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Cancer immunotherapy has recently emerged as a powerful tool for the treatment of 
diverse advanced malignancies. In particular, therapeutic application of immune check-
point modulators, such as anti-CTLA4 or anti-PD-1/PD-L1 antibodies, have shown 
efficacy in a broad range of malignant diseases. Although pharmacodynamics of these 
immune modulators are complex, recent studies strongly support the notion that altered 
peptide ligands presented on tumor cells representing neoantigens may play an essen-
tial role in tumor rejection by T cells activated by anti-CTLA4 and anti-PD-1 antibodies. 
Neoantigens may have diverse sources as viral and mutated proteins. Moreover, 
posttranslational modifications and altered antigen processing may also contribute to 
the neoantigenic peptide ligand landscape. Different approaches of target identification 
are currently applied in combination with subsequent characterization of autologous 
and non-self T-cell responses against such neoantigens. Additional efforts are required 
to elucidate key characteristics and interdependences of neoantigens, immunodomi-
nance, respective T-cell responses, and the tumor microenvironment in order to define 
decisive determinants involved in effective T-cell-mediated tumor rejection. This review 
focuses on our current knowledge of identification and characterization of such neoan-
tigens as well as respective T-cell responses. It closes with challenges to be addressed 
in future relevant for further improvement of immunotherapeutic strategies in malignant 
diseases.
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neOAnTiGenS AS HiGHLY ReLevAnT AnD ATTRACTive 
TARGeTS OF TUMOR-SPeCiFiC iMMUne ReSPOnSeS

Tumor immunologists have been fascinated on the possibility of tumor rejection by the immune 
system and recognition of tumors as “foreign” in comparison to healthy tissues for a long time. 
Tumor-associated antigens representing a group of antigens with accentuated but not unique 
prevalence in the tumor have been investigated as target antigens in a broad variety of tumor 
entities (1). However, therapeutic efficacy of such targeting approaches could be only rarely 
demonstrated (2) or has been accomplished outside of the self-educated T-cell receptor (TCR) 
repertoire (3). Central tolerance to self-antigens may represent one of the main reasons for the 
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limited efficacy of such approaches. In contrast, tumor-specific 
antigens (TSA) are characterized by their unique presentation 
in tumor cells and, therefore, lack of negative thymic depletion 
of respective specific T-cell populations. Virus-associated anti-
gens have traditionally been acknowledged as TSA in tumors 
with viral etiology as Merkel cell carcinoma, adult T-cell leu-
kemia, and human papilloma virus (HPV)-associated tumors 
(4–6). In fact, HPV-induced tumors can be prevented by vacci-
nations and induced adaptive B-cell responses can be followed 
over years (7, 8). Mutations have been also early acknowledged 
to be highly interesting and potentially recognized by specific 
T cells (9–12), although the significance for a broader patient 
population remained elusive. A potentially more general role of 
mutations in tumor rejection has been demonstrated for a larger 
cohort of cancer patients only after introduction of immune 
checkpoint modulating antibodies, such as anti-CTLA4 and 
anti-PD-1, and association of the burden of non-synonymous 
mutations with response (13–16). Since then, neoantigens have 
become a major focus of interest either as potential biomark-
ers or as targets for directed immunotherapies. In fact, novel 
immunotherapeutic approaches targeting neoantigens by 
defined vaccines or directed T-cell transfer hold great promise 
to further improve therapeutic efficacy of immunotherapeutic 
approaches (17–21).

LAnDSCAPe OF nOn-PATHOGen-
DeRiveD neOAnTiGenS

Currently, a diversity of tumor-specific alterations may serve 
as suitable sources for non-pathogen-derived neoantigens 
(Figure 1). Single nucleotide variants (SNV) resulting in non-
synonymous substitutions have been a major focus of interest 
since a correlation of the non-synonymous mutation burden 
within the tumor and response to checkpoint modulators has 
been established (13, 14, 22). SNVs are typically present in 
malignancies induced by ultraviolet light exposition or tobacco 
smoke (23–25). Most of the SNV-derived neoantigens gain 
their immunogenic foreignness throughout altered amino acids 
involved in direct T-cell contact although also anchor positions 
may be affected resulting in potential lack of presentation of 
the wild-type peptide (26). Recurrent mutations may serve 
as public neoantigens enabling the development of targeted 
approaches applicable to broader patient cohorts (27–29). 
Nonetheless, the majority of immunogenic mutations appear 
to derive from patient-specific alterations. In addition to the 
potentially singular nature of a mutated peptide ligand, immu-
nogenic neoantigens derived from non-synonymous mutations 
have been reported to be enriched for a distinct tetrapeptide 
signature homologous to epitopes derived from pathogens as 
suggested by data from Snyder and colleagues (13). However, 
subsequent studies could not confirm a prevalent role of such a 
defined peptide motif (22, 30).

Frame shifts in antigen-coding regions due to insertions or 
deletions have been described as additional promising source 
of TSA (31, 32). A recent report indicated frameshift-derived 
mutations to be enriched especially in cancer entities known 

to respond to immune checkpoint modulators and predicted 
neoantigens derived from these mutations correlated with 
response to immune checkpoint modulation as well as upregu-
lation of immune signatures (33). Due to the high frequency 
of nucleotide insertions or deletions in defined genes, resulting 
mutated peptides may be also used as shared public neoantigens 
possibly of use for a broader patient population (34). Of note, 
the fraction of human leukocyte antigen (HLA) class I bound 
peptides derived from non-canonical reading frames was found 
to comprise 10% of all ligands identified on the surface of an 
expanded B-cell line (35) and thereby provides an additional 
highly interesting source of TSA as recently summarized (36).

Chromosomal translocations may lead to expression of 
novel epitopes spanning the respective breakpoint mutation, 
therefore, representing another source of potential neoantigens. 
Analyses of immune responses against such neoantigens have 
provided encouraging rational for clinical applications (37, 
38). However, in case of the Philadelphia chromosome defined 
t(9;21) bcr/abl translocation, vaccination studies have shown 
variable efficacy (39, 40). One reason might rely in limitations of 
natural processing of the expected mutated ligands (41). Thus, 
further studies are required to investigate this anticipated group 
of highly attractive neoantigens.

Besides the above described sources of altered peptides, 
B-cell derived malignancies inherit an exceptional source of 
potentially immunogenic tumor-specific peptides spanning 
the monoclonal hypervariable recombined immunoglobulin- 
coding region (42). It has been recently shown for lymphoma that 
such idiotype-derived ligands are actually presented by MHC 
class II molecules as detected by mass spectrometry (MS)-based 
immunopeptidomics and that these are immunogenic (43).

Tumor-specific antigenic peptides may additionally derive 
from cellular processes specifically altered in tumor cells 
resulting in a modified peptide repertoire presented by MHC 
complexes on the tumor surface. Examples comprise peptides 
with posttranslational modifications as phosphorylation and 
deamidation potentially resulting in TSA (44–46). Moreover, 
tumor-specific peptides may derive from alternative splicing in 
the proteasome (44, 47, 48). As it has been recently reported that 
spliced peptides substantially contribute to the immunopepti-
dome (49), it might be highly attractive to more comprehensively 
investigate the cancer-related MHC peptide ligandome for 
the presence and immunogenicity of such peptides. However, 
peptide ligands derived from altered cellular processes currently 
require MS for detection and there are no algorithms for reliable 
prediction of such antigens. Moreover, it will be important to 
investigate in larger studies if these peptides represent really 
unique TSA suitable for therapeutic targeting approaches.

iDenTiFiCATiOn OF TUMOR-SPeCiFiC 
neOAnTiGenS

Neoantigens have been primarily identified on the base of 
defined T-cell responses resulting in a qualitative view on relevant 
antigens (10, 11). However, general rules could not be deduced 
from these early reports. Large-scale analyses of genomes and 
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FiGURe 1 | Overview of the neoantigen landscape and identification strategies. Upper row: sources of conceivable neoantigens exemplarily shown for HLA class I 
ligands. Lower row: schematic overview of analysis pipelines for the immunogenicity assessment of tumor-specific alterations. SNV, single nucleotide variant; In/Del, 
insertion/deletion; MS, mass spectrometry; TCR, T-cell receptor; HLA, human leukocyte antigen; DC, dendritic cell.
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immunopeptidomes, advanced computational analyses, and 
development of bioinformatics algorithms to predict immu-
nogenicity of tumor-specific peptide ligands greatly enhanced 
the field (50, 51). This approach resulted in the successful 
identification of neoantigens in a diversity of malignant diseases 
although the number of positive hits validated by respective 
T-cell responses was highly diverse (15, 52–55). Differences of 
tumor entities as well as inter- and intraindividual heterogeneity 
of tumors, metastases, and interrogated T-cell repertoires may 
play an important role for the diversity in the validation rate 

of predicted epitopes. However, additional aspects govern the 
quality of such predictions. Technical features as the depth of 
sequencing and the quality of tumor material, source material 
for sequencing and algorithms used for SNV calling may have a 
major impact on the results (56–58). In addition, prediction algo-
rithms for more frequent HLA alleles provide superior results in 
comparison to less frequent HLA alleles emphasizing the need of 
larger training datasets (59). Besides, different pipelines for HLA 
binding prediction have been developed and are currently used in 
parallel leading to limited comparability of obtained results (60). 
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Moreover, reliable prediction algorithms are currently missing for 
many aspects of antigen processing and presentation apart from 
peptide binding. However, there are approaches to improve and 
harmonize current epitope predictions. A recent implementation 
of several steps of analysis into one single tool called MuPeXI was 
provided aiming at integration of predictions and data process-
ing into one straightforward pipeline (61). Application of newly 
gained knowledge derived from large-scale analyses of pre-existing 
datasets, such as the pan-cancer analysis of tumor-specific altera-
tions caused by insertions and deletions (33) will further improve 
our understanding of tumor-specific changes on the genomic 
level, thereby steadily broadening the current view of potential 
immunogenic features. Moreover, the bias of epitope prediction 
may be circumvented by therapeutic approaches as vaccinations 
based on long peptides or RNA fragments encompassing several 
point mutations. Two such approaches used in early clinical trials 
have recently shown encouraging results (20, 21).

Direct identification of mutated peptide ligands by 
immunoprecipitation of peptide-HLA-complexes and sub-
sequent peptide ligand analysis by MS provides a promising  
tool for a more straightforward approach with the perspec-
tive to define especially those neoepitopes that are indeed 
well presented on the tumor cell. Feasibility of the detection 
of naturally presented mutated HLA ligands by this technol-
ogy has been primarily shown for murine tumors (52, 62)  
and human cell lines (63). Improved sensitivity as well as opti-
mized bioinformatics algorithms resulted also in the identification 
of neoantigens directly eluted from primary human tissues (43, 
59). In addition, MS data may help to improve current predic-
tion algorithms (64, 65). Feeding of databases such as IEDB and 
the human immunopeptidome project of the human proteome 
organization (66) with experimental data is, therefore, of fun-
damental importance. However, technical issues as requirement 
for large amounts of tumor material, low yield in peptides after 
immunoaffinity purification, limited reproducibility and biases 
from fragmentation methods currently represent major limitations 
(66). Improvements in this field will likely have a great impact on 
neoantigen identification to be used for personalized therapies.

vALiDATiOn OF T-CeLL ReSPOnSeS 
AGAinST neOAnTiGenS

As described above, the identification of all putative mutations 
within the entire exome (67, 68) paved the way to systematic 
screens of T cells for respective responses. Pushing the develop-
ment of technologies for rapid assessment of neoantigen-specific 
T-cell responses, groundbreaking studies mainly focused on 
diseases with high mutational burden, especially melanoma 
and non-small cell lung cancers (50, 54, 69, 70). However, some 
malignancies with comparably low amounts of tumor-specific 
mutations also elicit mutation-specific immune responses, 
including cervical, gastric, and triple-negative breast cancers 
(55, 71, 72).

As a fairly straightforward approach, the exact expected 
epitope or longer peptides to be processed by dendritic 
cells (DCs) are synthesized and screened for recognition by 
tumor-specific T cells (73). As another possible strategy, T-cell 

populations may be identified using MHC multimers containing 
the expected epitope of respective mutated antigens (70, 74, 75). 
However, MHC multimer analyses may have limitations for fine 
characterization of neoantigen-specific T-cell populations and 
may differ to in-depth functional T-cell analyses (59). As an alter-
native to long peptides, which have to be processed by profes-
sional antigen-presenting cells, minigenes comprising respective 
mutation can be transduced and used for large-scale screening 
approaches, again circumventing the need of knowing the exact 
epitope (50). Still, the exact epitope has yet to be determined in 
additional screenings in case that further characterization of 
specific immune responses is desired (72, 73). Patient-derived 
tumor cell lines or spheroids can be used for screening of neo-
antigen-specific reactivity, although stable expansion of in vitro 
cultures starting with primary human material is often not  
successful.

The therapeutic potential of targeting somatic mutations 
throughout vaccination approaches has been also investigated 
in vivo using different mouse models. Specific immune responses 
could be elicited and successful tumor shrinkage has been 
observed after application of neoantigen vaccines (67, 68, 76). 
However, results obtained with murine models rather serve as 
a proof of principle for a defined immunotherapeutic approach. 
Another possibility for screening of personalized neoantigen-
specific T-cell responses may be achieved by the establishment of 
individual patient-derived xenografts (PDX). It has been shown 
that the clonal architecture of patient tumors transplanted in 
murine hosts exhibit a clonal architecture comparable to tumors 
grown in the patient (77–80). Therefore, PDX mirror escape 
mechanisms, which may be translated into the clinical setting. 
However, some limitations within this approach including 
changes in the tumor microenvironment and the long time it 
takes to grow individual xenografts (81) currently prevent larger 
applications of PDX models in prompt and patient-resembling 
immunogenicity assessments.

SOURCeS OF neOAnTiGen-SPeCiFiC  
T CeLLS

For the above described validation of altered target structures, 
different TCR repertoires may be interrogated. The application of 
checkpoint inhibitors unleashing the patient’s own immune sys tem 
emphasized the inherited potential of autologous immune cells 
to fight cancer. Numerous studies have confirmed neoantigen- 
specific reactivity within the TIL repertoire (51, 53, 55, 59,  
73, 82). In addition, immune responses against mutated peptide 
ligands can be also detected in the peripheral blood of cancer 
patients (59, 83) and responses overlapping between PBMC-
derived lymphocytes and TIL have been additionally reported 
(54). Investigation of the TCR beta repertoire of tumor patients 
vaccinated with a DC vaccine after treatment with Ipilimumab 
suggested a promotion of neoantigen-specific diversity in TCR 
beta usage and clonal composition (18). As another important 
aspect, analysis of treatment-naïve patients in comparison to 
patients with previous immunotherapies is expected to help to 
decipher clinically relevant immunoreactivity (84, 85).
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For those patients lacking endogenous tumor-specific 
immune responses or harboring terminally exhausted T  cells, 
the investigation of alternative TCR repertoires provides a 
meaningful source to empower the patient’s immune system 
(86). Neoantigen-specific T cells can be also isolated from HLA-
matched healthy donors (59, 87). The xenogeneic source of murine 
TCR (e.g., isolated from HLA-transgenic mice) may provide an 
alternative source for neoantigen-specific TCR (88). As such, a 
xenogeneic model is generally rather easily accessible, it may be 
used to build up a robust workflow for patients lacking specific 
immune responses. However, it remains questionable, whether 
this approach confers a significant advantage for neoantigens, as 
HLA-matched healthy donors should inherit comparable high 
chances for detectable antigen-specific T-cell frequencies due 
to circumvention of thymic depletion. Moreover, there might 
be an enhanced risk for toxicity due to crossreactivity against 
human peptide ligands, which are not processed or presented by 
the murine immunopeptidome. However, both repertoires may 
serve as base for genetic engineering of neoantigen-specific TCR 
to be used for the adoptive transfer of redirected T cells. Further 
improvements regarding cost efficacy and time restrictions 
might enable an automated production of redirected neoantigen-
specific T-cells.

Not only the mere detectability of neoantigen-specific T cells, 
but also the quality of respective T-cell responses is currently 
under detailed investigation. Various aspects, such as the 
frequency, phenotype, functional capacities, dynamic changes 
during clinical course, and the contribution of CD4+ and CD8+ 
lymphocytes to tumor rejection (21, 75, 89), are taken into 
consideration. These analyses may help to understand qualitative 
characteristics of neoantigens representing immunodominant 
and suitable rejection antigens inducing an effective T-cell medi-
ated tumor reactivity.

FUTURe CHALLenGeS AnD CLiniCAL 
iMPLiCATiOnS

With respect to neoantigen-targeted therapies but also 
biomarker development, one central question relies in the 
selection of those neoantigens, which are in fact relevant in 
the clinical setting. In this regard, the presence of clonal ver-
sus subclonal neoantigens may be highly relevant and tumor 
heterogeneity may represent a major hurdle for an effective 
anti-tumor response (70, 90, 91). Driver mutations clearly 
represent a highly attractive group of potential neoantigens to 
be targeted for neoantigen-specific therapies as targeting such 
antigens may limit or decelerate immune evasion due to their 

frequent clonal nature (17, 19, 92). However, other alterations 
as genetic changes of tumor cells affecting antigen processing 
and presentation may still result in immune evasion (19).  
In fact, defects in antigen presentation incorporate a major 
risk for immune escape and represent a frequent form of 
acquired resistance in a diversity of immunotherapies (93–96). 
A multivariate analysis support the notion of multiple deter-
minants being responsible for the therapeutic outcome (97). 
A recent study by Riaz and colleagues investigates changes in 
the tumor evolution and the tumor microenvironment under 
immune checkpoint inhibition and thereby emphasizes the 
interdependence of the tumor mutanome and TIL composition 
(85). In this regard, the assessment of primary and secondary 
resistance to immune-mediated therapies may potentially lead 
to improved identification of those patients who may primarily 
profit from immunotherapies alone and those who may need 
additional therapeutic approaches. Strategies to restore antigen 
presentation to be used in combinatorial treatment approaches 
may become particularly important including the sequential 
or consecutive application of innovative and well-established 
therapies as recently reviewed (96, 98). A systematic approach 
of TCR repertoire profiling across different tumor regions in 
lung adenocarcinoma hints toward a complex interaction 
between intratumoral heterogeneity and distribution patterns 
of clonal T cells (99). In combination with further functional 
dissection of tumor-specific TCR, information of spatial distri-
bution of neoantigen-specific T cells will likely provide impor-
tant insights into the dynamics and interactions of tumors and 
respective neoantigen-specific T-cell responses.

Future directions may, therefore, aim at the comprehensive 
analysis of immunogenic potential of respective neoantigens by 
interrogation of diverse repertoires and building up multi-omics 
and large screening libraries. Therefore, combinatorial analyses 
of tumor-derived mutations and other molecular characteristics 
of the tumor cells, tumor microenvironment, and respective 
immune responses are required for a better understanding of 
tumor dynamics and selection of suitable structures capable to 
induce tumor rejection.
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