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Abstract: UDP-glucuronosyltransferases (UGTs) are phase II drug-metabolizing enzymes that me-
tabolize endogenous fatty acids such as arachidonic acid metabolites, as well as many prescription
drugs, such as opioids, antiepileptics, and antiviral drugs. The UGT1A and 2B genes are highly
polymorphic, and their genetic variants may affect the pharmacokinetics and hence the responses of
many drugs and fatty acids. This study collected data and updated the current view of the molecular
functionality of genetic variants on UGT genes that impact drug responses and the susceptibility to
human diseases. The functional information of UGT genetic variants with clinical associations are
essential to understand the inter-individual variation in drug responses and susceptibility to toxicity.

Keywords: metabolism; drug toxicity; genetic variants; UGTs

1. Introduction

The UDP-glucuronosyltransferase (UGT) enzymes are phase II drug-metabolizing
enzymes that catalyze the glucuronidation reaction. This chemical reaction involves the
formation of a covalent bond between the endogenous polar glucuronic acid with drugs
and endogenous lipophilic compounds [1]. The glucuronidated compounds have chemical
functional groups that accept glucuronic acid. These functional groups include hydroxyl,
carboxylic acid, amine, and thiol [2]. The UGTs glucuronidate endogenous compounds,
such as bilirubin, bile acids, and steroid hormones. Additionally, the UGTs glucuronidate
exogenous compounds such as opioid analgesics, non-steroidal anti-inflammatory agents
(NSAIDs), anticonvulsants, and antiviral drugs [3].

Glucuronidation mainly terminates and enhances the elimination of chemical com-
pounds by enhancing their solubility in urine. Additionally, glucuronidated compounds
are large, which favors their elimination through biliary excretion [4]. Therefore, the glu-
curonidation reaction can increase the efficacy and toxicity of some drugs, and glucuronide
morphine is reportedly 100 times more potent than the morphine substrate itself [5].

Glucuronidation occurs in mammalian species, although significant inter-species
differences exist in the rate of glucuronidation, expression, and selectivity [6]. For example,
codeine is glucuronidated at higher rates among humans than rats [7,8]. Additionally, cat
livers cannot glucuronidate the analgesic paracetamol drug [9]. Therefore, any information
obtained about glucuronidation in animals is not directly applicable to humans.

2. UGT Isoforms and Genes

The UGT superfamily includes many isoforms with different substrate selectivity and
expression [10]. Twenty-two UGTs have been identified in humans [10,11]. Almost all
UGT isoforms consist of 29 conserved amino acids involved in the binding to the UDP-
glucuronic acid [8]. The UGT isoforms are classified into four major families depending
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on the DNA sequence similarity: UGT1, 2, 3, and 8 [1]. The UGT1 and 2 families are
involved mainly in xenobiotic metabolism, while the UGT3 and 8 families only metabolize
endogenous compounds [12].

The UGT1 isoform genes consist of five exons. The gene sequence of the first exon is
distinct, while they share the remaining four exons. Alternative splicing of the distinct first
exons with the common four exons results in the synthesis of nine different isoforms of
the UGT1 family; A1 and A3–10 [11]. The isoforms of the UGT2 family contain an entirely
different polypeptide sequence; their isoform genes do not share common exons, as in the
UGT1 isoforms. The UGT2 family is subdivided into the UGT2A and B subfamilies [13].

3. Expression of UGT Isoforms

The liver has the greatest abundance of UGT expression [14,15]. UGTs 1A1, 1A3,
1A4, 1A6, 1A9, 2B7, and 2B15 play major roles in the glucuronidation of drugs in the
liver. Additionally, the UGT1A and 2B subfamilies are also expressed in the kidneys, small
intestine, colon, stomach, lungs, epithelium, ovaries, testes, mammary glands, prostate,
and heart [16,17]. The UGT3 family is not expressed in the liver; it is mainly expressed in
the thymus, testes, and kidneys [12]. Therefore, the UGT3 family members are considered
extrahepatic UGT enzymes. The UGT2B subfamily isoforms are expressed at higher rates
than the UGT1A subfamily isoforms [14,15,17]. UGTs are transmembrane proteins located
in the smooth endoplasmic reticulum of cells [18].

Many transcriptional factors can regulate the expression of UGT genes. Hepatocyte
nuclear factors (HNFs) 1 and 4, the aryl hydrocarbon receptor (AhR), constitutive an-
drostane receptor (CAR), pregnane X receptor (PXR), farnesoid X receptor (FXR), liver
X receptor (LXR), and peroxisome proliferator-activated receptors (PPARs) regulate the
expression of UGTs in the liver and other tissues [3,19,20]. CAR induces UGT1A1 and
PXR regulates the expression of the UGT1A1, 1A3, 1A4, and 1A6 genes [21,22]. Activation
of FXR upregulates UGT2B4 and downregulates UGT2B7 [23,24] and LXR induces the
expression of the UGT1A3 gene [25]. PPARα regulates the expression of the UGT1A1, 1A3,
1A4, 1A6, 1A9, and 2B4 genes in a tissue-specific manner [26]. Furthermore, the UGT1A1,
1A3, 1A4, 1A6, and 1A9 genes are upregulated after the activation of AhR nuclear receptor
ligands, such as polycyclic aromatic hydrocarbons [27]. Steroid hormones are regulators
of UGT expression in the breast and prostate, and 19β-estradiol and dihydrotestosterone
increase the expression of UGT genes responsible for glucuronidation of androgens [28].
Furthermore, Jarrar et al. (2019) showed that NSAIDs downregulated the mRNA expres-
sion of the mouse ugt2b1 gene in the liver and kidneys and upregulated the expression of
ugt2b1 in the heart. However, the underlying mechanisms of how NSAIDs regulate the
expression of ugt2b1 in an organ-specific manner remain to be investigated [6].

4. The Role of UGTs in Xenobiotic Metabolism

UGT1A1, 1A3, 1A4, 1A6, 1A9, and 2B7 play major roles in drug metabolism in
humans [3]. UGT1A1 glucuronidates R-carvedilol [29], etoposide [30], B-estradiol [31],
ezetimibe [32], and the active metabolite of irinotecan, SN-38 [33]. UGT1A3 glucuronidates
ezetimibe [34] and telmisartan [35]. UGT1A4 glucuronidates amitriptyline [36], lamotrig-
ine [37], midazolam [38], olanzapine [39], and trifluoperazine [40]. UGT1A6 metabolizes
deferiprone [41] and paracetamol [42] and UGT1A9 glucuronidates propofol [43], enta-
capone [44], indomethacin [45], mycophenolic acid [46], and oxazepam [47]. UGT2B7
metabolizes carvedilol [29], codeine [48], diclofenac [45], epirubicin [49], flurbiprofen [45],
morphine [50], naloxone [51], and zidovudine [52], while UGT2B15 glucuronidates lo-
razepam [53] and oxazepam [47].

Glucuronidation of certain drugs, such as cyclooxygenase (COX)-2 selective NSAIDs
rofecoxib and celecoxib, requires a hydroxyl group on the drug, which is obtained through
a cytochrome P450 (CYP450) oxidative reaction [54,55]. However, glucuronidation of
many drugs, such as morphine, can be done without the need for the CYP450 oxidation
reaction [50].
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UGTs also play a role in the metabolism of phytochemical compounds. For example,
glycyrrhetinic acid, which is found in licorice, is glucuronidated through UGT1A1, 1A3,
2B4, and 2B7 [56]. The hepatotoxic alkaloid senecionine is glucuronidated by UGT1A4 [57].
This herbal metabolism by UGTs forms part of the drug–herb interaction and influences
the metabolism and hence the efficacy of the drugs.

5. Factors Affecting UGT Activity

Table 1 summarizes the factors that affect glucuronidation capacity, such as age, gender,
diseases, and genetic variants. Owens et al. [58] found that paracetamol glucuronidation
was affected by age and renal function. In another study, activity and expression of
UGT1A4, the main UGT in paracetamol glucuronidation, differed widely according to
age, and the maximum UGT1A4 protein levels peaked at around 20 months old [59]. The
expression of UGTs in prenatal children and infants is low, possibly contributing to the
susceptibility of neonates to certain drug toxicities [60].

In terms of the effect of human diseases on drug glucuronidation, microsomes isolated
from cirrhotic human livers showed reduced glucuronidation capacities for zidovudine
and lidocaine [61]. Additionally, glucuronidation was decreased by two-fold in hepatic
cancer tissues treated with the anti-hepatic cancer drug sorafenib compared to normal
liver tissues, and this was associated with the decreased hepatic protein expression of
UGTs [62]. Mouse ugt2b1 and ugt1a1 genes were downregulated in the liver of uncontrolled
diabetic mice, but this downregulation was normalized after insulin treatment [63]. This
may explain, at least in part, the reduced capacity of drug glucuronidation in diabetic
patients [64].

Gender affected the drug glucuronidation of (S)-oxazepam [60,65], which was higher
in males because males had higher levels of UGT2B15 activity than females.

Genetic variants in UGT genes play major roles in drugs glucuronidation. Multiple
UGT genetic polymorphisms (UGT1A8*3, 1A9*3, and 2B7*2) influenced immunosuppres-
sant mycophenolic acid glucuronidation [66]. In addition, UGT2B7*2 reportedly affected
tamoxifen plasma levels [67] and was associated with diclofenac-induced hepatic toxic-
ity [68]. Many studies showed that UGT1A1*28 significantly affected the pharmacokinetics
and activities of the anticancer drug irinotecan [69,70]. Additionally, using in vitro methods,
we showed that the UGT2B7*2 genetic polymorphism reduced 20-hydroxyeicosatetraenoic
acid (20-HETE) glucuronidation, and this reduction was increased after incubating liver
microsomes with diclofenac, which is a potent NSAID inhibitor of 20-HETE glucuronida-
tion [71]. These results may explain one of the mechanisms underlying NSAID-induced
cardiotoxicity. Figure 1 shows the roles of UGTs in the metabolism of the arachidonic acid
metabolite 20-HETE.

Enzyme inducers and smoking can alter the glucuronidation of drugs. Rifampin, the
PXR nuclear receptor agonist, decreased the plasma levels of the human immune-deficiency
virus (HIV) antiviral zidovudine and accelerated its inactivation by glucuronidation [72].
The plasma levels of SN-38, the active metabolite of the anticancer drug irinotecan, were
decreased by approximately 40% in smokers [73].

Table 1. Factors affecting glucuronidation capacity.

Factor Effect on Glucuronidation References

Age
Neonates have a low capacity for drug glucuronidation, such as paracetamol, due to

low expression of UGT enzymes. The expression and activity of UGTs reach
maximum at around 20 months of age.

[58–60]

Disease Liver cirrhosis, cancer, and diabetes mellitus decrease glucuronidation capacity. [61–63]
Gender Males have higher glucuronidation activity against (S)-oxazepam than females. [64,65]

Genetic variants
UGT2B7*2 decreases glucuronidation capacity towards mycophenolic acid and fatty

acids, such as arachidonic acid metabolites.
UGT1A1*28 decreases the metabolism of irinotecan.

[66,67,69,70]

Environmental Smoking induces the UGT1A family, which increases the metabolism of SN-28. [73]
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Figure 1. Summary of enzymes affecting 20-HETE synthesis and removal. LTA4, Leukotriene A4; LOX, Lipoxygenase;
COX, Cyclooxygenase; NSAIDs, Non-steroidal anti-inflammatory drugs; PGH2, Prostaglandin H2; TXA2, Thromboxane A2;
HETE, Hydroxyeicosatetraenoic acid; CYP, Cytochrome P450; UGT, Uridine 5′-diphospho-glucuronosyltransferase.

Collectively, many factors affect the glucuronidation of xenobiotic compounds and
hence their influences on the human body. Identification of these factors can decrease
xenobiotic toxicity and help to optimize drug therapies.

6. The Clinical Impact of UGT1A Genotype on Drug Response and Toxicity

UGT1A1 contains UGT genetic variants with high clinical impacts on drug re-
sponses, as illustrated by the Pharmacogenomics Knowledge Base (PharmGKB) web-
site [74]. Patients homozygous for the UGT1A1*28/*28 genotype (rs8175347) and infected
with HIV had a higher risk of hyperbilirubinemia after treatment with the protease
inhibitor atazanavir [75]. These patients had a TA nucleotide inserted in the promoter
region of the UGT1A1 gene that affects gene expression. The UGT1A1*28 and intronic
UGT1A1*6 (rs4148323) alleles increased the likelihood of neutropenia among Asian pa-
tients treated with the anticancer drug irinotecan, compared to the wild-type UGT1A1*1
allele [76]. The intronic UGT1A1 rs34650714 T-allele reduced the metabolism of allopurinol
and was associated with a decreased dose of allopurinol in patients with gout [77]. Among
cardiovascular patients with angina or heart failure, the UGT1A1*6/*6 genotype had a
lower capacity to glucuronidate the beta-blocker carvedilol compared with patients with
the wild-type UGT1A1*1/*1 genotype [78].

The UGT1A3 rs3806596 CC genotype, with the promotor genetic T > C variant, was as-
sociated with hyperbilirubinemia in HIV patients treated with atazanavir and ritonavir [79].
In addition, the intronic UGT1A3 rs7604115 T-allele was associated with decreased concen-
trations of plasma montelukast levels in healthy individuals compared to those with the
C-allele [80]. Further, the UGT1A3 *2 allele (rs1983023, −751T > C) increased the response
to atorvastatin in healthy subjects compared to the wild-type UGT1A3 *1 allele [81]. Addi-
tionally, beta-thalassemia patients with the UGT1A3*2 TT genotype had a higher response
to deferasirox, as measured by lower liver stiffness values than those with the UGT1A3*2
CC genotype [82].

Colorectal cancer patients with the UGT1A6 rs2070959 AA genotype may have an
increased risk for severe neutropenia when treated with irinotecan compared to patients
with the wild-type UGT1A6 rs2070959 GG genotype [83]. In addition, pediatric patients
with the UGT1A6 rs6759892 GG genotype, with a substitution of serine to alanine at amino
acid 7 of the UGT1A6 protein sequence, may have an increased likelihood of cardiotoxicity
when treated with anticancer anthracyclines compared to patients with the wild-type
UGT1A6 genotype [84]. Additionally, the UGT 1A6 rs6759892 GG genotype was associated
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with adverse drug reactions to deferiprone in patients with beta-thalassemia, as patients
with this genotype showed a decreased metabolism of deferiprone [85].

Colorectal cancer patients who carried the non-synonymous UGT1A7*3 T > C rs11692021
allele had an increased risk of vomiting when treated with a combination of anticancer
drugs S-1, irinotecan, and oxaliplatin [86].

Kidney transplant patients homozygous for the UGT1A8*2 rs1042597 CC genotype had
increased diarrhea occurrences when administrated the immune suppressants mycopheno-
late mofetil and cyclosporine compared to patients with the heterozygous and wild-type
genotypes [87]. Patients with epilepsy who had the intronic UGT1A8 rs2741049 TT geno-
type had a lower response to oxcarbazepine than patients with the CC genotype [88].

Non-small cell lung cancer patients with the UGT1A9 rs3832043 T9/T9 genotype, which
resulted in the deletion of the thymine nucleotide in the −118 promotor sequence of the
UGT1A9 gene, had decreased gene expression and hence reduced glucuronidation capacity
of UGT1A9. As a result, these patients showed a reduced elimination rate of the active
SN-38 metabolite of irinotecan than those with the wild-type genotype [89]. In addition,
hepatotoxicity of a paracetamol overdose was increased in patients with the UGT1A9 rs8330
CC genotype [90]. This variant increases the glucuronidation of paracetamol by altering the
splicing of exon 5b of UGT1A9 [90]. Table 2 summarizes the major UGT1A genetic variants
that have clinical impacts on drug responses.

Table 2. UGT1A genetic variants with reported clinical impacts on drugs responses.

Genetic Variant Rs Number Clinical Impact on Drug Responses References

UGT1A1 (TA)6TAA>
(TA)7TAA

(UGT1A1 *28)
rs8175347 Associated with increased hyperbilirubinemia after treatment with the

protease inhibitor atazanavir. [75]

UGT1A1 211G > A
(UGT1A1*6) rs4148323

The UGT1A1*6 allele increases the likelihood of neutropenia among
Asian patients treated with the anticancer drug irinotecan. In addition,

UGT1A1*6 can affect the metabolism of carvedilol.
[76,78]

UGT1A3 −66T > C rs3806596 Associated with hyperbilirubinemia in HIV patients treated with
atazanavir and ritonavir. [79]

UGT1A3 IVS1
−17564C > T rs7604115 The UGT1A3T allele is associated with decreased concentrations of

plasma montelukast levels in healthy individuals. [80]

UGT1A3 −751T > C
(UGT1A3 *2) rs1983023

The UGT1A3*2C allele increases the response to atorvastatin in healthy
subjects compared to the wild-type UGT1A3 *1 allele. The UGT1A3*2T

allele can increase the response to deferasirox.
[81,82]

UGT1A6 A > G
(UGT1A6*5) rs2070959 Can increase the risk for severe neutropenia among patients on

irinotecan treatment. [83]

UGT1A6 19A > G rs6759892
May increase the risk of cardiotoxicity of anticancer anthracyclines. In
addition, this genetic variant is associated with adverse drug reactions

to deferiprone in patients with beta-thalassemia.
[84,85]

UGT1A7622T > C
(UGT1A7*3) rs11692021 UGT1A7*3 may increase the risk of vomiting when treated with a

combination of anticancer drugs S-1, irinotecan, and oxaliplatin. [86]

UGT1A8 518C > G
(UGT1A8*2) rs1042597 This genetic variant can increase the risk of diarrhea among patients

with kidney transplants on immune suppressant treatment. [87]

UGT1A8 I399C > T rs2741049 Can lower the response to oxcarbazepine among epileptic patients. [88]

UGT1A9-118T10/T9 rs3832043 The UGT1A9T9 variant decreased the elimination rate of the active
metabolite of irinotecan SN-38 in non-small cell lung cancer patients. [89]

7. The Clinical Impact of the UGT2B7 Genotype on Drug Responses and Toxicity

PharmGKB categorizes the UGT2B7 genetic variants within levels 3 and 4, indicating
that further clinical evidence is needed before UGT2B genetic variants can be used as
biomarkers for drug responses. Patients with the UGT2B7*2 (rs7439366) TT genotype
had a reduced response to oxycodone and reduced requirement for codeine compared
to the wild-type UGT2B7 genotype [91]. However, the UGT2B7*2 rs7439366 allele was
not associated with increased morphine doses in patients with neoplasms and pain [92].
However, sickle-cell anemia patients with the promotor variant UGT2B7 rs7668282 TT
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genotype required a lower morphine dose because they had a higher capacity of morphine
glucuronidation compared to patients with the UGT2B7 rs7668282 CC genotype [93].
Opioid-related disordered patients carrying the UGT2B7 rs7438135 GG, UGT2B7 rs6600880
TT, and UGT2B7 rs11940316 TT genotypes had reduced severity of opiate withdrawal
symptoms than patients with the UGT2B7 rs7438135 AA, UGT2B7 rs6600880 AA, and
UGT2B7 rs11940316 CC genotypes [94]. Epilepsy patients with the promotor UGT2B7
rs28365063 −161C > T genetic variant showed an increased clearance of the antiepileptic
drug lamotrigine due to higher gene expression of the UGT2B7 enzyme [95]. However,
epileptic patients with the loss-of-function UGT2B7*2 TT genotype showed an improved
oxcarbazepine response due to a reduced oxcarbazepine metabolism rate [96]. The loss-of-
function UGT 2B7*3 (rs12233719) G-allele was associated with increased concentrations of
valproic acid in the plasma of epilepsy patients compared to patients with the UGT 2B7*3
T-allele [97]. In terms of the influence of the UGT2B7 genotype on drug-induced toxicity, the
intronic UGT2B7 rs7438135 G-allele was associated with mycophenolate mofetil-induced
anemia in kidney transplant patients, whereas the A-allele was not associated with drug-
induced toxicity [98]. Table 3 summarizes the reported UGT2B genetic variants and the
associated clinical impacts on drug responses.

Table 3. UGT2B genetic variants with reported clinical impacts on drug responses.

Genetic Variant Rs Number Clinical Impacts on Drug Responses References

UGT2B7802C > T
(UGT2B7*2) rs7439366 Can decrease the response to oxycodone and the dosage of codeine.

Additionally, can decrease oxcarbazepine metabolism. [91,96]

UGT2B7 −840C > T rs7668282 The UGT2B7 rs7668282 TT genotype is associated with decreased
morphine glucuronidation capacity. [93]

UGT2B7 −900G > A rs7438135

Patients with the UGT2B7 rs7438135 G-allele have a reduced severity of
opiate withdrawal symptoms than those with the wild-type A-allele.

Additionally, the UGT2B7 rs7438135 G-allele was associated with
mycophenolate mofetil-induced anemia in kidney transplant patients.

[94,98]

UGT2B7 −1759A > T rs6600880 Patients with the UGT2B7 rs6600880 A-allele may have a reduced severity
of opiate withdrawal symptoms than those with the wild-type A-allele. [94]

UGT2B7 −1112C > T rs11940316 Patients with the UGT2B7 rs11940316 T-allele may have a reduced severity
of opiate withdrawal symptoms than those with the wild-type C-allele. [94]

UGT2B7 −161C > T rs28365063 The UGT2B7 rs28365063 T-allele is associated with increased clearance of
the antiepileptic drug lamotrigine. [95]

UGT 2B7 211G > T
(UGT 2B7*3) rs12233719 The UGT 2B7*3 G-allele is associated with increased valproic acid

concentrations in the plasma. [97]

8. The Role of UGTs in Endogenous Metabolism and Susceptibility to
Human Diseases

UGTs also play a role in the metabolism of endogenous chemicals, including steroids
and unsaturated long-chain fatty acids [99,100]. Besides serving as a substrate for UGTs,
these endogenous compounds can also inhibit UGTs. Unsaturated long-chain fatty acids
are the most potent inhibitors of several UGT enzymes, including UGT1A3, 1A9, and
2B7 [101]. UGT2B7 metabolizes dietary fatty acids and show inter-individual variations in
the glucuronidation of these fatty acids in the intestines [102].

Bile acids are common endogenous compounds that undergo glucuronidation. Bile
acids are glucuronidated in different human body tissues, but especially in the liver [103].
Biliary glucuronidation is an important pathway in the excretion of bile acids, and im-
paired biliary secretion leads to hyperbilirubinemia [104]. The UGT2B7*2 genetic variant
possibly changes the glucuronidation of chenodeoxycholic acid, affecting the health of
individuals [103]. Steroidal hormones are further examples of endogenous compounds that
undergo glucuronidation. Sex hormones, thyroxin, and retinoic acid are glucuronidated in
different organs [105,106]. Additionally, the UGT1A1*28 genetic variant is associated with
plasma estrogen levels in women with breast cancer [107]. Turgeon et al. [108] showed
that leukotriene B4 was glucuronidated by UGT1A1, 1A3, 1A4, and 2B7, whereas UGT1A1,
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1A3, 1A4, and 1A9 also conjugated most of the HETEs. In addition, the UGT2 family
members, especially UGT2B4 and 2B7, conjugated all HETEs. The author suggested
that glucuronidation of arachidonic acid metabolites is an irreversible step to inactivate
and eliminate endogenous arachidonic acid metabolites from the body. In another in vitro
study, arachidonic acid was glucuronidated by UGT1A1, 1A3, 1A4, 1A9, and 1A10, whereas
prostaglandin B1 was glucuronidated by UGT1A1, 1A9, and 1A10. All of the arachidonic
acid metabolites were glucuronidated by UGT2B7, and arachidonic acid and 20-HETE were
the best substrates [109]. UGT1A1, 1A3, 1A9, and 2B7 also glucuronidated 20-HETE [109].
Multiple UGT isoforms are involved in the glucuronidation of arachidonic acid and its
metabolites, and these have different enzymatic affinities and maximum capacity rates. As
a result, it might be expected that the inhibition or alteration of specific UGT isoforms, such
as UGT2B7, have a more significant effect on certain arachidonic acid metabolites, such as
20-HETE and 15-HETE, than other arachidonic acid metabolites. The changes in the arachi-
donic acid metabolite ratio might affect human homeostasis and lead to a predisposition to
certain diseases. Interestingly, one study screened the metabolic and endogenous plasma
metabolite changes in human volunteers following administration of diclofenac, a potent
UGT2B7 substrate. The results showed that plasma cardiotoxic 20-HETE was significantly
increased compared to other endogenous metabolites [110]. In addition, morphine, a
strong UGT2B7 inhibitor, altered the arachidonic acid metabolism and activity in a vascular
in vitro system [111]. Arachidonic acid metabolites such as 20-HETE were excreted in the
glucuronidated form in human urine [112]. Interestingly, the UGT substrate indomethacin
reduced urinary 20-HETE levels [113]. It is suggested that inhibition of arachidonic acid-
UGT metabolizing enzymes might be one mechanism underlying NSAID-induced hepato-
and nephrotoxicity [114]. We showed previously that NSAIDs and the UGT2B7*2 genetic
variant inhibited the glucuronidation of 20-HETE [45]. Additionally, NSAIDs inhibited
the in vitro glucuronidation of the endogenous hypertensive aldosterone [115] and blood
levels of aldosterone increased following NSAID treatment, especially diclofenac and
celecoxib [116–118]. The increase in aldosterone correlated with decreased aldosterone-
glucuronide levels in the urine. Furthermore, in vitro methods showed that diclofenac
inhibited testosterone glucuronidation and potentially increased testosterone plasma levels,
leading to a hormonal imbalance [119]. The anticonvulsant valproic acid, which causes
hormonal imbalance [120], inhibited the endogenous steroidal glucuronidation by inhibit-
ing UGT2B15, the enzyme responsible for steroid metabolism [121]. These data indicate
that chemical inhibition of UGTs or loss-of-function genetic variants in the UGT genes can
contribute to human disease susceptibility by increasing levels of harmful non-metabolized
fatty acids in the plasma, such as 20-HETE. Table 4 summarizes the possible mechanisms
of drug-induced toxicity involved in the inhibition of endogenous glucuronidation.

Table 4. Mechanisms of drug-induced toxicity involved in the inhibition of endogenous glucuronidation.

Drugs Potential Toxicity Mechanisms References

NSAIDs Elevation of blood aldosterone levels that
increase water reabsorption.

Inhibition of aldosterone glucuronidation by
inhibiting UGT2B7 and 15. [116–118]

NSAIDs Elevation of blood cardiotoxic 20-HETE levels. Inhibition of 20-HETE glucuronidation by
inhibiting UGT2B7, 1A3, and 1A9 isoforms. [71]

Valproic acid Imbalance of blood steroidal hormones. Inhibition of UGT2B15. [121]
Diclofenac Elevation of testosterone levels. Inhibition of testosterone glucuronidation. [119]

9. Conclusions

Chemical inhibition and genetic variants of the UGT genes play important roles in the
drug response, toxicity, and susceptibility to human diseases. However, clinical evidence
has shown that the UGT1A1 isoform genetic variants can be considered biomarkers for
drug responses and susceptibility to diseases. Additionally, inhibition of endogenous
glucuronidation can lead to an imbalance in the levels of endogenous fatty acids and
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steroidal hormones and cause human diseases. Further clinical studies are needed to
validate the clinical impacts of the UGT1A and UGT2B genes for personalized medicine
and human diseases.
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