., 2014). Also, in mice with multiple

sclerosis, Yoshizaki et al. verified the maturation of Bregs

required signals from IL-21 (Yoshizaki et al., 2012). The

positive role of IL-21 on Brges may also associate with

activated phosphorylated STAT3 like IL-35 (Yang et al.,

2014). Besides, Tfh cells also elevate the inhibitory function

of Bregs (Wang et al., 2018b). From another point of view, Tfh

cells, as pro-inflammatory cells, induce the proliferation of

anti-inflammatory Bregs in an IL-21-dependent manner,

indicating regulatory feedback in GCs to reduce excessive

inflammation responses.

The expression of transcription factors like Blimp-1 and

Hypoxia-inducible factors (HIFs) is enriched in Bregs. Blimp-

1 alone represses IL-10, while Blimp-1 with activated

STAT3 upregulates IL-10 (Wang et al., 2019). Besides, HIFs,

as critical transcription factors mediating the metabolism and

functions of immune cells, control the expression of IL-10 in

Bregs (Meng et al., 2018).

5.3 Mechanism of inducing regulatory
T cells by regulatory B cells

Bregs can induce the expansion of Tregs (Figure 1) and inhibit

Th17 cells (Wang et al., 2014; Lu et al., 2017; Tarique et al., 2018; Gao

et al., 2019). They can strengthen the expression of CTLA-4 on Tregs

(Kessel et al., 2012). When Peripheral Blood Mononuclear Cells

(PBMCs) are co-cultured with CD4+ T cells from human beings,

the CD4+ T cells synthesize fewer IFN-γ and IL-17 but more IL-4 and

then convert into Tregs (Liu et al., 2016). And after depleting Bregs

from PBMCs, the number of Tregs and the expression of CTLA-4,

TGF-β and IL-10 significantly decreased (Liu et al., 2016). Tregs, as

anti-inflammatory cells, are responsible for maintaining self-tolerance

and suppressing immune responses, while proinflammatory

Th17 cells help induce and accelerate inflammation. The shifting

of Th17/Treg balance toward Th17 can be observed in various

autoimmune diseases, such as SLE, RA, multiple sclerosis (MS),

psoriatic arthritis (PsA), ankylosing spondylitis (AS), uveitis and

Crohn’s disease (CD) and inflammatory bowel disease (IBD)

(Beringer et al., 2016; Dambuza et al., 2017; Fasching et al., 2017).

In these diseases, Bregs show the potential to exert

immunosuppressive effects by increasing the percentage and

amount of Tregs and attenuating the percentage and amount of

Th17 cells (Hong et al., 2019), and in Sarcoidosis model induced by

Propionibacterium acnes (PA), decreased Bregs were associated with

aggravated inflammation (Mengmeng et al., 2020).

As we mentioned before, regular B cells also have the ability to

promote Tregs (Figure 1). Thus, it is important to determine the

difference between regular B cell-mediated promotion and Bregs-

mediated promotion. Research demonstrated that CD4+ T cells co-

cultured with IL-10-deficient B cells generated more Tregs compared

with CD4+ T cells alone, however, the increase was smaller than CD4+

T cells co-cultured with IL-10-sufficient Bregs, which indicated that

Bregs showed a more powerful role in promoting the proliferation of

Tregs compared with regular B cells (Gao et al., 2019). Although,

when B cells are cultured with Tregs or regular CD4+ T cells, the

proportion of Bregs has no obvious change (Gao et al., 2019).

Bregs promote Tregs via cell: cell contact and secretion of

immunomodulatory cytokines (Figure 5). The role of Breg-CD4+

T cell interaction is determined using transwell chambers which

provide a physical barrier between cells but allow cytokines to pass

through (Hong et al., 2019). The transwell chamber only partially

prevents the proliferation of Tregs, indicating that both cell: cell

contact and cytokines are involved in regulating Tregs by Bregs

(Hong et al., 2019). Bregs produce various immunoregulatory

cytokines like IL-35 and TGF-β to modify the response of T cells,

especially Treg development (Kessel et al., 2012; Mauri and Bosma,

2012; Mielle et al., 2018). Additionally, co-stimulatory molecules

CD80/CD86 are also critical for Bregs to promote the

development of Tregs (Mielle et al., 2018) (Figure 5). TGF-β, in
combination with IL-2, is initially required for Treg development by

inducing transcription of FoxP3 (Morikawa et al., 2016). Experimental

data showed that after adding TGF-βsRII, the TGF-β blocker, to the

co-culturemedium involving CD4+T cells and Bregs, the amount and

proportion of Tregs decreased. When adding IL-10sRα and TGF-

βsRII to the co-culture involving CD4+ T cells and Bregs, the amount

and proportion of Tregs were similar to adding TGF-βsRII alone,
indicating TGF-β played a leading role in modifying Breg-related
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upregulation of Tregs (Figure 5) and IL-10 might not involve in this

process (Kessel et al., 2012; Hong et al., 2019). Bregs are able to

promote Tregs in an IL-35-mediated manner (Figure 5). The IL-35

receptor in Treg is a heterodimer consisting of IL-12Rβ2 and gp130,

and can be activated to induce STAT1-and STAT4-signaling to

benefit Tregs (Collison et al., 2007). It is observed from uveitis

mouse models that exogenic mouse recombinant IL-12p35

combined with IL-12Rp2 to enhance Tregs (Dambuza et al., 2017).

Besides, IL-35 signaling is required for the maximum function of

Tregs (Huang et al., 2017). Hence, combined with the previous

conclusion, IL-35 provides stimulation to both Tregs and Bregs

(Collison et al., 2007; Collison et al., 2010).

PD-L1/PD-1 signaling may help Bregs promote Tregs. When

Epstein-barr virus (EBV) infects B cells, EBV latent genes are

transcribed and drive infected B cell perpetuation by dysregulating

key activation pathways, forming a new B cell subset named as EBV

latency III–transformed B cells (Auclair et al., 2019). Like Bregs, EBV

latency III–transformed B cells secrete IL-10, TGF-β and IL-35

(Auclair et al., 2019). Thus, EBV-infected B cells are proposed to

be a subset of Bregs. These cells generate PD-L1 due to the MAPK/

NF-κB pathway by Latent Membrane Protein 1 (LMP1), a protein

encoded by the main EBV oncogenes. EBV latency III–transformed

B cells advance the growth of Tregs via PD-L1/PD-1 signaling

(Auclair et al., 2019) (Figure 5). The results help clarify why EBV-

related Diffuse large B-cell lymphomas (DLBCLs) arise in a more

fragile context since the total population of Tregs in these patients

increase and the immunosuppressive function enhances accordingly

(Chang et al., 2015).

Conversely, experiments confirmed that Tregs have no

functions in the maintenance and generation of Bregs (Gao

et al., 2019). Gong et al. showed that the deficiency of Tregs

in the PBMCs from human beings did not alter the frequency of

Bregs and their function of producing IL-10 (Gong et al., 2015).

6 Treg-of- B cells

6.1 The introduction of Treg-of-B cells

Treg-of-B cells are a special subset of Tregs that lack

FoxP3 but still have inhibitory features and are induced by

naïve B cells (Xie et al., 2015). Naïve splenic B2 cells and

FIGURE 5
Mechanism of inducing regulatory T cells by regulatory B cells. Bregs promote development of Tregs via both cell: cell contact with CD4+ T cells
and the secretion of immunomodulatory cytokines. IL-35 promotes the differentiation of Bregs through stimulating STAT1/STAT3 via binding pairing
of IL-35 receptor IL-12p35 and Ebi3 or binding subunit IL-12p35 and Ebi3 alone. Bregs themselves can produce IL-35 and promote Tregs in an IL-35-
mediated manner. IL-35 receptor in Treg, which is composed of an IL-12Rβ2/gp130 heterodimer, is activated to induce STAT1-and STAT4-
signaling to benefit Tregs. Besides, Bregs can also secret other immunoregulatory cytokines, in particular IL-10 together with TGF-β, to regulate Treg.
Additionally, co-stimulatorymolecules CD80/CD86 are also critical for Bregs to promote development of Tregs. Breg can generate PD-L1 due to the
MAPK/NF-κB pathway by LMP1 and advance the growth of Tregs via PD-L1/PD-1 signaling.
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mucosal Peyer’s patch B cells as well as peritoneal B-1a cells are

able to induce the conversion of CD4+ T cells to CD4+ Foxp3-

Treg-of-B cells without the additional cytokines or molecules

(Figure 6) (Xie et al., 2015). Treg-of- B cells express molecules

similar to conventional Tregs, such as IL-10, ICOS, LAG3, GITR,

OX40(CD134), CTLA4 and PD-1, but surprisingly do not

express FoxP3 (Chu and Chiang, 2012; Hsu et al., 2015; Chien

et al., 2017).

6.2 The proliferation mechanism of Treg-
of-B cells

Inducing Treg-of-B cells depends on cell: cell contact and

is independent of IL-10 (Chu and Chiang, 2012; Hsu et al.,

2015). According to a study on the Peyer’s patch, activation

of STAT6 was essential for the development of Treg-of-

B cells (Chu et al., 2020) (Figure 6). Phosphorylated

STAT6 elevates the expression of Lymphocyte Activation

Gene 3 (LAG3), which is involved in generating Treg-of-B

cells and maintaining their capacities, and anti-LAG3

antibody treatment abolishes the inhibitory function of

Treg-of-B cells (Chu and Chiang, 2015; Chen et al., 2016).

Nevertheless, the upstream of phosphorylated STAT6 in

Treg-of-B cells is not clear. IL-4 is widely known for

inducing STAT6 phosphorylation, but in Treg-of-B cells,

IL-4 is the downstream of STAT6 phosphorylation to

maintain the viability but not the inducer, and it does not

engage with the development of Treg-of-B cells (Chu et al.,

2020). After constant stimulation with B cells, Treg-of-

B cells show elevated c-Maf (a transcriptional factor that

regulates the expression of IL-10, ICOS, and CTLA4), secrete

more IL-10 and simultaneously increase the expression of

CTLA4 and ICOS (Chien et al., 2017).

6.3 The capacity of Treg-of-B cells

In mouse models, Treg-of-B cells were shown to inhibit

Th1 and Th17 from producing cytokines and inhibit the

develpoment of effector T cells (Chu and Chiang, 2015; Chen

et al., 2016). Both non-antigen-specific and antigen-specific

FIGURE 6
The introduction of Treg-of-B cells. Splenic B2 cells and mucosal Peyer’s patch B cells as well as peritoneal B-1a cells are able to promote the
conversion of CD4+ CD25− T cells to CD4+ Foxp3- Tregs. The CD4+ Foxp3- Tregs are known as Treg-of- B cells. Treg-of- B cells express molecules
similar to conventional Tregs, for example ICOS, LAG3, GITR and OX40. In addition, Treg-of- B cells express CTLA4 and PD-1 as well, but do not
express Foxp3. Activation of STAT6 was essential for the development of Treg-of-B cells. Phosphorylated STAT6 elevates the expression of
LAG3, which is involved in generating andmaintaining the function of Treg-of-B cells. After culture with B cells, Treg-of-B cells elevate their level of
c-Maf which regulates expression of IL-10, ICOS, and CTLA4.
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Treg-of-B cells have inhibitory capacities, and the antigen-

specific Treg-of-B cells also exert non-antigen-specific

inhibitory functions (Chien et al., 2015).

The role of Treg-of-B cells has different manifestations

among different diseases. They can alleviate the severity of

rheumatoid arthritis, mitigate Th2 cell-related airway

hypersensitivity, and down-regulate high titers of IgE

(Reichardt et al., 2007; Chu and Chiang, 2012). In addition,

Treg-of-B cells also repress the side effects of allogeneic heart

transplants (Walters et al., 2009). Administration of Treg-of-

B cells protects mice from T cell-triggered IBD (Shao et al.,

2016a) and reduces the severity of joint injury in collagen-

induced arthritis (Chen et al., 2016). Thus, Treg-of-B cells can

serve as an economical strategy for T-helper-cell-mediated

inflammatory diseases.

Treg-of-B cells can produce high levels of IL-10 (Shao et al.,

2016b) which performe a partial role in Treg-of-B cell-mediated

suppression. Chen et al. confirmed IL-10 is important for Treg-

of-B cells to inhibit effector T cells (Chen et al., 2016), but Treg-

of-B cells in IL-10-deficient mice also prevent the development of

T cells in vitro and in vivo (Shao et al., 2016a). It is thought that

IL-10 KO Treg-of-B cells boost non-IL-10 molecules to offset the

lack of IL-10, however, data shows regulatory molecules did not

change (Shao et al., 2016a). LAG3 and CTLA4 are also important

for Treg-of-B cells to exert inhibitory effect (Chen et al., 2016;

Chien et al., 2017). In mice with monosodium urate (MSU)-

induced gout, Treg-of-B cells migrate into draining lymph nodes

tomitigate arthritis through repressing NLR family pyrin domain

containing 3(NLRP3)-related inflammation triggered by

macrophages (Huang and Chiang, 2021).

NLRP3 inflammasome is a multi-protein complex and its

activation involves two steps. Step one is TLR stimulation

which induces the transcription of pro-IL-1β via the NF-κB
pathway. Step two is that Adenosine Triphosphate (ATP) or

MSU crystals result in NLRP3 inflammasome assembly which

then binds to caspase-1 to induce the delivery of IL-1β (Aizawa

et al., 2020). Treg-of-B cells inhibit NF-kB pathways of

macrophages via cell:cell contact, which culminates in the

suppression of IL-1β generation from macrophages (Huang

and Chiang, 2021). In general, the molecules mediating Treg-

of-B cells, regulatory mechanisms remain to be investigated.

7 Interaction of B cells and regulatory
T cells in different diseases

7.1 The effects of B cells on Treg in
diseases

In tumors, B cells play a part of role by inducing Tregs, and

understanding the mechanism may help improve the prognosis

of certain tumor patients. The deficiency of B cells induces

antitumor effects in mice with EL4 thymoma,

MC38 colorectal cancer, EMT-6 mammary carcinoma (Shah

et al., 2005; Tadmor et al., 2011; Zhang et al., 2013). In these

tumor models, deletion of B cells leads advanced T cell

development, Th1 cytokine generation, infiltration of NK cells,

and cytolytic T cell responses. Especially in the EMT-6mammary

carcinoma, reduced B cells are associated with decreased

proliferation of Tregs (Shah et al., 2005; Tadmor et al., 2011;

Zhang et al., 2013). In the co-culture system of intertumoral

ICOS+CD4+ T cells and ICOS+ Follicular Lymphomas B cells (FL

B cells), the ICOS/ICOSL interaction induces the generation of

Tregs (Le et al., 2016). The intertumoral Tregs comprises of about

15% intertumoral CD4+ T cells (Yang et al., 2007). This subset

directly or indirectly suppresses FL B cell responses upon

activation (Le et al., 2016). Additionally, CD70+ lymphoma

B cells also exert remarkable roles in inducing the

transcription of Foxp3 in intertumoral CD4+ T cells and the

interaction of CD27/CD70 is involved in this process (Yang et al.,

2007).

CD40L-stimulated B cells (CD40L-sBc) function as APCs

in vitro to promote the development of CD4+ T cells, form

patients with autoimmune diseases, to Treg (Bluestone et al.,

2015). Alonso-Guallart et al. expanded CD40L-sBc derived from

MHC-diverse macaques and used them to stimulate and expand

Tregs. These expanded Tregs with poly specificities only secreted

small amounts of inflammatory cytokines, inhibited naive T cell

responses and could be activated by APCs with MHCs shared by

the expanded CD40L-sBc (Alonso-Guallart et al., 2021). The new

approach shows the potential in clinical applications (Alonso-

Guallart et al., 2021).

7.2 The effect of Bregs on Tregs in cancers

Bregs have been widely identified as key regulators to tumors

and the number and proportion of Bregs is elevated in various

tumors. Wei et al. demonstrated that the proportion of ascitic

Bregs were linked to a progressive clinical tumor phase (Wei

et al., 2016). In HCV-related hepatocellular carcinoma (HCC),

upregulated Bregs and Tregs are associated with HCV-related

HCC progression (Hetta et al., 2020). Just like the positive effect

of Bregs on Tregs as described above, the increased frequency of

Bregs in tongue squamous cell carcinoma (TSCC), non-small cell

lung cancer (NSCLC), and HCV-related HCC is linked to

elevated Treg infiltration along with decreased survival time

(Zhou et al., 2016; Liu et al., 2020).

The induction effect of Bregs to Tregs can be observed in

many tumors. When CD4+ T cells are cultured with Bregs from

acute myeloid leukemia (AML), Tregs are significantly increased

(Shao et al., 2016b). In 4 T1 tumorous mice, Olkhanud et al.

discovered unique tumor-evoked Bregs (tBregs), identified as

CD19+CD25+ B220+ B cells (Zhang et al., 2013). When cultured

with tBregs, CD4+ T cells elevate the transcription of FoxP3 and

differentiate into Tregs in a TGF-β-dependent process (Zhang
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et al., 2013). Also, the adoptive transfer of tBregs into WT mice

increases the proliferation of Tregs in the periphery (Zhang et al.,

2013). Furthermore, in 4 T1 tumor mice that lack T and B cells,

Treg-mediated metastasis in the lungs is enhanced after

administration of tBregs and non-Tregs, implying that there is

a tBreg-related induction of non-Tregs to Tregs (Olkhanud et al.,

2011; Wejksza et al., 2013). These experiments suggest that

tBregs are expanded in the tumor micro-environment, and in

turn facilitate tumor metastasis via TGF-β-mediated

differentiation of non-Tregs to Tregs. To prove this notion,

Lee-Chang et al. showed that resveratrol (RSV), an inhibitor

of phosphorylated STAT3, could restrain the expansion of tBregs

and Tregs, and also repressed the enlargement of B16 and

4 T1 tumors (Lee-Chang et al., 2013). Altogether, they

revealed that suppressing phosphorylated STAT3 in Bregs

worked as an anti-tumor treatment (Yang et al., 2013; Ren

et al., 2014). Among the entire chronic lymphocytic leukemia

(CLL) cell compartment, B-CLL cells with high expression of

CD38 are phenotypically similar to Bregs and termed as

Breg–like CLL cells (DiLillo et al., 2013). Breg–like CLL cells

secrete excessive levels of IL-10 and TGF-β, inducing the

differentiation of naive T helper cells into Tregs (Manna et al.,

2020). Both the induced Tregs and Breg–like CLL cells express

CD38 and are eradicated via the treatment of anti-CD38

monoclonal antibody (Manna et al., 2020). Data showed that

CD38+ Tregs occupied more than 50% of the Tregs in PBMCs in

CLL patients (Manna et al., 2020). Hence, targeting CD38may be

a new treatment in CLL, which would result in the loss of both

Tregs and Breg-like CLL cells to regulate the tumor micro-

environment and promote reconstitution of the immune

system (Manna et al., 2020).

7.3 Breg and its correlation with Treg in
transplantation

Bregs also represent a vital regulator in transplantation. The

survival of tissue allogeneic transplantation is enhanced in mice

which are with ablation of bone marrow, then transplanted with

skin allograft and then followed by syngeneic bone marrow

transplantation (BMTx) (Gorczynski et al., 2018). Bregs are

involved in this process by regulating the capacity of Tregs

from donors (Alonso-Guallart et al., 2021). Studies

demonstrated that the administration of Bregs in mice with

post-BMTx prolonged survival of mice and elevated Treg

levels (Gorczynski et al., 2018), and TGF-β aided in this

process (Lee et al., 2014).

Both Bregs and naive B cells can induce Tregs, but their

functions are different in transplantation models. Bregs induce

more FoxP3 in CD4+ T cells compared to naive B cells (Lee et al.,

2014). Administration of Bregs to grafted recipients confers more

graft survival, but administration of naive B cells to recipients do

not lengthen graft survival (Lee et al., 2014). Administration of

Bregs elevates the amount of Tregs in recipient’s spleens, while

administration of naïve B cells or graft alone does not (Lee et al.,

2014).

Data showed that Sirolimus alleviated steroid resistance in

liver transplantation patients and induced long-term immune

tolerance (Song et al., 2020). This is partly explained by that

Sirolimus augments the number of Bregs and Tregs in liver

transplant recipients and TGF-β1 and IL-10 are important in this

process (Song et al., 2020). The increase of Tregs is partially

suppressed when either IL-10 or TGF-β1 is inhibited and even

vanished when both IL-10 and TGF-β1 are neutralized (Song

et al., 2016).

7.4 Breg in the therapy of patients with
autoimmune diseases

Bregs and Tregs also show essential roles in autoimmune

diseases. The frequency of Bregs is significantly increased in

PBMCs from patients with Crohn’s disease and the frequency

of Tregs is significantly decreased (Lin et al., 2020). Upon

infliximab treatment, the frequency of Tregs and Bregs

increases, and the frequency of Breg is positively associated

with the frequency of Treg all the time (Lin et al., 2020). It

seems that remission of disease is always accompanied with

increased frequency of Bregs and Tregs. Furthermore, ROC

curve analysis shows that the detection of these two types of

immune cells opens new windows for predicting the effect of

infliximab in CD patients during an active phase (Lin et al.,

2020).

Evidence showed helminth infection can lower the

incidence and reduced the acceleration of allergic asthma

(Gao et al., 2019). In murine model experiments, Li et al.

demonstrated that infecting H. polygyrus could dramatically

inhibit OVA-induced allergic airway inflammation (AAl) and

induce substantial responses of Bregs and Tregs in the spleen

and MLNs of the mice (Gao et al., 2019). Administration of

both Bregs and Tregs can obviate lung immunopathology in

mice with AAI (Gao et al., 2019).

7.5 Bregs and its correlation with Treg in
inflammation and infection

The discussion about Bregs is not just in typical carcinoma

and autoimmune diseases but has extended to a wider field,

such as organ-restricted or whole-body inflammation. Reports

showed that Bregs might suppress the development of

inflammation and prevent inflammatory damage. Jin et al.

established an osteoporosis model by ovariectomy (OVX) in

mice and then detected the frequency of immune cells from

the spleen (Wang et al., 2020b). Data showed that both the

proportion of Bregs and Tregs decreased during the process of
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osteoporosis (Wang et al., 2020b). Adoptive transfer of Bregs

to OVX mice prevents the advancement of osteoporosis in the

alveolar bone (Wang et al., 2020b). In mice with Periodontitis,

adoptive transfer of periodontopathogen-specific Bregs

alleviates alveolar bone resorption through reducing

periodontal osteoclastogenesis (Shi et al., 2020).

In patients with chronic hepatitis B(CHB), the number of

Bregs is significantly elevated and is positively related to

glutamic oxaloacetic transaminase (AST) and alanine

aminotransferase (ALT). And during the CHB infection,

Bregs suppress anti-virus responses via IL-10 (Li et al.,

2021). In mice with Babesia microti infection, both the

proportion of Bregs and Tregs are elevated and adoptive

transfer of Babesia microti infection induced Bregs to

recipient mice increases the susceptibility to Babesia

microti infection (Wang et al., 2020a).

8 Conclusion

Tregs are a unique subpopulation of CD4+ T cells,

accounting for only a small portion of T cell pool but

playing an indispensable role in maintaining immune

homeostasis and self-tolerance. B lymphocytes which

originated from bone marrow HSC, own humoral immune

functions. In this article, we provided multiple perspectives to

discuss the interaction between B cells and Tregs.

On the one hand, Tregs can inhibit B cells in CTLA-4 and

TGF-β-dependent manners. Besides, perforin, granzyme B, Fas-

FasL and PD-1-PD-L1 interaction exert roles in Tregs-induced

B cell apoptosis. Then, we introduce Tfr cells, a subset of Tregs

residing in germinal center, and discuss the effects of Tfr cells on

GC B cells. Apart from suppressing Tfh cells to indirectly act on

B cells, Tfr cells also aim directly on B cells. In the beginning, we

talk about the influence of Tfr on GC responses. Then, we delve

into the mechanisms that Tfr cells regulate GC B cells. Tfr cells

negatively influence GC B cells through CTLA-4, TGF-β and

neuritin-dependent manners. Additionally, IL-10 plays roles in

regulating CG B cells by Tfr and surprisedly exert positive

functions. Through this review, we find there are lots of

questions that remained to be elucidated. Mature Tfr cells are

identified as CXCR5hi PD-1hi CD25low Foxp3+ Bcl-6hi Blimp1low

T cells (Botta et al., 2017; Ritvo et al., 2017). However, Tfr cells

were first described as CD25hi, like regular Tregs and precursor

Tfr cells. And many of the characteristics originally assigned to

Tfr cells are probably due to the mixture of Tregs, precursor Tfr

cells and Tfr cells. Thus, some research of Tfr cells needs update

due to the newest classification of Tfr cells. Besides, how Tfr

exquisitely influences the cell cycle, CSR, somatic

hypermutations and affinity maturation of GC B cells remain

to be clear. Next, we summarize the diseases involved in the

modulation of follicular regulatory T cells and the effects on

germinal centers and give a brief introduction to Tregs with

chimeric antigen receptor (CAR)technology, providing some

clues to bring] Treg to clinical treatment.

On the other hand, Tregs are regulated by B cells. As

shown in Figure 4, IFN-γ from B cells inhibits Tregs. GITR-L,

CXCL9 and BAFF in B cells exert positive function to Tregs.

Abnormal activation of Notch1 signal in B cells induces the

secretion of IL-33, and IL-33 bind the receptor in Tregs to

induce the population of them. Bregs are a heterogeneous

subpopulation of B cells with the secretion of IL-10 and are

able to induce Tregs. We give Bregs a brief introduction and

then highlight the mechanism of them inducing Tregs. As

shown in Figure 5, Bregs promote Tregs via cell: cell contact

and the secretion of immunomodulatory cytokines, like IL-35

and IL-10 together with TGF-β. Treg-of-B cells, a newly

identified Treg induced by Naïve splenic B2 cells and

mucosal Peyer’s patch B cells as well as peritoneal B-1a

cells but without FoxP3, has drowned our attention. We

reviewed the development mechanisms of Treg-of-B cells

and their regulation to immune responses. At last, we

discussed the role of Bregs in various diseases, such as

cancers, transplantation and autoimmune diseases, hoping

to find the potential value of aiming Bregs for treatment.
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