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Bone is a dynamic organ that has the ability to repair minor injuries via regeneration.
However, large bone defects with limited regeneration are debilitating conditions in
patients and cause a substantial clinical burden. Bone tissue engineering (BTE) is an
alternative method that mainly involves three factors: scaffolds, biologically active factors,
and cells with osteogenic potential. However, active factors such as bone morphogenetic
protein-2 (BMP-2) are costly and show an unstable release. Previous studies have shown
that compounds of traditional Chinese medicines (TCMs) can effectively promote
regeneration of bone defects when administered locally and systemically. However,
due to the low bioavailability of these compounds, many recent studies have
combined TCM compounds with materials to enhance drug bioavailability and bone
regeneration. Hence, the article comprehensively reviewed the local application of TCM
compounds to the materials in the bone regeneration in vitro and in vivo. The compounds
included icariin, naringin, quercetin, curcumin, berberine, resveratrol, ginsenosides, and
salvianolic acids. These findings will contribute to the potential use of TCM compound-
loaded materials in BTE.
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drug delivery

INTRODUCTION

Critical-sized bone defects caused by severe trauma, infections, tumors, and genetic disorders that
cannot be spontaneously repaired within a patient’s lifetime are a major clinical challenge and
require external intervention to guide and accelerate the healing process (Roddy et al., 2018).
Furthermore, bone regeneration can be impacted by the absence of osteoblasts or poor microvessel
formation at the site of bone defects due to various comorbidities, such as diabetes, genetic factors,
smoking and alcohol abuse, and inappropriate treatment (Tang et al., 2016; Holmes, 2017). For the
regeneration of bone defects in clinical practice, even though bone transplantation, such as autograft
and allograft, is the most commonly used and effective method, it is limited by the insufficient supply
of tissue in the donor site, and patients must undergo additional surgery with increasing the risk of
infection and hematoma and the cost of the procedure, and increases the risk of immune responses
and rejection (Keating et al., 2005; Cancedda et al., 2007; Delloye et al., 2007).

To overcome the issues with bone transplantation and provide a new method for the
regeneration of bone defects, researchers have developed bioactive bone-substitute materials
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with integration of scaffolds, biologically active molecules,
stem cells, or demineralized bone matrix in bone tissue
engineering (BTE) in recent years (Agarwal and García,
2015). To further increase the ability of bone regeneration,
researchers have added different cell types, drugs, and
active agents to the scaffold for osteointegration,
osteoinduction, and osteoconduction of the bone grafts,
and these factors are delivered to the bone defect sites
together (Martin and Bettencourt, 2018). Osteoinductive

molecules, including growth factors such as bone
morphogenetic protein-2 (BMP-2), still have issues
including the method of combining with scaffolds, a short
half-life, an unstable release, a high cost, and rapid
degradation, which are major shortcomings and limit the
clinical use of these molecules (James et al., 2016).
Therefore, development of cost-effective alternative
molecules with good safety and higher efficacies than
growth factors is urgently needed.

TABLE 1 | Overview of representative studies providing release profiles kinetics obtained from the use of TCM compound delivery systems.

Compound Carrier Drug content Initial burst
release (time)

Total accumulative
release (time)

Reference

Icariin CPC tablet 1 mg 2% (1 day) 6% (15 days) Zhao et al. (2010)
injectable CPC 2 mg 35% (7 days) 85% (30 days) Huang et al., (2013)
PLGA/TCP scaffold 0.16, 0.32, and 0.64% N 90% (14 weeks) Lai et al. (2018b)
SF/PLCL nanofbrous
membrane

10−5 mol/L 47.54 ± 0.06%
(5 days)

82.09 ± 1.86%
(30 days)

Yin et al. (2017)

HA/alginate scaffold 10−5 mol/L N 69.07 ± 8.16%
(40 days)

Xie et al. (2019)

PLGA microspheres 4 × 10−3 M N 57.5 ± 5.0 μg/ml
(28 days)

Yuan et al. (2020)

HA/CS coated Ti 1.5 × 10−5 mol/L, 3 × 10−5 mol/L, 6 ×
10−5 mol/L

N 100% (14 days) Song et al. (2018b)

Naringin PCL/PEG-b-PCL nanoscaffold 3.33 mg/ml 20% (1 day) 93% (90 days) Ji et al. (2014)
CS microspheres/PLLA scaffold 59.39 ± 3.43% N 90% (30 days) Guo et al. (2017)
PLGA/PLLA/PDLLA blend fibers 0.7wt% Y 82% (21 days) Guo et al. (2018)

7.0wt% Y 11% (21 days)
SF/HA scaffold 0.1% 70% (20 h) 90% (80 days) Zhao et al. (2021)

Quercetin CDHA scaffold 200 μM N 50% (60 days) Tripathi et al. (2015)
PD-PLLA scaffold 8.33 μg 3 μg, 12 h 6.26 μg (24 days) Chen et al. (2019)

10.84 μg 3 μg, 12 h 9.03 μg (24 days)
13.07 μg 3 μg, 12 h 11.15 μg (24 days)

PLGA microspheres 7.67 ± 0.10% N 50% (30 days) Lee et al. (2018)
nHA microspheres 200 μM 6.39 ± 0.20% (1 h) 74.68 ± 1.33%

(28 days)
Zhou et al. (2017)

Curcumin PCL nanofibers 1wt% N 70% (12 days) Jain et al. (2016)
Liposomes/TCP scaffold 68% N 17% (60 days) Sarkar and Bose,

(2019)
CS nanoparticles-SF/HAMA
hydrogel

10% N 77.1% (32 days) Yu et al. (2021a)

HA coated Ti6Al4V 25 μg 17% (24 h) 93% (22 days) Sarkar and Bose,
(2020)

Berberine PCL/COL scafolds 50 μg/ml 8.63 ± 0.50%
(1 day)

61.4% (27 days) Ma et al. (2021b)

PCL/PVP-MC/CS 10 μM 30% (1 day) 65% (28 days) Zhang et al. (2021b)
Bilayer Membrane

Resveratrol PCL nanofibers 0.1:9.9 (w/w) Y 28.6 ± 1.4 µM (35 days) Riccitiello et al. (2017)
PLA nanofibers 0.1:9.9 (w/w) Y 12.3 ± 1.8 µM (35 days) Riccitiello et al. (2017)
PCL scaffold 5.5% (w/w) N 64% (12 days) Kamath et al. (2014)
PEGDA/TCS Hydrogel 1,066 μM/g N 71.5% (32 days) Fan et al. (2021)
SLNs/GelMA scaffold 0.08 wt% 14% (12 h) 75% (28 days) Wei et al. (2021)

Salvianolic
acids

CS/HA scaffold 10−7 mol N 35% (56 days) Ji et al. (2019)

Ginsenosides Gelatin microspheres/Sr-α-CaS 2.51% N 85% (120 h) Luo et al. (2020)
Scaffold

CPC, calcium phosphate cement; PLGA, poly (lactic-coglycolic acid); TCP, b-calcium phosphate; SF, Silk fbroin; HA, hydroxyapatite; PCL, poly (ε-caprolactone); PEG, poly (ethylene
glycol); CS, Chitosan; PLLA, Poly (l-lactic acid); PDLLA, poly (D, L-lactic acid); CDHA, calcium-deficient hydroxyapatite; PD, polydopamine; HAMA, hyaluronic acid esterified by
methacrylate; COL, collagen; PVP, polyvinylpyrrolidone; MC, mineralized collagen; TCS, Thiolated chitosan; SLN, solid lipid nanoparticles; GelMA, Gelatin methacrylate; Sr-α-CaS,
strontium-calcium sulfate hemihydrate.
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Traditional Chinese medicines (TCMs) with different
pharmacological activities have been used for centuries among
the Chinese population as safe, economic, and effective drugs

(Zeng and Gu, 2021). TCMs are often used in combination to
form a formula, and have shown therapeutic effects on bone
regeneration in clinical and animal studies (Che et al., 2016).

FIGURE 1 | Schematic presentation of the application of traditional Chinese medicine-loaded materials in BTE.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org February 2022 | Volume 10 | Article 8515613

Shi et al. Traditional Chinese Medicine Promote Osteogenesis

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Recent studies also have pointed out that the application of
combination TCM prescriptions to bone substitutes has
achieved satisfactory results in bone tissue regeneration (Yao
et al., 2006; Wang et al., 2015b). Compounds isolated from TCMs
play an increasingly important role in existing drugs with the
development of modern separation techniques and have been
reported to enhance bone formation and inhibit bone resorption
through their effects on cell signaling pathways, influencing
osteoblast and osteoclast differentiation (Zhong et al., 2019;
Zhang et al., 2020). TCM compounds represent naturally
abundant, cost-efficient agents with potential uses in bone
regeneration. However, in the conventional systemic route,
drug delivery occurs via the circulatory system, which may
result in many disadvantages, such as systemic toxicity, side
effects, renal and liver complications, drug interactions, poor
distribution to the targeted tissue, and decreased patient
compliance (Soundarya et al., 2017). Local drug delivery
systems of biomaterials overcome these restrictions with
limited side effects, high concentrations in the targeted tissue,
and little systemic uptake (Li et al., 2017a). Additionally, a
sustained and controlled local release system improves the
drug release profiles by releasing the desired amount of drug
at a controlled rate and time with protection from surrounding
factors, such as protection from degradation, and increased drug
safety and efficacy (Tang et al., 2021).

Therefore, this article reviewed the various strategies of
loading materials with compounds of TCMs that achieve drug
delivery and have positive effects on bone regeneration in vitro
and in vivo locally (summarized in Table 1 and Figure 1). The
purpose is to summarize the latest research progress of relevant
studies and to emphasize that applying TCM compounds to
materials can optimize drug delivery and release and improve the
ability of materials in BTE.

FLAVONOIDS

Icariin
Icariin is a flavonoid constituent isolated from the traditional
Chinese herb Epimedium pubescens as its main active compound.
Icariin has been proven to not only enhance osteoblast
proliferation, differentiation, and mineralization and the
expression of bone-related genes and proteins but also inhibit
the transformation of osteoblasts into adipocytes and the
formation and differentiation of osteoclasts, thereby promoting
bone formation and inhibiting bone resorption (Hsieh et al.,
2011; Zhang et al., 2012; Song et al., 2013a; Wei et al., 2016; Xue
et al., 2016; Zhang et al., 2016; Ye et al., 2017;Wang F. et al., 2020).
In addition, icariin could combine with estrogen receptors and
affect bone regeneration via estrogen receptor pathways due to
the similarity of its structure to that of estrogen and could
increase angiogenesis by stimulating endothelial cell migration,
proliferation, and tubulogenesis (Chung et al., 2008; Nian et al.,
2009; Song et al., 2013b). Locally administered icariin to the
fracture was shown to accelerate bone healing by reducing
oxidative stress (Gürbüz et al., 2019). However, icariin has a
low bioavailability and a short half-life (1–2 h); complete

exposure of icariin molecules to fluid environments in vivo led
to a substantial loss of bioactivity, and the molecules were easily
eliminated from the body (YangW. et al., 2012). Osseointegration
requires a long period of time (3–6 months), and thus, long-term
and stable drug release to the surrounding tissue is needed for
local administration of icariin with appropriate carriers.

Icariin combined with calcium phosphate-based bioactive
materials has been shown to contribute to bone formation
in vitro and in vivo with minimal changes in the surface
microstructure, bioactivity and biocompatibility, and sustained
drug release. Icariin-loaded calcium phosphate cement (CPC)
significantly promoted new bone and blood vessel formation
when implanted in the mouse calvarial defect model compared
with CPC at 4 and 6 weeks (Zhao et al., 2010). The 2000 μM
icariin-loaded CPC also enhanced osteogenesis and angiogenesis
of ovariectomized (OVX) rats with calvarial defects, as shown by
fluorochrome-labeling histomorphometric analysis, van Gieson’s
picro fuchsin, and Microfil perfusion analysis at 8 weeks (Wu
et al., 2017). Porous β-TCP disks were soaked in icariin solution
and shown to promote proliferation and osteoblastic
differentiation of rat Ros17/28 cells and induce new bone
formation after back intramuscular implantation in rats for
3 months, whereas no obvious osteogenic evidence was
detected in the control group (Zhang et al., 2011). In addition,
Staphylococcus aureus-contaminated radius defects were
completely repaired with the significantly improved formation
of lamellar bone and recanalization of the marrow cavity at
12 weeks when icariin and vancomycin were introduced to
CPC (Huang et al., 2013). However, the degradation of CPC
was very low in vivo, and the osteoinduction of CPC was limited.

Icariin delivery porous PHBV scaffolds could strongly
enhance the proliferation of human osteoblast-like MG-63
cells (2.3-fold) and preosteoblast MC3T3-E1 cells (1.7-fold)
compared with that of cell culture plates and promote the cell
proliferation of MG-63 cells by stimulating the transcription of
key BMP genes and extracellular matrix (ECM) genes and
inhibiting the transcription of TGF-β1 and Col-I, as shown by
RT-PCR assays (Xia et al., 2013). Small intestinal submucosa
(SIS) can be produced as multiple layers to provide local, slow
release of icariin for more than 30 days. The icariin-loaded SIS
affected osteoblast differentiation of MC3T3-E1 cells by
upregulating the expression of osteogenic differentiation
markers (Alp, Bsp, and Ocn) and resulted in a higher new
bone formation ratio in mouse calvarial defect models than
the raw SIS scaffolds at 4 and 8 weeks (Li M. et al., 2017). A
study demonstrated that icariin significantly improved the
healing capacity of 45S5 Bioglass seeded with ASCs. The
icariin-doped 45S5 Bioglass seeded with ASCs significantly
induced new bone formation as well as neovascularization in
the rat calvarial bone defect model with complete repair and
complete degradation of the scaffold at 12 weeks, as shown by
micro-CT imaging and histological and immunohistological
staining (Jing et al., 2018). When icariin was used in
combination with gelatin/bioactive glass (45S5 composition)-
based scaffolds, the crosslinked gelatin network was shown to
be a suitable candidate for sustained release, and loading with
icariin enhanced the formation of hydroxyapatite (HA) in all
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samples after immersion in simulated body fluid (SBF) for
14 days, as characterized by Fourier-transform infrared
spectroscopy (FTIR) and scanning electron microscopy (SEM)
(Reiter et al., 2019). Icariin was also successfully incorporated into
the nanofibrous membrane by electrospinning and contributed to
the attachment, proliferation, and osteogenic differentiation of
MC3T3-E1 cells or rat BMMSCs (Yin et al., 2017; Gong et al.,
2018). The icariin-incorporated SF/PLCL nanofibrous membrane
can realize the controlled and sustained release of drugs and
resulted in faster and more effective osteogenesis in calvarial
defects of rats at 4, 8, and 12 weeks, as shown by quantitative
analysis of μ-CT images and histological analysis (Gong et al.,
2018).

Icariin was absorbed by hydroxyapatite (HA) and
encapsulated by chitosan (CS) by freeze–drying technology,
the icariin release kinetics were governed by the degradation
of the CS and HA components and icariin release lasted for more
than 90 days. The icariin-loaded CS/HA scaffold not only
resulted in higher adhesion and proliferation of hBMSCs and
mouse BMSCs with higher expression of ALP activity and
mineralized nodules than either the blank control or CS/HA
scaffold but also had osteoinductive functions at an early stage
according to X-ray results, indicating better bone repair abilities
with a high BMD and complete degradation of the scaffolds in a
rabbit radius defect model at 12 weeks, as shown by histological
observations (Wu et al., 2009; Fan et al., 2012). Alginate scaffolds
with HA exhibited a sustained release of icariin for longer than
40 days in vitro and enhanced stimulatory effects on the relative
expression levels of osteogenic and Wnt signaling pathway genes
of rabbit BMSCs, as shown by RT-PCR and Western blotting.
Icariin-loaded HAA was shown to repair critical-sized radius
defects in rabbits through the mediation of the coupling processes
of osteogenic induction and the inhibition of osteoclast activity
with better radiographic Lane-Sandhu scoring and histological
scoring compared with those of the HAA, icariin, and control
groups at 4 and 12 weeks (Xie et al., 2019). For long-term efficacy
in promoting osteogenesis, icariin was incorporated into the
PLGA/β-TCP scaffold by low-temperature 3D printing
technology, and release from the scaffold could last at least
14 weeks because it was encapsulated in PLGA to protect the
contents from the sensitive environment in vitro and enzymatic
degradation in vivo. Analysis of the bioactive composite scaffold
revealed that icariin could facilitate MC3T3-E1 cell ingrowth into
the scaffold and regulate osteoblastic differentiation with
increased mRNA expression levels of OC and BSP by
quantitative real-time PCR. In addition, when the icariin-
loaded PLGA/β-TCP scaffold was implanted into the bone
tunnel of the distal femora of SAON rabbits, increased
temporal new bone and fast MAR within the bone defect
region were identified at 8 weeks, and the newly formed bone
replaced the degraded scaffold and possessed a higher mechanical
strength than that in the PLGA/β-TCP group (Lai Y. et al., 2018).

To decrease the release rate of icariin and overcome the
frequently observed burst release problem, researchers used
icariin-loaded CS/nHA microspheres, which exhibit sustained
release behavior that can be ascribed not only to electrostatic
interactions between reactive negative hydroxyl (-OH) groups of

icariin and positive amine groups (-NH2) of CS but also to the
homogeneous dispersion of HA nanoparticles inside the CS
organic matrix. The composite microspheres provided a
suitable microenvironment for osteoblast attachment and
proliferation, as shown by inverted fluorescence microscopy,
MTT assays, cytotoxicity assays, Hoechst 33,258 staining, and
PI fluorescence staining (Chen J. et al., 2015). Icariin was
preloaded onto MgO/MgCO3 particles and then encapsulated
into PLGA microspheres to improve the hydrophobicity and
achieve sustained release over a prolonged period. A moderate
dose of icariin-loaded microspheres strongly increased the
proliferation and differentiation of rat BMSCs and increased
the BV/TV (41.3 ± 4.7%) and BMD (488.7 ± 55.8 mg/cm3)
values with high expression of OCN based on micro-CT
images and immunohistochemical staining at 16 weeks after
implantation into rat calvarial defects (Yuan et al., 2020). An
icariin-loaded core-shell (COL/CS microspheres-COL/PCL/HA)
scaffold with sustained release of icariin was shown to have
excellent osteoinductivity and osteoconductivity and promoted
new bone formation with increased BMD, Conn.Dn, and
expression of ALP, COL1, OPN, and OC according to micro-
CT, histological, and histochemical assessments of in vivo tibial
bone defects in rabbit models at 12 weeks (Zhao et al., 2020).

Icariin was loaded onto TiO2 nanotubes and then sealed with
chitosan/gelatin multilayer coatings by the LbL self-assembly
technique, and the composite structure improved
osseointegration by promoting osteoblastic proliferation of rat
osteoblasts by upregulating the expression of bone-related genes
and proteins while downregulating RANKL mRNA expression
compared with those of the pure Ti, NT, NT/LbL, and NT/icariin
groups after in vitro culture for 7 days (Feng et al., 2016). A study
noted that PLGA coating by the overlay method and the mixing
method could enhance the loading and sustained release
properties of the icariin/TiO2 nanotube composite coating and
promote the long-term stable release of the drug in 10–12 days to
the surrounding tissue (Wang et al., 2019). The icariin-
immobilized HA/CS multilayer on the PTL-primed Ti rods via
the LbL system displayed a sustained and controlled release
profile that lasted more than 14 days and promoted the
adhesion, proliferation, and differentiation of mouse
preosteoblastic cells in the early stage. The icariin load
increased osteogenesis of rat femoral defects with elevated new
bone formation and accelerated the speed of local bone
mineralization around the implant locally according to
histological assessments at 2 weeks postimplantation (Song Y.
et al., 2018).

Naringin
Naringin, a flavanone glycoside, is considered the main effective
component in the epiphytic fern Drynaria fortunei and is also
commonly found in tomatoes, grapefruits, and other members of
the Citrus genus. Administration of naringin increased the in vitro
expression of BMP and the activation of the Wnt/β-catenin and
extracellular signal-related kinase (Erk) pathways, thereby
promoting osteoblastic proliferation and differentiation from
stem cell precursors for bone formation (Wu et al., 2008;
Wang D. et al., 2015; Lin et al., 2016; Liu et al., 2017; Wang
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et al., 2017; Yu et al., 2020) (Figure 2). Naringin also inhibited
osteoclastogenesis by both modifying RANK/RANKL
interactions and inducing apoptosis in osteoclasts in vitro
(Ang et al., 2011; Yu et al., 2013; Li F. et al., 2014; Yu et al.,
2020) (Figure 2). In addition, naringin has estrogen-like effects
and is known to bind to the estrogen receptor (Pang et al., 2010;
Wong et al., 2013). Although naringin has the potential to
accelerate bone regeneration, its biological activities are dose-
dependent. Naringin is relatively nontoxic in the range of
1–200 μg/ml in various cell lines but is cytotoxic at high
concentrations, as revealed by an increase in apoptosis (Tsui
et al., 2008). Moreover, naringin exhibits low bioavailability
following oral administration owing to its poor water
solubility and dissolution rates. Naringin has low
bioavailability and undergoes extensive metabolism in vivo.
Therefore, it is necessary to explore biomaterial-based
platforms for immobilizing or protecting naringin from
degradation and for achieving sustained spatiotemporally
controlled release to optimize its function.

Naringin with a collagen matrix carrier exhibited better
early bone remodeling and bone formation after grafting into
full-thickness parietal bone defects of rabbits than that of
autogenous endochondral bone graft alone and that of
collagen matrix alone, as shown by histological analysis at
2 weeks (Wong and Rabie, 2006). Naringin was immobilized
on ozonated CS with a reduced initial burst release and slow
and sustained release in 2 weeks because of stronger
intermolecular forces between naringin and chitosan.

Immobilized naringin could enhance the osteoconductivity
of CS with high expression of osteogenic proteins, activation
of receptor Smad1, and suppression of inhibitory Smad6 (Li
C. H. et al., 2014). Naringin was incorporated in the PCL/
PEG-b-PCL nanofibers by the electrospinning technique,
resulting in a low concentration release, a slow-release
effect prolonged to 90 days, and a total release of more
than 93%. Naringin-loaded PCL/PEG-b-PCL nanoscaffolds
were superior in supporting MC3T3-E1 preosteoblastic cell
line attachment, proliferation, differentiation, and
mineralization. Moreover, naringin-loaded PCL/PEG-b-
PCL nanoscaffolds could effectively suppress osteoclasts, as
shown by TRAP staining in a critical-size defect model of
mouse calvarial bone after 14 days of implantation (Ji et al.,
2014). In addition, naringin-loaded mPEG-MS-PLA micelles
with high drug encapsulation efficiency (87.8 ± 4%) achieved
sustained drug release under both physiological and
endolysosomal conditions. The naringin-loaded
nanocarriers were readily internalized by hASCs and
effectively promoted the osteogenic differentiation of
hASCs with more pronounced ALP and OPN expression
and increased matrix mineralization (Lavrador et al.,
2018). Naringin was embedded into PLGA/PLLA/PDLLA
fibers via electrospinning and showed very close to
sustained and steady drug liberation for 21 days, and the
naringin-loaded fibers increased the viability and enhanced
the proliferation of MC3T3-E1 cells compared with the mats
without naringin (Guo et al., 2018).

FIGURE 2 | (A) In vitro effects of naringin, reproduced with permission (Yu et al., 2020). (B) Schematic diagram of some osteogenic pathways and genes influenced
by berberine, and schematic diagram of berberine inhibiting osteoclasts by affecting the binding of RANK and RANKL, reproduced with permission (Zhang et al., 2021a).
(C) Schematic diagram of the bone remodeling mechanism and the role of ginsenosides, reproduced with permission (Yang N. et al., 2020). (D) Biological mechanism
leading to inhibition of osteoclast differentiation of BMMs by CURCGNPs through RANKL-induced signaling pathways, reproduced with permission (Heo et al.,
2014).
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A naringin-loaded porous biodegradable gelatin/β-TCP
composite enhanced bone regeneration with good
osteoconductive activity. The composite accelerated the
ingrowth of new bone into a defect site, as shown by
radiographic analysis, and complete osseointegration of the
biodegradable implant with newly formed bone replacing a
significant amount of the composites, as shown by histological
H&E staining, after implantation in a rabbit calvarial defect
model at 8 weeks (Chen et al., 2013). The hydroxyl groups in
naringin were immobilized by the carboxylic end groups of SF
and HA through chemical bonding with slow and sustained
release of naringin from SF/HA scaffolds. The naringin-loaded
scaffold promoted the osteogenic differentiation of hUCMSCs by
activating the PI3K/Akt, VEGF, and HIF-1 signaling pathways
demonstrated by gene microarray assays and enhanced bone
formation at the site of reconstruction in rabbit distal femur
defects, as shown by µCT and histological analyses at 4 weeks
after scaffold implantation. Moreover, naringin promoted
HUVEC growth and activated vascularization of SF/HA
scaffolds (Zhao et al., 2021).

Naringin-loaded microspheres embedded in the PLLA matrix
via thermal-induced phase separation partially rescued the
observed MC3T3-E1 cell cytotoxic effect of the anti-
inflammatory drug parthenolide and enhanced periodontal
bone regeneration for a long period of time after implantation
into rat fenestration defects (Guo et al., 2017). Naringin-loaded
PCL/PEG-b-PCL microspheres were incorporated into SAIB
depots to effectively reduce burst release with double diffusion
barriers. In addition, this injected construct increased new bone
formation by 53.1% after 8 weeks in an in vivo calvarial bone
defect rat model with enhanced expression levels of Runx-2 and
OCN (Yang et al., 2019).

Loading naringin was proven to enhance the bioactivity of Ti-
based biomaterials. Naringin-loaded TiO2 nanotubes with CS
coating enhanced osteoblast spreading, proliferation, ALP
activity, and late-stage osteoblast mineralization with slow
release of naringin (Lai M. et al., 2018). Naringin was loaded
by mixing and soaking in GelMA incorporated on a TiO2

nanorod coating to achieve degradation-type release and
diffusion-type release. The release of naringin notably
upregulated the expression of the osteogenic genes ALP,
RUNX-2, and COL-1 and promoted the attachment,
osteogenesis, and mineralization of MSCs. The degradation-
type release of naringin-M was shown to enhance the
osteogenic differentiation of MSCs more effectively because
naringin not only physically absorbed on GelMA but also
covalently bonded with GelMA during the curing process
(Shao et al., 2019). Naringin-loaded mineralized collagen
coatings with MOFs led to a strengthened controlled release
behavior that effectively reduced the burst release quantity by
nearly 50%. The coating improved rat MSC adhesion and the
expression of Col I, OC and RUNX2, as shown by RT-PCR
analysis, at 14 days of culture and led to the highest MSC
mineralization after 21 days of culture, as shown by Alizarin
Red S (ARS) staining (Yu et al., 2017). Naringin-decorated ZnO
nanoparticles were applied to functionalize Ti implants and
exhibited great potential for osteoblast proliferation and

differentiation (Yang Y. et al., 2020). Naringin can be loaded
in multilayers to create a sustained release of naringin from
micro-Ti surfaces using a layer-by-layer technique, enhance
the differentiation of osteoblasts, consistent with qRT-PCR
analysis of osteoblast genes, including Runx2, ALP, Col I,
OCN, OPN, and OPG, and inhibit osteoclast formation, as
shown by qRT-PCR analysis of the expression of osteoclastic
differentiation-related genes, including CTSK, NFAT, TRAP, and
VATP (Shen et al., 2021).

Quercetin
Quercetin is a flavonoid that is a component of Chinese
medicines such as Sambucus williamsii and is ubiquitously
found in vegetables and fruits. Quercetin promoted
proliferation, differentiation, and mineralization in the
osteoblastic lineage with a concomitant increase in the
expression of osteogenic genes, and the concentration of
quercetin needed for proliferation and differentiation may be
cell type dependent (Prouillet et al., 2004; Kim et al., 2007;
Srivastava et al., 2013; Zhou and Lin, 2014). Quercetin also
has inhibitory effects on formation, proliferation, and
maturation and decreases osteoclastic bone resorption in vitro
by binding to estrogen receptors (Wattel et al., 2004; Woo et al.,
2004). In addition, quercetin inhibited osteoblast apoptosis and
oxidative stress and promoted antioxidant expression, adipocyte
apoptosis, and osteoclast apoptosis (Hsu and Yen, 2006; Guo
et al., 2012; Messer et al., 2015; Messer et al., 2016; Zhang et al.,
2017). Despite the fact that many articles have reported the
osteogenic activity of quercetin, most previous studies have
assessed quercetin by directly adding it to cell culture media
in vitro or through oral administration (Yuan et al., 2018).
Quercetin has the drawbacks of low solubility in aqueous
media, weak lipid solubility, and poor permeability, oral
bioavailability, and biodegradation (Patel et al., 2012;
Anandam and Selvamuthukumar, 2014). Therefore, a local
sustained-release system of quercetin in bone defect areas
must be developed. A recent study noted that quercetin-loaded
composite materials could achieve sustained release of quercetin
during a test period of 120 days without any initial burst (Raja
et al., 2021).

The quercetin-loaded CDHA scaffold fabricated by a
fabrication process involving original room temperature 3D
printing showed steady release with the biodegradation of CaP
and constant release for 60 days in vitro without any initial burst.
By the addition of quercetin, the scaffold resulted in superior
osteoblast proliferation of MC3T3-E1 cells and suppressed RAW
264.7 cell proliferation, as shown by calorimetric MTS assays and
fluorescence microscopy images. In addition, quercetin-loaded
scaffolds significantly increased preosteoblast cell differentiation
and mineralization with the upregulation of COL I, RUNX-2,
ALP, BSP, and OC expression, as shown by real-time PCR
analysis, whereas osteoclast cell differentiation was
dramatically suppressed with decreased TRAP activity
(Tripathi et al., 2015). Quercetin-functionalized HA was
synthesized by phase transition from monetite and enhanced
human osteoblast-like MG63 proliferation and inhibited
osteoclast precursor 2T-110 viability according to WST1
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results at 7 and 14 days. The presence of quercetin in the
composite materials enhanced OB differentiation with
increased ALP and COL I expression and inhibited the
differentiation of osteoclasts with high OPG/RANKL ratios
and low CATK levels, as shown by immunoenzymatic assays
(Forte et al., 2016). In addition, quercetin provided antioxidant
properties to HA and counteracted the negative effect of oxidative
stress on osteoblast viability and differentiation in an H2O2-
induced oxidative stress environment while maintaining their
inhibitory effect on osteoclasts (Forte et al., 2017).

Quercetin-loaded collagen matrix promoted the formation of
new bone across parietal bone defects of rabbits after grating for
14 days, as shown by histological qualitative assessment (Wong
and Rabie, 2008). The quercetin-immobilized 3D-printed PLLA
scaffold achieved effective and sustainable release with the aid of a
PDA layer via covalent and noncovalent interactions. Quercetin-
loaded scaffolds enhanced the proliferation, differentiation, and
mineralization of MC3T3-E1 cells, consistent with the qRT-PCR
analysis of osteoblast genes and Western blot analysis of protein
expression, including that of OCN, COL-I, ALP, and Runx-2. The
concentration of quercetin and the biological activity of the
scaffolds showed a dose-dependent relationship (Chen et al.,
2019).

Quercetin-inlaid SF/HA scaffolds (0.03 wt%) promoted rabbit
BMSC proliferation and osteogenic differentiation with
prominent upregulation of Col I, OCN, and Runx2 RNA
expression shown by real-time PCR analysis after seeding
scaffolds for 28 days. The quercetin-loaded scaffolds also
enhanced new bone formation with increased values of BMD,
BV, BV/TV, BS, Tb.N, and Tb.Th by micro-CT 6 weeks after
implantation into the calvarial defects of rats (Song J. E. et al.,
2018). A subsequent study indicated that 25 μM quercetin-
containing DC/HAp sponges also promoted new bone
formation with increased BMD and BV 8 weeks after
implantation (Song et al., 2020). Quercetin-containing MSCS/
PCL composite scaffolds promoted WJMSC proliferation and
stimulated WJMSC mineralized nodule formation and calcium
deposition. Moreover, precipitation of apatite on the surface of
the scaffold was observed after immersion for 28 days in a SBF
solution (Khha et al., 2021). The complexes formed by the
interaction between quercetin and vanadium or copper were
shown to have osteogenic effects, as they stimulated matrix
mineralization, calcium deposition, and expression of ALP,
COL1, Runx-2, and osteoblast-specific microRNA (pre-miR-
15b) in murine osteoblastic MC3T3-E1 cells and human
osteoblast-like MG63 cells (Ferrer et al., 2006; Vimalraj et al.,
2018). Quercetin-zinc metal complex-incorporated PCL/gelatin
nanofiber scaffolds generated by electrospinning enhanced
cellular activity, adhesion, and proliferation and stimulated
osteogenic differentiation with higher expression of Runx2 and
type 1 collagen shown by RT-PCR analysis and bone
mineralization with improved relative OC and ONC
expression, as shown by enzyme-linked immunosorbent assay
(ELISA) kits (Preeth et al., 2021).

Quercetin-loaded nHA bioceramic microspheres resulted in
favorable drug loading and sustained release capacity for up to
28 days. The presence of quercetin strongly enhanced new bone

formation with increased BMD and Tb.Th values in the femur
defects of OVX rats at 8 weeks, as shown by micro-CT results. In
addition, the percentages of polychrome sequential fluorescence
labeling of new mineralized tissue in the quercetin-loaded nHA
group were significantly higher than those in the nHA group, and
more newly formed bone tissue penetrated into the top of the
defect of the quercetin-loaded nHA group, whereas only limited
new bone formation was shown on the bottom of the defect of the
nHA group by V-G picro fuchsin (Zhou et al., 2017). Quercetin-
loaded biodegradable PLGA microspheres had prolonged release
profiles without burst drug release and resulted in enhanced
osteogenic differentiation and mineralization of stem cell
spheroids according to ALP assays, ARS staining, and RT-PCR
(Lee et al., 2018).

Kaempferol
Kaempferol is found widely in Kaempferia galangal L., Ginkgo
biloba L., Thesium chinense T., Aloe vera, Rosmarinus officinalis,
Hippophae Rhamnoides L., and hawthorn, and showed osteogenic
property with various molecular mechanisms (Lee et al., 2014;
Sharma and Nam, 2019; Liu et al., 2021). Different delivery
carriers including nanostructured lipid or layer-by-layer nano-
matrix efficiently improve the oral bioavailability of kaempferol
(Kumar et al., 2012; Gupta et al., 2013; Du et al., 2019). A recent
study showed that 58S BG coated with Zein achieve could
sustained release of kaempferol in 9 days. The concentration
with 20 μM sample was not toxic for BMSC cells according to
the MTT results (Ranjbar et al., 2021). In addition, kaempferol-
loaded TiO2 showed sustained release within 168 h, and
promoted the rat BMSCs proliferation and osteogenic
differentiation with increasing mRNA expressions of Runx2,
OCN, ON, OPN, and ALP in vitro culture, and promoted new
bone formation surrounding the TiO2 implants at 2 and 4 weeks
after implantation iv vivo (Tsuchiya et al., 2018).

Puerarin
Puerarin, the major compound derived from the root of the
Pueraria lobata (Gegen), has a positive effect on bone health
based on the results of in vitro experiments and animal studies
(Park et al., 2017; Zeng et al., 2018; Kulczyński et al., 2021).
However, there were limited studies in local application in
combination with materials. Puerarin was first mixed with
collagen matrix grafted into rabbits’ skull defects, and
produced 554% more new bone than the absorbable collagen
sponge alone at 2 weeks according to histological analysis (Wong
and Rabie, 2007). In addition, puerarin-loaded Ti surface
promotes osteogenic differentiation and mineralization of
MC3T3-E1 cells with increasing ALP activity, Type I collagen
synthesis, and osteocalcin release (Yang F. et al., 2012).

ALKALOID

Curcumin
Curcumin, a principal alkaloid compound extracted from
Curcuma longa Linn, as well as from several other members of
the ginger family Zingiberaceae, accounts for 77% of turmeric
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extracts. Curcumin could enhance the proliferation of osteoblasts,
induce the expression of related genes, affect osteoclast activity,
and inhibit bone resorption by suppressing osteoclastogenesis by
inhibiting NF-κB and its ligand RANKL (Ozaki et al., 2000; Hie
et al., 2009; Gu et al., 2012; Son et al., 2018; Abdullah et al., 2020;
Liang et al., 2020). In addition, oral curcumin administration
enhanced the closure of critical-sized defects and bone repair
around titanium implants in streptozotocin-induced diabetic rats
(Cirano et al., 2018). In addition to its ability to regenerate bone,
curcumin also exhibits anticancer and antioxidant properties
(Naeini et al., 2019; Li et al., 2020; Ma B. et al., 2021).
However, the bioavailability of curcumin is limited due to low
aqueous solubility, extremely rapid systemic elimination, and
inadequate tissue absorption and degradation (Anand et al.,
2007). The high concentration of curcumin caused by
inappropriate release behavior is not conducive to cell
adhesion and proliferation (Scharstuhl et al., 2009; Jain et al.,
2016; Kim et al., 2017). Therefore, the bioavailability and
sustained-release kinetics of curcumin have been improved
through biomaterial-based administration methods used for
the inhibition of osteoclasts and osteosarcoma (Dhule et al.,
2012; Heo et al., 2014; Chen X. et al., 2015; Kheiri Manjili
et al., 2017; Verma et al., 2019) (Figure 2). Curcumin-loaded
PBAE particle-embedded calcium sulfate hemihydrate
composites showed sustained-release kinetics in 4 weeks
controlled by the degradation of PBAE during dissolution of
CS over time (Orellana et al., 2013). A study noted that curcumin-
loaded Ti using poly (dopamine) as an anchor did not adversely
affect osteoblast attachment, proliferation, apoptosis,
differentiation, or calcium deposition in cell culture (He et al.,
2015).

The curcumin-encapsulated CS-BG composite improved the
morphological parameters with increased bone/tissue volume,
osteoblast/bone surface, and osteoblast number and decreased
osteoclast/bone surface and mechanical properties with bone
hardness of newly formed bone in defects of the femoral
condyle irradiated with 1.5 Gy of 60 Co for 7 days after
30 days of implantation (Jebahi et al., 2015). Curcumin-loaded
PCL nanofibers (1 wt%) enhanced MC3T3-E1 osteogenic
differentiation and mineralization with increased gene and
protein expression of Alpl, Runx2, Bglap, Spp1, and Bmp2 at
day 21 after seeding in vitro, as shown using a combination of
qPCR and Western blots (Jain et al., 2016). Curcumin-loaded
collagen nanofiber membranes enhanced DPSC proliferation and
differentiation with increased ALP activity and expression of
osteoblastic genes and associated proteins, including Runx-2 and
OCN. In addition, the jaw defect of dogs was completely filled
with new bone after just 28 days of implantation, as confirmed by
histological testing, while the commercial membrane area
remained empty (Ghavimi et al., 2020).

Curcumin-loaded PCL-PEG and PLGA-PEG coatings enabled
continuous release of curcumin from the HA matrix for 22 days
and enhanced hFOB proliferation with apatite formation at cell
culture day 11 by FESEM and MTT cell viability assays.
Curcumin-loaded PCL-PEG enhanced the osteogenic
properties of the β-TCP scaffold with increased osteoid
formation and mineralization of the newly formed bone by

modified Masson Goldner trichrome staining and H&E
staining and ECM formation by collagen staining after 6 weeks
in an in vivo study (Bose et al., 2018). Curcumin-loaded
microspheres were incorporated into the CHA scaffold to
achieve drug release from the composite scaffolds for up to
30 days. The curcumin-loaded scaffold alleviated the negative
impacts of diabetic serum on the proliferation, migration, and
osteogenic differentiation of rat BMSCs with increased expression
of Nrf2 and HO-1 and decreased production of H2O2,
thiobarbituric acid reacting substances (TBARS), and
intracellular reactive oxygen species (ROS). Moreover, the
presence of curcumin in the composite materials enhanced
new bone formation within the calvarial defect, as shown by
micro-CT and H&E staining, compared to that of the diabetes
group at 8 weeks postoperatively and activated vascular
recruitment with higher protein expression of PECAM-1 and
VEGF, as shown by Western blots (Li and Zhang, 2018). In
addition, curcumin/alendronate-coloaded NPs decorated with
hyaluronic acid increased the MC3T3-E1 cell growth rate
determined using crystal violet staining, promoted cell
differentiation with higher collagen deposition as shown by
VG staining from days 7 to 21, and enhanced ECM
mineralization with high calcium and phosphate deposition, as
shown by ARS and von Kossa staining and EDX microanalysis
from days 7 to 21. Moreover, the nanoformulation could
stimulate bone formation by upregulating the levels of BMP-2,
Runx 2, and OCN, as shown by using sandwich ELISAs (Dong
et al., 2018).

A study demonstrated that various amounts of curcumin/
BMP-2-loaded poly-L-lysine/hyaluronic acid hydrogels resulted
in increased MG-63 cell proliferation after 3 days of culture, and
by controlling the amounts of curcumin and BMP-2, the
hydrogels showed better osteogenesis with higher in vitro ALP
activity and calcium deposition and better in vivo new bone
regeneration, as shown by micro-CT analyses. Notably, the
incorporation of greater than 15 μM curcumin had negative
effects on the proliferation of human osteosarcoma MG-63
cells (Kim et al., 2017). Successful treatment of osteosarcoma
requires postsurgical bone defect repair as well as the complete
eradication of bone tumor cells in the surrounding tissues (Ma
et al., 2018). Curcumin-loaded liposomes exhibited more
controlled and sustained release for 60 days by the thin-film
hydration method. Porous 3DP TCP scaffolds with curcumin-
encapsulated liposomes promoted hFOB cell proliferation, as
determined by MTT assays; attachment and growth, as
determined by FESEM at days 3, 7, and 11; and early
osteoblast differentiation at day 11, as determined by ALP
assays. Moreover, the presence of liposomal curcumin resulted
in a 96% decrease in in vitroMG-63 cell proliferation and viability
and almost no or very poor cell attachment after 11 days of
incubation (Sarkar and Bose, 2019). Curcumin-loaded HA-
coated Ti6Al4V implants showed controlled and sustained
drug delivery from HA-coated Ti implants at pH 7.4 and pH
5.0 for 22 days in the presence of vitamin K2. The curcumin/
vitamin K-loaded implant enhanced in vitro hFOB cell
attachment and proliferation for 11 days and inhibited MG-63
cell attachment and proliferation with 95 and 92% lower
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osteosarcoma cell viability at days 7 and 11, respectively,
according to the MTT results and FESEM images. In addition,
curcumin/vitamin K enhanced bone formation around the
implant and improved contact between the tissue and implant,
as shown by modified Masson Goldner staining, after 120 h of
femoral epicondyle defect surgery in a rat distal femur model
(Sarkar and Bose, 2020). Curcumin-loaded CS nanoparticle-
encapsulated SF/HAMA hydrogels exhibited pH-responsive
release and had a lower drug release rate and were maintained
at 32 days. The in vitro proliferative response of the hydrogels
with an equivalent curcumin concentration of 150 μg/ml
decreased the MG-63 cell survival rate and improved the
viability of MC3T3-E1 cells, consistent with the results of live
and dead cells stained with fluorescent dye (Yu Q. et al., 2021).
The curcumin microsphere/IR820 coloaded hybrid
methylcellulose hydrogel induced more tumor cell apoptosis
due to localized hyperthermia-accelerated curcumin release
and promoted osteogenic differentiation, as shown by ALP
and ARS staining and a microplate reader at days 7 and 14.
The curcumin-loaded hydrogel with chemo-co-thermal efficacy
and thermal-accelerated curcumin release efficiently eliminated
osteosarcoma and promoted tibial bone defect regeneration
according to micro-CT analysis, H&E staining, and Masson
staining (Tan et al., 2021).

Berberine
Berberine is a quaternary ammonium isoquinoline alkaloid and is
mainly extracted from traditional Chinese herbs, such as Coptidis
chinensis Franch. (family Ranunculaceae), Phellodendron
chinense Schneid. (family Rutaceae), and Mahonia bealei
(Fort.) Carr. (family Berberidaceae). Berberine can promote
the proliferation and differentiation of osteoblasts and inhibit
the production of osteoclasts to promote bone regeneration (Tao
et al., 2016; Dinesh and Rasool, 2018; Han and Kim, 2019; Yang B.
et al., 2020; Zhang et al., 2021a) (Figure 2). However, berberine
was found to have low pharmacological activity because of its low
bioavailability resulting from poor solubility, a short half-life, and
a substantial first-pass effect in the intestines, and developing a
new berberine delivery strategy has been used to address these
problems (Liu et al., 2016). Studies have shown that combining
different materials can control the release behavior but only
emphasizes the anti-infective effects (Zou et al., 2009; Cai
et al., 2018). Berberine-coated mannosylated liposomes
abrogated the increased osteoclast formation in BMM cells,
inhibited the bone resorptive activity of osteoclasts, and
upregulated miR-23a levels to inhibit GSK-3β phosphorylation
(Sujitha and Rasool, 2019).

Berberine-loaded porous n-HA/PA66 composite scaffolds
coated with chitosan achieved continuous berberine release
and were maintained for 150 h in PBS solution. The in vitro
cytotoxicity test showed that the berberine-loaded scaffold had
good cell adhesive and proliferative capacities by phase contrast
micrographs, SEM photographs, and MTT tests (Huang et al.,
2011). Berberine-loaded porous CPC with sustained release of
berberine for as long as 9–10 days promoted cell proliferation and
differentiation with significantly increased ALP activity and
mineral deposition, which was consistent with the expression

levels of ALP, OCN, and BMP2 and RUNX2 in BMSCs
originating from rats with osteoporosis cultured for 14 days
in vitro. In addition, with berberine, the local BMD and BV/
TV values were substantially higher than those of the porous CPC
group or control group, as shown by micro-CT analysis, and the
new bone formation area was substantially greater than those of
the porous CPC group and the control group, as shown by van
Gieson staining, 8 weeks after implantation in vivo in critical-size
calvarial defects in an OVX rat model (Wang et al., 2021).
Berberine-loaded PCL/COL electrospun scaffolds could release
drug stably for up to 27 days with a low burst release and promote
osteogenic differentiation of DPSCs with upregulated expression
levels of osteogenic genes (ALP, BMP2, OCN, and COL-1) in
coculture on the scaffolds after 7 and 14 days, as shown by RT-
PCR. The presence of quercetin could elevate the bone defect
repair ability of the scaffold. An in vivo study showed that the
defect in the berberine-loaded scaffold group was almost repaired
by newly formedminerals with a higher bone mineral density and
increased BV/TV, as shown by micro-CT analysis, and an
increase in the newly formed bone diameter and newly formed
bone area in the defect edge, as shown by H&E and Masson
staining, at 8 weeks after implantation in the critical bone defect
of rats (Ma L. et al., 2021). A 10 mmol/L berberine-loaded PCL/
PVP-MC/CS bilayer membrane could promote MC3T3-E1 cell
proliferation and attachment in vitro, as shown by MTT assays
and confocal laser confocal microscopy, and stimulate bone tissue
repair with thicker lamellar bone and higher bone density, as
shown by CT, H&E, and Goldner’s trichrome staining, when
implanted into a femoral bone defect in adult rats for 4 and
8 weeks (Zhang et al., 2021a).

STILBENES, PHENOLIC ACIDS, AND
TERPENOIDS

Resveratrol
Resveratrol is a nonflavonoid polyphenol phytoalexin with a
stilbene structure found in the traditional Chinese medicine
Reynoutria japonica Houtt. Resveratrol promotes bone
formation by promoting osteoblast proliferation and
osteogenic differentiation and antagonizing osteoclast
differentiation through different signaling pathways (Mizutani
et al., 1998; Dai et al., 2007; He et al., 2010; Tseng et al., 2011;
Dosier et al., 2012; Erdman et al., 2012; Shakibaei et al., 2012;
Zhao et al., 2018). Resveratrol also stimulated BMP-2 production
by osteoblasts through Src kinase-dependent ER activation,
increased the serum concentration of BMP-2, and prevented
femoral bone loss in OVX rats (Mizutani et al., 2000; Su et al.,
2007). In addition, resveratrol has antioxidant and anti-
inflammatory biological activities (Chung et al., 2011; Zhou
et al., 2019). Several studies have shown that resveratrol can
positively affect the repair of rat skull defects through oral
administration (Casarin et al., 2014; Pino et al., 2017; Franck
et al., 2018). In recent clinical trials, orally administered
resveratrol failed to show any significant effect on a panel of
biomarkers of bone turnover and calciummetabolism (Asis et al.,
2019). The clinical use of resveratrol has been limited mainly by
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its low aqueous solubility and rapid metabolism and poor
chemical stability, resulting in low bioavailability (Baur and
Sinclair, 2006). Combining resveratrol with various materials
for a local controlled delivery system may provide a new route
through which to deliver this agent to a local target and
strengthen its potency (Peng et al., 2010; Teskac and Kristl, 2010).

Resveratrol-loaded porous PCL scaffolds generated by vapor
phase grafting and coupling could increase the ALP activity of rat
BMSCs, as shown by pNPP analysis and a TRACP and ALP
double staining kit, and increased matrix production and
mineralization of the cell–scaffold cocultures, as shown by
toluidine blue, von Kossa and Alizarin Red staining in vitro.
The resveratrol-loaded scaffold also enhanced the bone
regeneration of in vivo rat calvarial defects, as shown by X-ray
and histological analysis, which demonstrated higher X-ray
density and greater areas of bone-like structures that were
positively stained for BSP after implantation for 8 weeks (Li
et al., 2011). The resveratrol-loaded collagen scaffolds released
over twice as much resveratrol as the blank collagen scaffold. The
incorporation of resveratrol enhanced the scaffold mineralization
of hASC osteogenic differentiation in the scaffolds, as shown by
flow cytometry analysis and Alizarin Red and von Kossa staining,
and promoted the bone regeneration calvarial defects of the rat
models at 3 months, as shown by micro-CT (Wang et al., 2018).

Resveratrol-loaded electrospun PCL and PLA nanofibers with
sustained release for 35 days could promote STRO-1+ cell
osteogenic differentiation with higher mRNA levels of the
early-stage osteoblast differentiation markers RUNX2 and OSX
and the late-stage markers OCN, ONN, OPN, and BSP, which
were evaluated by quantitative RT-PCR, but only the PLA
nanofibers with lower resveratrol release could inhibit
RANKL-induced osteoclast differentiation via the
downregulation of CTSK expression and a reduction in TRAP
activity (Riccitiello et al., 2017). Resveratrol-loaded PLA/OMMT
composite nanofibrous scaffolds showed slower and more
controlled release because resveratrol can be trapped within
the OMMT plates and interact chemically with CTAB. The
presence of resveratrol promoted antioxidant activity with
83.75% radical scavenging and enhanced hASC osteogenic
differentiation with the increased expression levels of ALP,
OCN, and OPN after culturing for 14 and 21 days (Karimi-
Soflou et al., 2021).

Resveratrol-loaded albumin nanoparticle-entrapped PCL
scaffolds showed sustained release without a burst effect. The
scaffold with the addition of resveratrol increased hMBSC
activity, as determined by MTT assays; ALP activity, as
determined by BCIP-NBT assays on days 8 and 12; and
increased calcium deposition, as determined by von Kossa
staining on day 16 after the addition of quercetin (Kamath
et al., 2014). Resveratrol-loaded 3D PLGA-sintered
microsphere scaffolds promoted osteogenic differentiation with
greater ALP expression and higher amounts of calcium in hMSCs
cultured in vitro at 7, 14, and 21 days. Moreover, resveratrol-
loaded scaffolds downregulated the expression of inflammatory
markers while stimulating the expression of angiogenic genes
(Rutledge et al., 2016). Resveratrol-encapsulated n-HA/CS
composite microspheres suppressed TNF-α, IL-1β, and iNOS

mRNA expression in RAW 264.7 cells cultured on composite
microspheres for 3 and 7 days and had no significant effect on the
viability of these cells. Resveratrol-loaded microspheres
promoted the proliferation of BMSCs, enhanced the
osteodifferentiation of BMSCs by upregulating the levels of
osteogenic Runx2, ALP, Col-1, and OCN, as determined by
RT-qPCR analysis at 14 days, and resulted in higher levels of
calcium deposition than those of BMSCs, as determined by ARS
staining. In addition, the microspheres enhanced
entochondrostosis and the bone remodeling capacity in a
dose-dependent manner according to micro-CT analysis and
Masson’s trichrome and H&E staining when implanted into in
vivo bone defects of osteoporotic rat femoral condyles at 6 weeks
(Li et al., 2021). Resveratrol/angiopoietin-2-loaded PEGDA/TCS
hydrogels induced new blood vessel reconstruction earlier
through the autophagy pathway and resulted in new bone
tissue almost completely formed and a network structure in
the in vivo defect area at 8 weeks in a relatively hypoxic
environment, as demonstrated by histology,
immunofluorescence, immunohistochemistry, and Masson
staining (Fan et al., 2021). Resveratrol-loaded SLNs/GelMA
hydrogels exhibited long-term slow release of the drug from
the scaffolds, and the drug concentration was maintained at
the necessary level for 28 days. The hydrogel promoted both
early-stage and late-stage osteogenic differentiation of BMSCs
in vitro with increased expression of osteogenic genes, including
Alp, Ocn, Runx2, and Opn, as shown by RT-qPCR. The presence
of resveratrol promoted new bone to completely cover in vivo rat
cranial defects with a 50% BV/TV ratio shown by micro-CT and
80% thickness of normal bone tissue shown by H&E staining and
Masson’s trichrome staining at 8 weeks post-operation (Wei
et al., 2021).

Salvianolic Acids
Salvianolic acids are water-soluble components extracted from
Salvia miltiorrhiza, and more than 50 hydrophilic compounds,
including salvianolic acids A and B, which are the most abundant,
have been isolated. Salvianolic acids A and B promoted
osteogenesis of osteoblasts and bone marrow stromal cells and
enhanced angiogenesis in vitro and in vivo to accelerate early-
stage fracture healing (Lay et al., 2003; Cui et al., 2009; Cui et al.,
2012; He and Shen, 2014; Tang et al., 2014; Xu et al., 2014).

Salvianolic acid B-loaded CS microspheres immobilized on
alginate-coated HA scaffolds exhibited an initial burst release
followed by sustained release over 30 days and obviously
promoted rat calvarial osteoblast attachment, uniform
distribution, and proliferation after cell culture for 3 and
7 days, as shown by SEM observation and Alamar Blue assays
(Li et al., 2016). The salvianolic acid B-loaded CS/HA scaffold
showed that the release of salvianolic acid B lasted for more than
56 days. The addition of salvianolic acid B promoted the
proliferation of MC3T3-E1 cells at 3 and 5 days, as evaluated
by the CCK-8 method, and increased ALP expressed by MC3T3-
E1 cells after 7 and 14 days of culture. The addition of salvianolic
acid B also enhanced bone regeneration of rabbit radius bone
defects with higher BV/TV values, as shown by CT examinations,
and a higher percentage of bone formation shown by HE staining
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at 6 and 12 weeks. In addition, the addition of salvianolic acid B
enhanced the angiogenic bioactivities of the scaffold with
increased VEGF activity in vitro and increased expression of
CD34 in vivo (Ji et al., 2019). Salvianolic acid B-loaded PLGA/β-
TCP composite scaffolds steadily released salvianolic acid B from
the PLGA/β-TCP scaffold in 30 days, but the release kinetics were
gradually reduced after 10 days. The addition of salvianolic acid B
promoted GFP transgenic rat MSC proliferation, as measured by
Alamar Blue assays. The addition of salvianolic acid B promoted
osteogenic differentiation of GFP transgenic rat MSCs, with
calcium deposition and ALP activity determined by ARS and
ALP staining. Salvianolic acid B enhanced the mRNA levels of the
osteogenic markers Runx2, OCN, and Cal1a1, as determined by
qPCR. After 8 weeks of implantation, salvianolic acid B increased
new bone formation, the bone volume ratio, and
neovascularization in a dose-dependent manner, as shown by
micro-CT analysis and histological analysis, and increased the
expression of OCN and CD31, as shown by
immunohistochemistry assays (Lin et al., 2019). Salvianolic
acid B-loaded SF/GO scaffolds generated through physical
adsorption and covalent bonding could load large doses and
exhibited continuous release in vitro for at least 4 weeks. The
scaffold promoted the proliferation, osteogenic
differentiation, and mineralization of rBMSCs in vitro, and
enhanced the expression of the osteogenic genes ALP, COL1,
RUNX2, and OCN and upregulated the expression of the
angiogenesis marker genes VEGF and HIF-1α, as determined
by qRT-PCR. When the scaffold was implanted to the defect
after 8 weeks, a large amount of new bone was formed at the
defect site with good interfacial integration and increased
number of neovessels according to the results of Micro-CT,
van Gieson, H&E, and Masson staining (Wang W. et al.,
2020). The salvianolic acid B-loaded MBG scaffold
consistently released drug for nearly 30 days. The addition
of salvianolic acid B to the MBG scaffold further promoted
rBMSC proliferation, as determined by CCK-8 assays on days
1, 3, and 7, osteogenic differentiation with high ALP
expression and calcified nodules, as determined by alkaline
phosphatase staining and Alizarin Red staining on days 7 and
14, which was consistent with the upregulation of osteogenic
differentiation-related genes. The addition of salvianolic acid
B enhanced the bone regenerative ability of MBG scaffolds by
micro-CT, sequential polychrome label analysis, and van
Gieson’s and immunohistochemistry staining 8 weeks after
implantation in rat cranial bone defects (Wu et al., 2021).

Salvianolic acid A-loaded liposomes provided substantial local
distribution of high concentrations of the drug and improved
retention (lasting beyond 20 days for one injection) of the drug at
the fracture site, improving the healing of prednisone-induced
delayed fracture union in mice. The liposome was able to reverse
the decline of bone in TCA, effectively reducing the cartilaginous
callus area and chondrocyte area in the total callus area shown by
safranin O and H&E staining on the 18th day.
Immunohistochemistry analyses suggested that osteogenesis
(Osterix) and angiogenesis (PECAM-1)-related protein
expression was increased by liposome treatment in the callus.
The liposomes increased the callus BV/TV, BS/TV, connectivity

density, and BMC, as shown by micro-CT analysis. Liposome
treatment could shorten fracture healing by at least 22 days (from
>64 to 42 days) with improved structural strength and apparent
material strength (Liu et al., 2018). Salvianolic acid A-loaded
liposome-incorporated collagen sponges promoted bone
formation at the fracture site of a rabbit model of radius
nonunion. Micro-CT showed significantly increased union
callus formation with elevated BV and TV values in the 4th
week postsurgery. Histological images showed increased bone
areas in the callus, and immunofluorescence images showed
increased expression of collagen II, P-HDAC3, VEGFA,
osteocalcin, and RUNX2 in the callus (Zhou et al., 2020).

Notably, all the above-mentioned studies have demonstrated
that salvianolic acid-loaded materials can promote angiogenesis
both in vitro and in vivo.

Ginsenosides
Ginsenosides are the main triterpene glycoside compounds
present in the plants of the genus Panax (ginseng), which
belongs to the Araliaceae family. Based on diverse structural
characteristics, ginsenosides can be divided into the following
three types: protopanaxadiol (PPD), protopanaxatriol (PPT), and
oleanane. Ginsenosides, such as Rb1, Rg1, Re, Rb2, and Rh1, have
positive effects on bone regeneration, promoting osteoblast-
related cell proliferation and osteogenesis and inhibiting the
activity of osteoclasts (Cheng et al., 2012; Siddiqi et al., 2014;
Gu et al., 2016; Kim et al., 2016; Cong et al., 2017; Yang N. et al.,
2020) (Figure 2).

The ginsenoside Rb1-loaded 3D MSCS/PCL composite
scaffold led to larger and more tightly arranged HA aggregates
and improved attachment to the scaffolds after 3 days of
immersion in SBF. The scaffold promoted adhesion and
proliferation of hDPSCs, as shown by PrestoBlue assays and
F-actin fluorescent staining; osteogenic differentiation and
expression of osteogenesis-related markers such as ALP, OPN,
and OC, as shown by ELISAs; and bone mineralization, as shown
by Alizarin Red S staining. Moreover, according to the results of
immunohistochemistry, the GR-containing MSCS scaffolds had
substantially increased collagen formation, mineralization of
bone defect areas, and greater proportions of calcified hard
tissue than those of the others 4 and 8 weeks after
implantation in the critical-size bone defect in a rabbit model,
as shown by H&E, Masson’s trichrome, and von Kossa staining.
The scaffold enhanced the proliferation of hDPSCs, increased
expression of osteogenic-related proteins, and effectively
inhibited inflammation. The scaffold strongly increased
collagen formation, mineralization of the bone defect area, and
the proportions of calcified hard tissue compared with the others
and was progressively degraded by the newly formed bone tissue
during regeneration after 4 and 8 weeks of implantation (Chen
et al., 2021).

Ginsenoside compound K is one of the major metabolites
detected in blood after the oral administration of the ginsenosides
Rb1 and Rb2. The ginsenoside compound K-loaded porous FSC:
CH:BCP scaffold promotes the attachment of osteoblast-like
MG-63 cell lines and subsequent spreading and proliferation
of cells, as shown by MTT assays and cell adhesion and inverted
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fluorescence staining images (Muthukumar et al., 2016). Further
research from the same team showed that the ginsenoside
compound K-loaded CH:BCP microspheres could promote rat
BMSC proliferation shown by CLSM and DNA quantification
and osteogenic properties with increased osteogenic marker
expression of OPN, OCN, and Col I shown by RT-PCR
analysis (Thangavelu et al., 2020).

Ginsenoside Rg1-loaded PPF microspheres resulted in a slow
in vitro release from microsphere/scaffold composites,
maintaining local in vivo concentrations at angiogenic levels
for an adequate duration and thus enhancing bone
regeneration (Salarian et al., 2016). The ginsenoside Rg1-
loaded GM/Sr-α-CaS scaffold achieved sustained release
without drug burst. A scaffold with a low concentration of
ginsenoside Rg1 accelerated MC3T3-E1 in vitro osteogenic
differentiation with higher ALP activity at 14 and 21 days and
vascularization with higher expression of VEGF, as shown by RT-
qPCR at 1, 7, 14, and 21 days. Moreover, the ginsenoside Rg1-
loaded scaffold promoted bone regeneration of rat calvarial
defects in 12 weeks with a new bone volume of approximately
83.3%, and BMD increased to 1,133 mg/cm3, as shown by micro-
CT, with many new bones and collagen fibers shown by HE
staining, safranin O-fast green staining, and Masson staining. In
addition, the new bone had higher OCN expression (Luo et al.,
2020).

Ursolic Acid
Ursolic acid is a pentacyclic triterpenoid compound extracted
from Ligustrum lucidum and Eriobotrya japonica, stimulated
osteoblast differentiation, and inhibited osteoclast
differentiation (Cao et al., 2018; Tan et al., 2019; Zheng
et al., 2020). Ursolic acid also inhibited osteolysis,
inflammation, and osteoclastogenesis caused by titanium
wear particles (Peng et al., 2018). Ursolic acid-loaded
collagen sponges were implanted onto the calvarial bones
of mice, the thickness of newly formed woven bone in ursolic
acid-treated mice was increased about 7-fold relative to
vehicle-treated mice after 3 weeks with a high proportion
of positive immunostaining of BMP-2 (Lee et al., 2008).
Ursolic acid-loaded mesoporous bioglass/chitosan porous
scaffolds with continuous release for 72 h promoted
in vitro MC3T3-E1 cell proliferation and osteogenic effects
with increasing ALP activity and expression level of COL1,
RUNX2 genes. The scaffold remarkably promoted new bone
formation in rat critical-size calvarial bone defect with high
BV/TV (40.15 ± 3.29%), BMD, and MAR (5.89 ± 0.18 μm/d)
according to Micro-CT and histological results at 12 weeks
(Ge et al., 2019). Ursolic acid-loaded mesoporous
hydroxylapatite/chitosan scaffolds enhanced the controlled
release of drugs in 72 h with hydrogen bonding between the
mesoporous structure and polar group in the scaffold. The
scaffold showed better in vitro osteogenesis and bone
mineralization ability with the expression of genes and
proteins related to new bone formation and differentiation.
The scaffold promoted the bone regeneration in ability rat
skull defect model at 12 weeks with increase in volume,

density, BMD, and MAR of new bone formation with
higher osteogenic-related proteins (Yu X. et al., 2021).

CONCLUSION AND PROSPECTS

Integrating materials with TCM compounds delivery has been
proven to be effective substitutes for bone defect regeneration
without adverse side effects, primarily in preclinical cell-based or
experimental animal studies. Combining different compounds
with different materials through different economical and
effective preparation methods not only improves the release
behavior of compounds, but also improves the
biocompatibility, mechanical properties, osteoconductivity, and
osteoinductivity of biomaterials. Although the effective
concentration of the compounds is different for different cells,
with the help of these materials, the drug can maintain the
appropriate concentration with continuous and controlled
release, promote the proliferation and osteogenic
differentiation of various cells with osteogenic potential, and
inhibit the activity of osteoclasts by regulating different signal
pathways. This synergy further enhances its comprehensive
biological activity in the process of bone regeneration,
effectively promoting the development in BTE. However, the
optimum concentration of compounds is different in vivo and
in vitro, and the rate at which drugs clear in the human body
follows different kinetics compared with that in controlled
in vitro experiments. Although current studies have described
attempts to improve the release behavior of compounds, almost
no research mentions the pharmaceutical behavior of compounds
in vivo. Therefore, the major issue to be addressed is the scale-up
of the compound release profile in an in vivo model. Material
types and loading strategies deserve further attention and
optimization to promote the efficiencies and efficacies of
compound delivery systems. In addition, these compounds
have antioxidative, antibacterial, anti-inflammatory, and
antitumor cell proliferative abilities and promote angiogenesis.
The study of bone defect models under corresponding
environments should be carried out for applications in clinical
treatment. In addition, the current research is limited to the
reconstruction of bone defect models in mice, rats, or rabbits, and
most of them are calvarial defect models that cannot fully
simulate the process of human bone regeneration and cannot
soon be translated into clinical practice. Therefore, the
development of more ideal preclinical studies on bone defects
in large animals models (horses, sheep, dogs, and pigs) is
necessary for the future, followed by transfer to human clinical
trials.
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