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Another win for endothelial progenitor 
cells: Endothelial progenitor cell‑derived 
conditioned medium promotes 
proliferation and exerts neuroprotection 
in cultured neuronal progenitor cells
Nadia Sadanandan, Stefano Di Santo1, Hans Rudolf Widmer1

Abstract:
Progress in stem cell research demonstrates stem cells’ potential for treating neurodegenerative 
diseases. Stem cells have proliferative/differentiative properties and produce a variety of paracrine 
factors that can potentially be used to regenerate nervous tissue. Previous studies have shown the 
positive regenerative effects of endothelial progenitor cells  (EPCs), and thus, they may be used 
as a tool for regeneration. A study by Di Santo et al. explored whether EPC‑derived conditioned 
medium (EPC‑CM) promotes the survival of cultured striatal progenitor cells and attempted to find the 
paracrine factors and signaling pathways involved with EPC‑CM’s effects. The neuronal progenitor 
cells that were cultured with EPC‑CM had much higher densities of GABA‑immunoreactive (GABA‑ir) 
neurons. It was shown that phosphatidylinositol‑3‑kinase/AKT and mitogen‑activated protein 
kinase/ERK signaling pathways are involved in the proliferation of GABAergic neurons, as inhibition of 
these pathways decreased GABAergic densities. In addition, the results suggest that paracrine factors 
from EPC, both proteinaceous and lipidic, significantly elevated the viability and/or differentiation in 
the cultures. Importantly, it was found that EPC‑CM provided neuroprotection against toxins from 
3‑nitropropionic acid. In sum, EPC‑CM engendered proliferation and regeneration of the cultured 
striatal cells through paracrine factors and imparted neuroprotection. Furthermore, the effects of 
EPC‑CM may generate a cell‑free therapeutic strategy to address neurodegeneration.
Keywords:
3‑nitropropionic acid, endothelial progenitor cells, GABAergic neurons, neuroprotection, paracrine 
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Novel Discoveries about the 
Potential of Endothelial Progenitor 

Cells as a Therapeutic Tool

Effective treatments for neurodegenerative 
d iseases  are  s t i l l  l ack ing .  The 

advancements in stem cell research have 
revealed the proliferative and differentiation 
properties of these cells; therefore, these cells 
can hypothetically be used to regenerate 
nervous tissues. Stem cells are not only 

capable of replacing injured cells but also 
have the ability to produce a variety of factors. 
The humoral actions of stem cells, rather 
than transdifferentiation/engraftment, are 
now thought to have the most influence on 
tissue regeneration. Evidence demonstrates 
that bone marrow‑derived endothelial 
precursor cells release paracrine factors 
that increase the viability of various 
tissues. Recent studies have demonstrated 
the potential of endothelial progenitor 

Address for 
correspondence: 

Dr. Hans Rudolf Widmer, 
Department of 
Neurosurgery, 

Neurocenter and 
Regenerative 

Neuroscience Cluster, 
Inselspital, Bern 

University Hospital, 
University of Bern, 

3010 Bern, Switzerland. 
E‑mail: hansrudolf.

widmer@insel.ch

Submission: 02‑06‑2019
Revised: 10‑09‑2019

Accepted: 11‑09‑2019

Department of 
Neurosurgery and 

Brain Repair, College 
of Medicine, University 

of South Florida 
Morsani, Tampa, FL, 

USA, 1Department 
of Neurosurgery, 
Neurocenter and 

Regenerative 
Neuroscience Cluster, 

Inselspital, Bern University 
Hospital, University of 

Bern, Bern, Switzerland

Access this article online
Quick Response Code:

Website:
http://www.braincirculation.org

DOI:
10.4103/bc.bc_41_19

Review Article

This is an open access journal, and articles are 
distributed under the terms of the Creative Commons 
Attribution‑NonCommercial‑ShareAlike 4.0 License, which 
allows others to remix, tweak, and build upon the work 
non‑commercially, as long as appropriate credit is given and the 
new creations are licensed under the identical terms.

For reprints contact: reprints@medknow.com

How to cite this article: Sadanandan N, Di Santo S, 
Widmer HR. Another win for endothelial progenitor 
cells: Endothelial progenitor cell-derived conditioned 
medium promotes proliferation and exerts 
neuroprotection in cultured neuronal progenitor 
cells. Brain Circ 2019;5:106-11.



Sadanandan, et al.: EPC‑CM and neuroprotection

Brain Circulation ‑ Volume 5, Issue 3, July‑September 2019	 107

cell (EPC) “secretome” within its conditioned medium 
form (EPC‑CM).[1‑3] EPCs and their soluble factors have 
also been shown to be successful in treating traumatic 
brain injury, ischemic stroke, and white matter damage 
models. However, the potential of EPCs has often been 
exploited for neurovascular repair.[4‑7]

Effects of Endothelial Progenitor 
Cell‑Derived Conditioned Medium on 

GABA‑immunoreactive Neurons and the 
Cellular Mechanisms Involved

Substantial evidence suggests that stem cells and 
progenitor cells utilize paracrine factors to carry out 
regeneration.[1‑4] Recent studies have demonstrated that 
the viability of brain microvascular cells is significantly 
increased by incubation with EPC‑CM.[3] The recent 
study of Di Santo et al. provided evidence that EPC‑CM 
might support neuronal progenitors from ganglionic 
eminence (GE).[8] To investigate this, primary cultures 
from fetal rat embryonic  (E14) GE were utilized, and 
these were grown for 7 days in vitro (DIV). The striatal 
cultures incubated with the EPC‑CM in the DIV5–7 
period were found to have significantly higher densities 
of GABA‑immunoreactive  (GABA‑ir) neurons. When 
the mitogen‑activated protein kinase  (MAPK) and 
phosphatidylinositol‑3‑kinase  (PI3K) pathways were 
inhibited, the effects of EPC‑CM were reduced, as 
the inhibition of the pathways significantly impaired 
EPC‑CM’s ability to increase the density of GABA‑ir 
cells. Similar results occurred when EPC‑CM endured 
proteolytic digestion and lipid extraction, which 
impeded translation. Overall, these results suggest that 
paracrine factors from EPC significantly enhanced the 
survival and/or differentiation in the cultured striatal 
progenitor cells through proteinaceous and lipidic 
factors.

Endothelial Progenitor Cells Produce 
Paracrine Factors that Promote Regeneration

Several studies have documented the regenerative 
potential of EPCs, and their capacity to sustain a 
functional vascular system, which is vital to transporting 
nutrients, signaling molecules, and cells to the site of 
tissue injury.[9‑12] Research from the last decade suggests 
that EPC’s regenerative ability may be effective in more 
than just vascular tissue.[13‑16]

Preclinical trials have shown that EPC paracrine factors 
can be employed as a therapeutic option.[17] Similarly, 
mesenchymal stem cells were found to be a plentiful 
source of paracrine factors and, similar to EPC, can 
potentially be utilized for a wide variety of regenerative 
therapies, such as for myocardial infarction and 
stroke.[18] Furthermore, it has been shown that EPC‑CM 

alleviates ischemic injury in skeletal and myocardial 
muscles.[1,19‑21] In recent studies, EPC‑CM showed 
encouraging neuroprotective capabilities for treating 
ischemic stroke,[22,23] increased the frequency of the 
dopaminergic phenotype in neuronal stem cells,[24] and 
enhanced the number of doublecortin‑positive neuronal 
precursors in the subventricular zone of adult rats.[25]

Endothelial Progenitor Cell‑Derived 
Conditioned Medium Increases GABAergic 

Densities through Cellular Factors and 
Signaling Pathways

The study of Di Santo et al.[8] is the first of its kind to 
specifically examine how EPC‑CM affects progenitor 
striatal cells and aims to identify the cellular components 
and pathways involved. The results of this study 
demonstrated that EPC‑CM increases the densities of 
GABA‑ir neurons through various methods, either 
through greater rates of proliferation and/or increased 
cell viability and differentiation of progenitor neurons. 
The outcome of the Western blot analysis for proliferating 
cell nuclear antigen (a cell proliferation marker) suggests 
that EPC‑CM increased neuronal cell proliferation in 
the cultures. Nevertheless, it is improbable that this 
observation is applicable for the increase in GABAergic 
cell densities observed after day 2 of the treatment. 
The total amount of protein was much higher in the 
cultures treated with EPC‑CM, indicating that EPC‑CM 
enhanced proliferation in other neurons and in other 
cell types. This is also demonstrated by the substantial 
increase of cells expressing the neuronal marker NeuN 
in the EPC‑CM‑treated cultures. In addition, the increase 
of glial fibrillary acidic protein in treated cultures 
demonstrated in the Western blot analysis may also 
imply EPC‑CM’s effects on glial cells.

Equally compelling evidence is  provided on 
characterizing the type of cellular factors (proteinaceous 
and lipidic), and signaling pathways are involved 
with EPC‑CM[8]  [Figure  1]. Activation of PI3K/AKT 
and MAPK/ERK signaling cascades promotes the 
neuroprotective effects of EPC‑CM. Through these 
pathways, creatine also stimulated the GABAergic 
phenotype in the striatal cultures.[26]

PI3K/AKT and MAPK/ERK’s role in EPC‑CM‑induced 
effects is not unexpected due to the presence of several 
growth factors: brain‑derived neurotrophic factor, 
glial cell line‑derived neurotrophic factor, neuritin, 
and vascular endothelial growth factor. These growth 
factors are strong inducers of the signaling pathways.[27,28] 
AKT/PI3K signaling plays an important role in the 
central nervous system, as it imparts neuroprotection 
against differing stresses. For example, it provides 
protection against oxidative stress in the adult brain by 
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hindering pro‑apoptotic mechanisms.[29] In the in vitro 
and in  vivo models of HD, ERK activation imparts 
neuroprotection.[30] Nonetheless, to depict the role 
of the neurotrophic factors mentioned above in 
EPC‑CM‑induced effects, direct evidence needs to be 
gathered through experiments blocking each of the 
neurotrophic factors. Interestingly, the blockage of the 
ROCK pathway did not reduce EPC‑CM’s impact on 
GABA‑ir cell densities. ROCK is thought to influence 
neurite outgrowth, dendritic branching, and spine 
formation, which are hindered by the expression 
of constitutively activated RhoA.[31‑33] The protein 
translation inhibitor cycloheximide abolished the actions 
of EPC‑CM by blocking translation, suggesting that some 
of EPC‑CM’s effects were carried out indirectly, such as 
through growth factors in autocrine signaling.

The advantages of stem cell secretomes among varying 
clinical conditions have spurred investigations aiming 
to identify the wide range of bioactive molecules 
involved. Although a multitude of peptides present in 
EPC‑CM have been discovered through proteomics,[19,34] 
a thorough examination of the lipidic factors released 
by secretomes has yet to occur. Even though EPC 
releases prostaglandins,[35] it was excluded from this 
study because it cannot be extracted by chloroform.[36] 
Sphingosine‑1‑phosphate  (S1P) is an important lipid 
mediator released by bone marrow progenitor cells, 
which include EPC, and mature endothelial cells.[37] 
Importantly, S1P influences neuronal differentiation both 
directly[38] and indirectly through processes involving 
astrocytes.[39] It is thus reasonable to speculate that S1P 
might be involved in the effects of EPC‑CM; however, its 
actual role in EPC‑CM needs to be investigated.

Recent studies reveal that EPC‑CM contains exosomes 
and microvesicles which can transport microRNA.[14,40] 
MicroRNA also acts as a regulator for neurogenesis.[41,42] 
Possibly, the identification of some exosomal cargoes[43] 

might be an easier task compared to the identification of 
the soluble proteins and lipids present in the EPC‑CM.

Endothelial Progenitor Cells Exert 
Neuroprotection

The effects of EPC‑CM are not limited to the enhancement 
of neuronal viability and maturation. Indeed, EPC‑CM 
provided neuroprotection against 3‑NP (an irreversible 
succinate dehydrogenase inhibitor). It can be 
hypothesized that EPC‑CM may be pivotal in treating 
neurodegenerative diseases where energy metabolism 
is lessened on account of an impaired mitochondrial 
complex II and complex III.[44‑46] Mitochondrial 
dysfunction is thought to be a major cause of neuronal 
deterioration in age‑related stroke. Negative conditioning 
of mitochondrial dysfunction can potentially be a 
therapeutic method to ameliorate the quality and 
function of mitochondria.[47] Surprisingly, in the current 
study, EPC‑CM increased the cytoprotective effect of 
viable cells before the tissue injury; however, a change 
in GABA‑ir neuron densities was not observed. This 
suggests that EPC‑CM also bestows cytoprotective effects 
to other cell subpopulations in the neuronal cultures. 
Moreover, 3‑NP also displays toxicity for cultured 
hippocampal, septal, and hypothalamic neurons.[48] In 
addition, EPC‑CM significantly protected dopaminergic 
neurons against 1‑methyl‑4‑phenylpyridinium (MPP+). 
MPP+  toxicity involves the generation of excessive 
oxidative stress and provides an effective tool for 
assessment of neuroprotection on dopaminergic 
neurons.[49] In conclusion, the study suggests that 
EPC‑CM, in conjunction with other methods, may pave 
the way to overcoming neuronal degeneration.

Other Mechanisms that 
Impart Neuroprotection in the Treatment of 
Traumatic Brain Injury and Stroke‑Induced 

Damage

Stroke continues to be the leading cause of death, 
and those who survive the incident endure long‑term 
disabilities. A major type of pharmacological treatment 
is the thrombolytic agent tissue plasminogen activator. 
However, this treatment is not ideal because it 
has a limited therapeutic time window and could 
potentially lead to intracranial hemorrhage. In addition, 
the tissue plasminogen activator fails to provide 
neuroprotection.[50] The development of neuroprotectants 
is of great importance in treating poststroke injuries. 
Recent evidence demonstrates that simple medicinal 
cannabis formulations can function as effective 
neuroprotectants.[51] Hyperbaric oxygen therapy (HBOT) 
is another potential neuroprotective strategy for 
treating ischemic stroke. HBOT preconditioning of 
the brain demonstrates promising results as priming 

Figure 1: Endothelial progenitor cell and neuroprotection. Endothelial progenitor 
cells secrete therapeutic factors, including lipidic and proteinaceous factors. These 

paracrine factors exert neuroprotective effects and exhibit proliferative capacity
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the brain with mild oxidative stress prepares the 
brain for the full‑fledged oxidative stress induced by 
a stroke.[52] Moreover, EPC‑CM may act as an essential 
tool in treating poststroke injuries because EPC‑CM can 
impart neuroprotection as well.

Additional Examples of Trophic Factors and 
Signaling Pathways That May Play a Role 

in Neuronal Regeneration

Stem cell transplantations are becoming a pivotal area 
of research in finding treatments for poststroke injuries. 
Several beneficial effects have been ascribed to stem 
cells in treating ischemic stroke, including secreting 
therapeutic factors around the injured area, initiating 
regeneration, and promoting recovery.[53] An example 
of a trophic factor involved in neural activity after 
stroke is bone morphogenetic protein 7 (BMP7), which 
can promote DNA synthesis. In a rodent distal middle 
cerebral artery occlusion  (MCAO) model, treatment 
with BMP7 showed positive results in that sensorimotor 
function improved, body asymmetry decreased, and 
locomotor activity escalated.[54] Thus, proteinaceous 
factors such as BMP7 and those found in EPC‑CM may 
be valuable for treating stroke‑induced injuries.

The study by Di Santo et al.[8] demonstrates that EPC‑CM’s 
effects stem from the activation of signaling pathways 
such as PI3K/AKT and MAPK/ERK. The cascade of 
events, involving both cytotoxic and cytotropic effects, 
that occur in the inflammatory response of the central 
nervous system may be altered to impart regenerative 
properties. In traumatic brain injury or stroke, chronic 
brain inflammation inhibits neuronal regeneration. 
Although the inflammatory response acts as a growth 
inhibitor, it can be altered so that it becomes protective 
and reparative.[55]

The Importance and Efficacy of Conditional 
Medicine for Treating Stroke‑Induced Brain 

Injury and Neurodegenerative Diseases

An array of conditioning stimuli, such as ischemia or 
hypoxia, may provide protection against poststroke brain 
injury.[56] Evidence also suggests that conditional stimuli 
can provide protection to the cerebral vasculature, 
which includes the blood–brain barrier.[56] In addition, 
Parkinson’s disease is associated with a loss in 
dopaminergic neurons. EPC‑CM promoted dopaminergic 
phenotype in neuronal stem cells, and thus, EPC‑CM 
may act as another tool for treating Parkinson’s disease 
and other neurodegenerative disorders. Likewise, a 
study conducted by Leak suggests the efficiency of 
preconditioning dopaminergic neurons in treating 
Parkinson’s disease. In early stages of Parkinson’s 
disease, cells are exposed to mild stress and natural 

defenses escalate. However, as the patient ages, stress 
levels substantially increase to a point where toxic cellular 
responses can no longer be prevented. These results 
suggest that if dopaminergic systems are preconditioned 
with mild stress, the stress would strengthen the cells and 
reduce the toxic effects of stresses that follow.[57] Overall, 
the current neurological research focuses on utilizing 
stem cells such as EPC‑CM, due to their regenerative 
and neuroprotective properties, to treat stroke‑induced 
injuries and other neurodegenerative diseases.

Conclusion

The study by Di Santo et  al.[8] investigated whether 
EPCs were capable of spurring proliferation and 
differentiation in striatal progenitor cells. It was found 
that through paracrine factors and signaling pathways, 
EPCs increased GABAergic densities in the cultures. In 
addition, EPCs imparted neuroprotection in the cultures, 
which indicates the potential of EPCs in treating brain 
injury. Therefore, EPCs may become a novel tool for 
conquering neurodegenerative diseases and traumatic 
brain injury.

Financial support and sponsorship
This research was supported by the HANELA Foundation 
(HRW) and the Swiss National Science Foundation 
NRP63 No. 406340_128124 (SDS).

Conflicts of interest
There are no conflicts of interest.

References

1.	 Di Santo  S, Yang  Z, Wyler von Ballmoos  M, Voelzmann  J, 
Diehm  N, Baumgartner  I, et  al. Novel cell‑free strategy for 
therapeutic angiogenesis: In vitro generated conditioned 
medium can replace progenitor cell transplantation. PLoS One 
2009;4:e5643.

2.	 Di Santo  S, Seiler  S, Fuchs  AL, Staudigl  J, Widmer  HR. The 
secretome of endothelial progenitor cells promotes brain 
endothelial cell activity through PI3‑kinase and MAP‑kinase. 
PLoS One 2014;9:e95731.

3.	 Di Santo  S, Fuchs  AL, Periasamy  R, Seiler  S, Widmer  HR. 
The cytoprotective effects of human endothelial progenitor 
cell‑conditioned medium against an ischemic insult are not 
dependent on VEGF and IL‑8. Cell Transplant 2016;25:735‑47.

4.	 Rosell A, Morancho A, Navarro‑Sobrino M, Martínez‑Saez E, 
Hernández‑Guillamon  M, Lope‑Piedrafita  S, et  al. Factors 
secreted by endothelial progenitor cells enhance neurorepair 
responses after cerebral ischemia in mice. PLoS One 
2013;8:e73244.

5.	 Zhang Y, Li Y, Wang S, Han Z, Huang X, Li S, et al. Transplantation 
of expanded endothelial colony‑forming cells improved 
outcomes of traumatic brain injury in a mouse model. J Surg Res 
2013;185:441‑9.

6.	 Park KJ, Park E, Liu E, Baker AJ. Bone marrow‑derived endothelial 
progenitor cells protect postischemic axons after traumatic brain 
injury. J Cereb Blood Flow Metab 2014;34:357‑66.

7.	 Maki T, Morancho A, Martinez‑San Segundo P, Hayakawa K, 
Takase H, Liang AC, et al. Endothelial progenitor cell secretome 



Sadanandan, et al.: EPC‑CM and neuroprotection

110	 Brain Circulation ‑ Volume 5, Issue 3, July‑September 2019

and oligovascular repair in a mouse model of prolonged cerebral 
hypoperfusion. Stroke 2018;49:1003‑10.

8.	 Santo SD, Seiler S, Andres R, Widmer HR. Endothelial progenitor 
cells conditioned medium supports number of GABAergic 
neurons and exerts neuroprotection in cultured striatal neuronal 
progenitor cells. Cell Transplant 2019;28:367‑78.

9.	 Kalka  C, Masuda  H, Takahashi  T, Kalka‑Moll  WM, Silver  M, 
Kearney M, et al. Transplantation of ex vivo expanded endothelial 
progenitor cells for therapeutic neovascularization. Proc Natl 
Acad Sci U S A 2000;97:3422‑7.

10.	 Sieveking  DP, Buckle  A, Celermajer  DS, Ng  MK. Strikingly 
different angiogenic properties of endothelial progenitor cell 
subpopulations: Insights from a novel human angiogenesis assay. 
J Am Coll Cardiol 2008;51:660‑8.

11.	 Hecht N, Schneider UC, Czabanka M, Vinci M, Hatzopoulos AK, 
Vajkoczy  P, et  al. Endothelial progenitor cells augment 
collateralization and hemodynamic rescue in a model of chronic 
cerebral ischemia. J Cereb Blood Flow Metab 2014;34:1297‑305.

12.	 Kong Z, Hong Y, Zhu J, Cheng X, Liu Y. Endothelial progenitor 
cells improve functional recovery in focal cerebral ischemia 
of rat by promoting angiogenesis via VEGF. J  Clin Neurosci 
2018;55:116‑21.

13.	 Cao JP, He XY, Xu HT, Zou Z, Shi XY. Autologous transplantation 
of peripheral blood‑derived circulating endothelial progenitor 
cells attenuates endotoxin‑induced acute lung injury in rabbits 
by direct endothelial repair and indirect immunomodulation. 
Anesthesiology 2012;116:1278‑87.

14.	 Cantaluppi  V, Gatti  S, Medica  D, Figliolini  F, Bruno  S, 
Deregibus  MC, et  al. Microvesicles derived from endothelial 
progenitor cells protect the kidney from ischemia‑reperfusion 
injury by microRNA‑dependent reprogramming of resident renal 
cells. Kidney Int 2012;82:412‑27.

15.	 Kado M, Tanaka R, Arita K, Okada K, Ito‑Hirano R, Fujimura S, 
et  al. Human peripheral blood mononuclear cells enriched in 
endothelial progenitor cells via quality and quantity controlled 
culture accelerate vascularization and wound healing in a porcine 
wound model. Cell Transplant 2018;27:1068‑79.

16.	 Cho HJ, Lee N, Lee JY, Choi YJ, Ii M, Wecker A, et al. Role of 
host tissues for sustained humoral effects after endothelial 
progenitor cell transplantation into the ischemic heart. J Exp Med 
2007;204:3257‑69.

17.	 Keighron  C, Lyons  CJ, Creane  M, O’Brien  T, Liew  A. Recent 
advances in endothelial progenitor cells toward their use in 
clinical translation. Front Med (Lausanne) 2018;5:354.

18.	 Gunawardena TN, Rahman MT, Abdullah BJ, Abu Kasim NH. 
Conditioned media derived from mesenchymal stem cell cultures: 
The next generation for regenerative medicine. J Tissue Eng Regen 
Med 2019;13:569‑86.

19.	 Felice  F, Piras  AM, Rocchiccioli  S, Barsotti  MC, Santoni  T, 
Pucci A, et al. Endothelial progenitor cell secretome delivered by 
novel polymeric nanoparticles in ischemic hindlimb. Int J Pharm 
2018;542:82‑9.

20.	 Doyle B, Sorajja P, Hynes B, Kumar AH, Araoz PA, Stalboerger PG, 
et  al. Progenitor cell therapy in a porcine acute myocardial 
infarction model induces cardiac hypertrophy, mediated by 
paracrine secretion of cardiotrophic factors including TGFbeta1. 
Stem Cells Dev 2008;17:941‑51.

21.	 Hynes B, Kumar AH, O’Sullivan J, Klein Buneker C, Leblond AL, 
Weiss  S, et  al. Potent endothelial progenitor cell‑conditioned 
media‑related anti‑apoptotic, cardiotrophic, and pro‑angiogenic 
effects post‑myocardial infarction are mediated by insulin‑like 
growth factor‑1. Eur Heart J 2013;34:782‑9.

22.	 Morancho   A,  Hernández‑Gui l lamon  M,  Boada   C , 
Barceló V, Giralt D, Ortega L, et al. Cerebral ischaemia and matrix 
metalloproteinase‑9 modulate the angiogenic function of early 
and late outgrowth endothelial progenitor cells. J Cell Mol Med 
2013;17:1543‑53.

23.	 Moubarik C, Guillet B, Youssef B, Codaccioni JL, Piercecchi MD, 
Sabatier  F, et  al. Transplanted late outgrowth endothelial 
progenitor cells as cell therapy product for stroke. Stem Cell Rev 
Rep 2011;7:208‑20.

24.	 Di Santo S, Widmer HR. Paracrine factors for neurodegenerative 
disorders: Special emphasis on Parkinson’s disease. Neural Regen 
Res 2016;11:570‑1.

25.	 Andereggen L, Reitmeir R, Di Santo S, Guzman R, Widmer HR, 
Marbacher  S, et  al. Modulation of post‑stroke plasticity and 
regeneration by stem cell therapy and exogenic factors. In: 
Lapchak  PA, Zhang  JH, editors. Modulation of Post‑Stroke 
Plasticity and Regeneration by Stem Cell Therapy and Exogenic 
Factors. Cham: Springer International Publishing; 2018. p. 129‑52.

26.	 Andres RH, Ducray AD, Huber AW, Pérez‑Bouza A, Krebs SH, 
Schlattner U, et al. Effects of creatine treatment on survival and 
differentiation of GABA‑ergic neurons in cultured striatal tissue. 
J Neurochem 2005;95:33‑45.

27.	 Yao JJ, Gao XF, Chow CW, Zhan XQ, Hu CL, Mei YA. Neuritin 
activates insulin receptor pathway to up‑regulate Kv4.2‑mediated 
transient outward K+current in rat cerebellar granule neurons. 
J Biol Chem 2012;287:41534‑45.

28.	 Azuchi Y, Namekata K, Shimada T, Guo X, Kimura A, Harada C, 
et al. Role of neuritin in retinal ganglion cell death in adult mice 
following optic nerve injury. Sci Rep 2018;8:10132.

29.	 Zhong  J. RAS and downstream RAF‑MEK and PI3K‑AKT 
signaling in neuronal development, function and dysfunction. 
Biol Chem 2016;397:215‑22.

30.	 Sarantos MR, Papanikolaou T, Ellerby LM, Hughes RE. Pizotifen 
activates ERK and provides neuroprotection in vitro and in vivo in 
models of Huntington’s disease. J Huntingtons Dis 2012;1:195‑210.

31.	 Amano  M, Nakayama  M, Kaibuchi  K. Rho‑kinase/ROCK: 
A  key regulator of the cytoskeleton and cell polarity. 
Cytoskeleton (Hoboken) 2010;67:545‑54.

32.	 Bramham CR, Wells DG. Dendritic mRNA: Transport, translation 
and function. Nat Rev Neurosci 2007;8:776‑89.

33.	 Leal G, Comprido D, Duarte CB. BDNF‑induced local protein 
synthesis and synaptic plasticity. Neuropharmacology 2014;76 
Pt C: 639‑56.

34.	 Pula  G, Mayr  U, Evans  C, Prokopi  M, Vara  DS, Yin  X, et  al. 
Proteomics identifies thymidine phosphorylase as a key 
regulator of the angiogenic potential of colony‑forming units and 
endothelial progenitor cell cultures. Circ Res 2009;104:32‑40.

35.	 Chen  L, Ackerman  R, Saleh  M, Gotlinger  KH, Kessler  M, 
Mendelowitz  LG, et  al. 20‑HETE regulates the angiogenic 
functions of human endothelial progenitor cells and contributes 
to angiogenesis in vivo. J Pharmacol Exp Ther 2014;348:442‑51.

36.	 Lauber  K, Bohn  E, Kröber SM, Xiao  YJ, Blumenthal  SG, 
Lindemann  RK, et  al. Apoptotic cells induce migration of 
phagocytes via caspase‑3‑mediated release of a lipid attraction 
signal. Cell 2003;113:717‑30.

37.	 Zhao  YD, Ohkawara  H, Rehman  J, Wary  KK, Vogel  SM, 
Minshall RD, et al. Bone marrow progenitor cells induce endothelial 
adherens junction integrity by sphingosine‑1‑phosphate‑mediated 
rac1 and cdc42 signaling. Circ Res 2009;105:696‑704.

38.	 Tan  B, Luo  Z, Yue  Y, Liu  Y, Pan  L, Yu  L, et  al. Effects of 
FTY720  (Fingolimod) on proliferation, differentiation, and 
migration of brain‑derived neural stem cells. Stem Cells Int 
2016;9671732.

39.	 Spohr  TC, Dezonne  RS, Nones  J, Dos Santos Souza  C, 
E in icker ‑Lamas   M,  Gomes   FC,  e t   a l .  Sphingos ine 
1‑phosphate‑primed astrocytes enhance differentiation of 
neuronal progenitor cells. J Neurosci Res 2012;90:1892‑902.

40.	 Raposo  G, Stoorvogel  W. Extracellular vesicles: Exosomes, 
microvesicles, and friends. J Cell Biol 2013;200:373‑83.

41.	 Wang Z, Yuan Y, Zhang Z, Ding K. Inhibition of miRNA‑27b 
enhances neurogenesis via AMPK activation in a mouse ischemic 
stroke model. FEBS Open Bio 2019;9:859‑69.



Sadanandan, et al.: EPC‑CM and neuroprotection

Brain Circulation ‑ Volume 5, Issue 3, July‑September 2019	 111

42.	 Sabelström H, Petri  R, Shchors  K, Jandial  R, Schmidt  C, 
Sacheva  R, et  al. Driving neuronal differentiation through 
reversal of an ERK1/2‑miR‑124‑SOX9 axis abrogates glioblastoma 
aggressiveness. Cell Rep 2019;28:2064‑79.e11.

43.	 Keerthikumar S, Chisanga D, Ariyaratne D, Al Saffar H, Anand S, 
Zhao K, et al. ExoCarta: A web‑based compendium of exosomal 
cargo. J Mol Biol 2016;428:688‑92.

44.	 Tracey  TJ, Steyn  FJ, Wolvetang  EJ, Ngo  ST. Neuronal lipid 
metabolism: Multiple pathways driving functional outcomes in 
health and disease. Front Mol Neurosci 2018;11:10.

45.	 Gu  M, Gash  MT, Mann  VM, Javoy‑Agid  F, Cooper  JM, 
Schapira  AH. Mitochondrial defect in Huntington’s disease 
caudate nucleus. Ann Neurol 1996;39:385‑9.

46.	 Calabresi  P, Gubellini  P, Picconi  B, Centonze  D, Pisani  A, 
Bonsi P, et al. Inhibition of mitochondrial complex II induces a 
long‑term potentiation of NMDA‑mediated synaptic excitation 
in the striatum requiring endogenous dopamine. J  Neurosci 
2001;21:5110‑20.

47.	 Selvaraji  S, Poh  L, Natarajan  V, Mallilankaraman  K, 
Arumugam  TV. Negative conditioning of mitochondrial 
dysfunction in age‑related neurodegenerative diseases. Cond 
Med 2019;2:30‑9.

48.	 Fink SL, Ho DY, Sapolsky RM. Energy and glutamate dependency 
of 3‑nitropropionic acid neurotoxicity in culture. Exp Neurol 
1996;138:298‑304.

49.	 Di Santo  S, Seiler  S, Ducray  AD, Widmer  HR. Conditioned 

medium from endothelial progenitor cells promotes number of 
dopaminergic neurons and exerts neuroprotection in cultured 
ventral mesencephalic neuronal progenitor cells. Brain Res 
2019;1720:146330.

50.	 Leng  T, Xiong  ZG. Treatment for ischemic stroke: From 
thrombolysis to thrombectomy and remaining challenges. Brain 
Circ 2019;5:8‑11.

51.	 Kolb B, Saber H, Fadel H, Rajah G. The endocannabinoid system 
and stroke: A focused review. Brain Circ 2019;5:1‑7.

52.	 Liska GM, Lippert T, Russo E, Nieves N, Borlongan CV. A dual role 
for hyperbaric oxygen in stroke neuroprotection: Preconditioning 
of the brain and stem cells. Cond Med 2018;1:151‑66.

53.	 Chau M, Zhang J, Wei L, Yu SP. Regeneration after stroke: Stem 
cell transplantation and trophic factors. Brain Circ 2016;2:86‑94.

54.	 Dewan  SN, Wang  Y, Yu  S. Drug treatments that optimize 
endogenous neurogenesis as a therapeutic option for stroke. Brain 
Circ 2017;3:152‑5.

55.	 Maclean  FL, Horne  MK, Williams  RJ, Nisbet  DR. Review: 
Biomaterial systems to resolve brain inflammation after traumatic 
injury. APL Bioeng 2018;2:021502.

56.	 Xiang  J, Andjelkovic  AV, Zhou  N, Hua  Y, Xi  G, Wang  MM, 
et al. Is there a central role for the cerebral endothelium and the 
vasculature in the brain response to conditioning stimuli? Cond 
Med 2018;1:220‑32.

57.	 Leak  RK. Conditioning against the pathology of Parkinson’s 
disease. Cond Med 2018;1:143‑62.


