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Unraveling Quantum Annealers 
using Classical Hardness
Victor Martin-Mayor1,2 & Itay Hen3,4

Recent advances in quantum technology have led to the development and manufacturing of 
experimental programmable quantum annealing optimizers that contain hundreds of quantum bits. 
These optimizers, commonly referred to as ‘D-Wave’ chips, promise to solve practical optimization 
problems potentially faster than conventional ‘classical’ computers. Attempts to quantify the 
quantum nature of these chips have been met with both excitement and skepticism but have also 
brought up numerous fundamental questions pertaining to the distinguishability of experimental 
quantum annealers from their classical thermal counterparts. Inspired by recent results in spin-
glass theory that recognize ‘temperature chaos’ as the underlying mechanism responsible for the 
computational intractability of hard optimization problems, we devise a general method to quantify 
the performance of quantum annealers on optimization problems suffering from varying degrees 
of temperature chaos: A superior performance of quantum annealers over classical algorithms on 
these may allude to the role that quantum effects play in providing speedup. We utilize our method 
to experimentally study the D-Wave Two chip on different temperature-chaotic problems and find, 
surprisingly, that its performance scales unfavorably as compared to several analogous classical 
algorithms. We detect, quantify and discuss several purely classical effects that possibly mask the 
quantum behavior of the chip.

Interest in quantum computing originates in the potential of quantum computers to solve certain com-
putational problems much faster than is possible classically, due to the unique properties of Quantum 
Mechanics1,2. The implications of having at our disposal reliable quantum computing devices are obvi-
ously tremendous. The actual implementation of quantum computing devices is however hindered by 
many challenging difficulties, the most prominent being the control or removal of quantum decoher-
ence3. In the past few years, quantum technology has matured to the point where limited, task-specific, 
non-universal quantum devices such as quantum communication systems, quantum random number 
generators and quantum simulators, are being built, possessing capabilities that exceed those of corre-
sponding classical computers.

Recently, a programmable quantum annealing machine, known as the D-Wave chip4, has been built 
whose goal is to minimize the cost functions of classically-hard optimization problems presumably by 
adiabatically quenching quantum fluctuations. If found useful, the chip could be regarded as a prototype 
for general-purpose quantum optimizers, due to the broad range of hard theoretical and practical prob-
lems that may be encoded on it.

The capabilities, performance and underlying physical mechanism driving the D-Wave chip have 
generated fair amounts of curiosity, interest, debate and controversy within the Quantum Computing 
community and beyond, as to the true nature of the device and its potential to exhibit clear “quantum 
signatures”. While some studies have concluded that the behavior of the chip is consistent with quantum 
open-system Lindbladian dynamics5, or indirectly observed entanglement6,7, other studies contesting 
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these8,9, pointed to the existence of simple, purely classical, models capable of exhibiting the main char-
acteristics of the chip.

Nonetheless, the debate around the quantum nature of the chip has raised several fundamental ques-
tions pertaining to the manner in which quantum devices should be characterized in the absence of clear 
practical “signatures” such as (quantum) speedups10–12. Since quantum annealers are meant to utilize 
an altogether different mechanism for solving optimization problems than traditional classical devices, 
methods for quantifying this difference are expected to serve as important theoretical tools while also 
having vast practical implications.

Here, we propose a method that partly solves the above question by providing a technique to char-
acterize and quantitatively measure how detrimental classical effects are to the performance of quantum 
annealers. This is done by studying the algorithmic performance of quantum annealers on sets of opti-
mization problems possessing quantifiable, varying degrees of “thermal” or “classical” hardness, which 
we also define for this purpose. To illustrate the potential of the proposed technique, we apply it to the 
experimental quantum annealing optimizer, the D-Wave Two (DW2) chip.

We observe several distinctive phenomena that reveal a strong correlation between the performance 
of the chip and classical hardness: i) The D-Wave chip’s typical time-to-solution (ts) as a function of 
classical hardness scales differently, in fact worse, than that of thermal classical algorithms. Specifically, 
we find that the chip does very poorly on problem instances exhibiting a phenomenon known as “tem-
perature chaos”. ii) Fluctuations in success probability between programming cycles become larger with 
increasing hardness, pointing to the fact that encoding errors become more pronounced and destructive 
with increasing hardness. iii) The success probabilities obtained from harder instances are affected more 
than easy instances by changes in duration of the anneals.

Analyzing the above findings, we identify two major probable causes for the chip’s observed 
“sub-classical” performance, namely i) that its temperature may not be low enough, and ii) that encoding 
errors become more pronounced with increasing hardness. We further offer experiments and simulations 
designed to detect and subsequently rectify these so as to enhance the capabilities of the chip.

Classical Hardness, temperature chaos and parallel tempering
In order to study the manner in which the performance of quantum annealers correlates with ‘classical 
hardness’, it is important to first accurately establish the meaning of classical hardness. For that purpose, 
we refer to spin-glass theory13, which deals with spin glasses—disordered, frustrated spin systems that 
may be viewed as prototypical classically-hard (also called NP-hard) optimization problems, that are so 
challenging that specialized hardware has been built to simulate them14–16.

Currently, the (classical) method of choice to study general spin-glass problems is Parallel Tempering 
(PT, also known as ‘exchange Monte Carlo’)17,18. PT is a refinement of the celebrated yet somewhat 
outdated Simulated Annealing (SA) algorithm19, that finds optimal assignments (i.e., the ground-state 
configurations) of given discrete-variable cost functions. It is therefore only natural to make use of the 
performance of PT to characterize and quantify classical hardness.

In PT simulations, one considers NT copies of an N-spin system at temperatures < < … <T T T N1 2 T
, 

where each copy undergoes Metropolis spin-flip updates independently of other copies. In addition, 
copies with neighboring temperatures regularly attempt to swap their temperatures with probabilities 
that satisfy detailed balance20. In this way, each copy performs a temperature random-walk (see inset of 
Fig 1). At high temperatures, free-energy barriers are easily overcome, allowing for a global exploration 
of configuration space. At lower temperatures on the other hand, the local minima are explored in more 
detail. A ‘healthy’ PT simulation requires an unimpeded temperature flow: The total length of the simu-
lation should be longer than the temperature ‘mixing time’ τ21,22 The time τ may be thought of as the 
average time it takes each copy to fully traverse the temperature mesh, indicating equilibration of the 
simulation. Therefore, instances with large τ are harder to equilibrate, which motivates our definition of 
the mixing time τ as the classical hardness of a given instance.

Despite the popularity of PT, it has also become apparent that not all the spin-glass problems can be 
efficiently solved by the algorithm22,23. The reason is a phenomenon that has become known as Temperature 
Chaos (TC). TC23–38 consists of a sequence of first-order phase transitions that a given spin-glass instance 
experiences upon lowering its temperature, whereby the dominant configurations minimizing the free 
energy above the critical temperatures are vastly different than those below them (Fig. 2 depicts such a 
phase transition that is ‘rounded’ due to the finite size of the system). A given instance may experience 
zero, one or more transitions at random temperatures, making the study of TC excruciatingly diffi-
cult23,36–38. Such TC transitions hinder the PT temperature flow, significantly prolonging the mixing time 
τ. In practice23, it is found that for small systems the large majority of the instances do not suffer any 
TC transitions and are ‘easy’ (i.e., they are characterized by short mixing times). However, for a minor 
fraction of them, τ turns out to be inordinately large. Moreover, the larger the system is, the larger the 
fraction of long-τ samples becomes. In the large N limit, these are the short-τ samples that become 
exponentially rare in N23,34. This provides further motivation for studying TC instances of optimization 
problems on moderately small experimental devices (even if these problems are rare).
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Temperature chaos and quantum annealers
With the advent of quantum annealers, which presumably offer non-thermal mechanisms for find-
ing ground states, it has become only natural to ask whether quantum annealers can be used to solve 
‘TC-ridden’ optimization problems faster than classical techniques such as PT. In this context, the ques-
tion of how the performance of quantum annealers depends on the ‘classical hardness’ becomes of funda-
mental interest: If indeed quantum annealers exploit quantum phenomena such as tunneling to traverse 
energy barriers, one may hope that they will not be as sensitive to the thermal hardness (as defined 

Figure 1.  Probability distribution of mixing times τ over random J = ±1 ‘Chimera’ instances as 
extracted from the PT random-walk on the temperature grid. The solid line is a linear fit to the tail of the 
distribution, implying the existence of rare instances with very long mixing times (note that a τ−1 tail is not 
strictly integrable, hence this specific power law decay should only be regarded as a finite-size 
approximation). Inset: Example of a temperature random walk for an instance with τ ≈ . ×1 8 105. 
Considering one of =N 30T  copies of the system, at any given Monte Carlo time t, the copy’s temperature is 
Tit

. In this example, the replica has visited each temperature several times, pointing to the fact that the 
simulation time is longer than the mixing time τ.

Figure 2.  Top: Energy above the ground-state energy as a function of temperature for two randomly chosen 
instances. The mixing times of the two instances are τ ≈ 103 (“easy”) and τ ≈ 106 (“hard”). Unlike the easy 
sample, the hard sample exhibits “temperature chaos”: Upon lowering the temperature, the energy decreases 
at first in a gradual manner, however at ≈ .T 0 2 there is a sudden drop indicating that a different set of 
minimizing configurations has been visited. Inset: Main panel’s data vs. (−∆/ )Texp  (where Δ  =  2 is the 
excitation gap). A linear behavior is expected if the system can be described as a gas of non-interacting 
excitations over a local energy minimum. For the easy sample, this local minimum is a ground state. On the 
other hand, for instances displaying TC above their chaos temperature, the local-minimum energy is higher 
than the ground-state’s. Bottom: τ-dependence of the median systematic error (for each τ-generation) of a 
T→ 0 extrapolation of the total energy. For each instance, we extrapolated the T =  0.2, 0.3 data linearly in 
(−∆/ )Texp  and compared this extrapolation with the actual ground-state energy.
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above) of the optimization problems they solve. As we shall see next, having a practical definition for 
classical hardness allows us to address the above questions directly.

To illustrate this, in what follows we apply the ideas introduced above to the DW2 quantum annealing 
optimizer. We accomplish this by first generating an ensemble of instances that are directly embeddable 
on the DW2 ‘Chimera’ architecture [the reader is referred to the Supplementary Information (SI) for a 
detailed description of the Chimera lattice and the D-wave chip and its properties]. The chip on which 
we perform our study is an array of 512 superconducting flux qubits of which only 476 are functional, 
operating at a temperature of ~15 mK. The DW2 chip is designed to solve a very specific type of prob-
lems, namely, Ising-type optimization problems, by adiabatically transitioning the system Hamiltonian 
from an initial transverse-field Hamiltonian to a final classical programmable cost function of a typical 
spin glass. The latter is given by the Ising Hamiltonian:

∑ ∑= + .
( )

H J s s h s
1ij

ij i j
i

i iIsing

The Ising spins, = ±s 1i  are the variables to be optimized over, and the sets J{ }ij  and h{ }i  are pro-
grammable parameters of the cost function. Here, ij  denotes a sum over all the active edges of the 
Chimera graph. For simplicity, we conduct our study on randomly-generated problem instances with 
hi =  0 and random, equiprobable Jij =  ± J couplings (in our energy units J =  1).

Initially, it is not clear whether the task of finding thermally-hard instances on the Chimera is feasible. 
While on the one hand TC has been observed in spin-glasses on the square lattice39, which has the same 
spatial dimension, D =  2, as the Chimera40, it has also been found that typical Chimera-embeddable 
instances are easy to solve 11,12,40. As discussed above, system size plays a significant role in this context, 
as an N~512-spin Chimera may simply be too small to have instances exhibiting TC (for instance, on 
the square lattice one needs to reach ≈ . ×~N 512 2 5 102 5 spins for TC to be the rule rather than the 
exception39). Taking a brute-force approach to resolve this issue, we generated ~80,000 random problem 
instances (each characterized by a different set of )J{ }ij , analyzing each one by running them on a 
state-of-the-art PT algorithm until equilibration is reached (see the SI). This allowed for the calculation 
of the instances’ classical hardness, namely their temperature mixing times τ (for more details, see 
Methods, below). The resulting distribution of τ over the instances is shown in Fig.  1. While most 
instances equilibrate rather quickly (after some 104 Monte Carlo steps), we find that the distribution has 
a ‘tail’ of hard samples with τ >  106 revealing that hard instances, although rare, do exist (we estimate 
that 2 samples in 104 have τ >  107).

To study the DW2 chip, we grouped together instances with similar classical hardness, i.e., similar 
mixing times, τ≤ ≤ ⋅10 3 10k k for k =  3, 4, 5, 6 and 7. For each such ‘generation’ of τ, we randomly 
picked 100 representative instances for running on the chip (only 14 instances with k =  7 were found). 
As a convergence test of PT on the selected instances, we verified that the ground-state energies reached 
by PT are the true ones by means of an exact solver.

At the purely classical level, we found, as anticipated23, that classically hard instances differ from 
easy instances from a thermodynamic point of view as well. Specifically, large τ instances were found 
to exhibit sharp changes in the average energy at random critical temperatures, consistently with the 
occurrence of TC (see Fig. 2). For such instances, the true ground states are present during the simula-
tions only below the TC critical temperatures. As the inset shows, the larger τ is, the lower these critical 
temperatures typically are. Furthermore, classically-hard instances were found to differ from easier ones 
in terms of their energy landscape: While for easy instances minimally-excited states typically reside 
only a few spin flips away from ground state configurations, for classically hard instances, this is not the 
case (see the SI).

Effects of temperature chaos on the “D-Wave Two” chip
Having sorted and analyzed the randomly-generated instances, we turned to experimentally test the 
performance of the D-Wave chip on these (for details see Methods and SI). Our experiments consisted 
of programming the chip to solve each of the 414 instances over a dense mesh of annealing times in the 
available range of µ∈ ,t s ms[20 20 ]a . The number of attempts, or anneals, that each instance was run for 
each choice of ta ranged between 105 and 108. By calculating the success probability of the annealer on 
each instance and annealing time, a typical time-to-solution ts was obtained for each hardness-group, or 
‘τ-generation’ (see Methods). Interestingly, we found that for easy samples (τ =  103) the success proba-
bility depends only marginally on ta, pointing to the annealer reaching its asymptotic performance on 
these. As instances become harder, the sensitivity of success probability to ta increases significantly. 
Nonetheless, for all hardness groups, the typical ts is found to be shortest at the minimally-allowed 
annealing time of ta =  20 μs (see the SI for a more detailed discussion).

The main results of our investigation are summarized in Fig. 3 depicting the typical time to solution 
ts of the DW2 chip (averaged over instances of same hardness groups, see Methods) as a function of 
classical hardness, or ‘τ-generation’. As is clear from the figure, the performance of the chip was found 
to correlate strongly with the ‘thermal hardness’ parameter, indicating the significant role thermal hard-
ness plays in the annealing process. Interestingly, the response of the chip was found to be affected by 



www.nature.com/scientificreports/

5Scientific Reports | 5:15324 | DOI: 10.1038/srep15324

thermal hardness even more than PT, i.e., more strongly than the classical thermal response: While for 
PT the time-to-solution scales as ts ~ τ, the scaling of the D-Wave chip was found to scale as τα~ts

DW2 DW2, 
with α ≈ .1 73DW2 . This scaling is rather surprising given that for quantum annealers to perform better 
than classical ones, one would expect these to be less susceptible to thermal hardness, not more. 
Nonetheless, it is clear that the notion of classical hardness is very relevant to the D-wave chip.

To complete the picture, we have also tested our instances with two other classical algorithms. The 
first is Simulated Annealing (SA) which has recently become a popular benchmarking algorithm against 
which D-Wave chips are tested10–12 (see Methods), and the second is the Hamze-de Freitas-Selby (HFS) 
algorithm41,42 which is the fastest classical algorithm to date for Chimera-type instances. As expected, SA, 
which is a thermal method, is found to be sensitive to TC, even more than PT, yielding τα~ts

SA SA with 
α ≈ .1 60SA . Even though the estimate of αSA presumably slightly depends on our choice of success met-
ric and the details of the algorithm, its susceptibility to classical hardness is nonetheless very evident.

The HFS algorithm is a ‘non-thermal’ algorithm (i.e., it does not make use of a temperature parame-
ter). Nonetheless, here too we have found the concept of classical hardness to be very relevant. For the 
HFS algorithm, we find a scaling of τα~ts

HFS HFS with α ≈ .0 3HFS , implying that the algorithm is signif-
icantly less susceptible to thermal hardness than PT (it is worth pointing out that the typical runtime for 
the HFS algorithm on the hardest, τ =  107, group problems was found to be ~0.5 s on an Intel Xeon CPU 
E5462 @ 2.80 GHz, which to our knowledge makes these the hardest known Chimera-type instances to 
date).

Analysis of findings
The above somewhat less-than-favorable performance of the experimental D-wave chip on thermally-hard 
problems is not necessarily a manifestation of the intrinsic limitations of quantum annealing, i.e., it does 
not necessarily imply that the ‘quantum landscape’ of the tested problems is harder to traverse than the 
classical one (although this may sometimes be the case43,44). A careful analysis of the results suggests in 
fact at least two different more probable ‘classical’ causes for the performance of the chip.

First, as already discussed above and is succinctly captured in Fig. 2, temperature is expected to play 
a key role in DW2 success on instances exhibiting TC. This is because for these, the ground state con-
figurations minimize the free energy only below the lowest critical TC temperature. Even though the 
working temperature of the DW2 chip is rather low, namely ~15 mK, the crucial figure of merit is the 
ratio of coupling to temperature T/J [recall Eq. (1)]. Although the nominal value for the chip is / ≈ .T J 0 1 
(calculated with reference to the classical Hamiltonian at the end of the anneal), any inhomogeneity of 
the temperature across the chip may render the ratio higher, possibly driving it above typical TC critical 
temperatures. (We refer to the physical temperature of the chip. However, non-equilibrium systems, e.g., 
supercooled liquids or glasses, can be characterized by two temperatures45: On the one hand, the physical 
temperature T which rules fast degrees of freedom that equilibrate. On the other hand, the ‘effective’ 
temperature refers to slow degrees of freedom that remain out of equilibrium. We are currently investi-
gating whether or not the DW2 chip can analogously be characterized by two such temperatures.)

Another possible cause for the above scaling may be due to the analog nature of the chip. The pro-
gramming of the coupling parameters J{ }ij  and magnetic fields h{ }i  is prone to statistical and systematic 

Figure 3.  Dependence of typical time to solution ts of the examined optimization algorithms on mixing 
time τ, the classical hardness parameter. Here, PTeq denotes time to equilibration which by definition 
scales linearly with τ, and PTheur denotes PT functioning as a heuristic solver in which case the time to 
solution is the number of Monte-Carlo steps to first encounter of a minimizing configuration. The ts of the 
SA algorithm scales as ταSA, with α ≈ .1 60SA  whereas that of the classical non-thermal HFS algorithm 
(measured in μs) scales as ταHFS, with α ≈ .0 3HFS . The ts for the DW2 chip (measured in μs) scales as ταDW2 
with α ≈ .1 73DW2  (we note the missing error bars on the 107 DW2 data point, which is due to insufficient 
statistics).
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errors (also referred to as intrinsic control errors, or ICE). The couplings actually encoded in DW2 are 
= ± +J J Rij , where  δ( , )~R J0  is a random error (δ ≈ .J J0 05 , according to the manufacturer of the 

chip). Unfortunately, even tiny changes in coupling values are known to potentially change the 
ground-state configurations of spin glasses in a dramatic manner37,46–48. We refer to this effect as ‘cou-
pling chaos’ (or J-chaos, for short). For an N-bit system, J-chaos seems to become significant for 
δ /~J J N a

crit . Empirically37,48 ≈ /a D1 , D being the spatial dimension of the system. Note, however, 
that these estimates refer only to typical instances and small N whereas the assessment of the effects of 
J-chaos on thermally-hard instances remains an important open problem for classical spin glasses.

Here, we empirically quantify the effects of J-chaos by taking advantage of the many programming 
cycles and gauge choices each instance has been annealed with (typically between 200 and 2000). 
Calculating a success probability p for each cycle, we compute the probability distribution of p over 
different cycles for each instance23,38. We find that while for some instances p is essentially insensitive to 
programming errors, for other instances (even within the same thermal hardness group), p varies signif-
icantly, spanning several orders of magnitude. This is illustrated in Fig.  4 which presents some results 
based on a straightforward percentile analysis of these distributions. For instance #1 in the figure, the 
80th percentile probability is ( ) = . ( )= .I p 0 669 3q 0 8 , whereas the probability at the 90th percentile is 

( ) = . ( )= .I p 0 698 4q 0 9 . Hence the ratio = ( )/ ( ), = . = .R I p I pq q8 9 0 8 0 9  is close to one. Conversely, for instance 
#35, the values are ( ) = . ( )= .I p 0 008 1q 0 8 , ( ) = . ( )= .I p 0 07 2q 0 9  and the ratio is = .,R 0 128 9 , i.e., the suc-
cess probability drops by an order of magnitude. The inset of Fig.  4 shows the typical ratio ,R8 9 as a 
function of classical hardness, demonstrating the strong correlation between thermal hardness and the 
devastating effects of J-chaos caused by ICE, namely that the larger τ is, the more probable it is to find 
instances for which p varies wildly between programming cycles.

Discussion
We have devised a method for quantifying the susceptibility of quantum annealers to classical effects by 
studying their performance on sets of instances characterized by different degrees of thermal hardness, 
which we have defined for that purpose as the mixing (or equilibration) time τ of classical thermal 
algorithms (namely, PT) on these. We find that the 2D-like Chimera architecture used in the D-Wave 
chips does give rise to thermally very-hard, albeit rare, instances. Specifically, we have found samples 
that exhibit temperature chaos, and as a such have very long mixing times, i.e., they are classically excep-
tionally hard to solve.

Figure 4.  Empirical evidence for the absence/presence of ‘J-chaos’. Probability density of success 
probability of a single cycle, p, over different programming cycles. The probability densities are plotted here 
for two easy (τ =  103) instances (here, ta =  20 μs and the number of anneals per programming cycle is 
X =  49500, see Methods). Instance #1 (662 cycles) is typical in this τ-generation with success probability 
p ~ 1 in the majority of the programming cycles. On the other hand, instance #35 (1624 cycles) suffers from 
strong J-chaos: Even though the probability of finding p ~ 0.1 in some of the programming cycles is not 
negligible, most cycles are significantly less successful, e.g., the median p is = . ( ) ×= .

−I 6 7 5 10q 0 5
4. Inset: 

Typical ratio of the 80th percentile probability to the 90th percentile probability, namely = /, = . = .R I Iq q8 9 0 8 0 9 
(see text) as a function of τ (for τ ≥  106 and 107, R8,9 was not computed due to extremely low success 
probabilities). Smaller ratios indicate larger fluctuations in success probabilities.



www.nature.com/scientificreports/

7Scientific Reports | 5:15324 | DOI: 10.1038/srep15324

We demonstrated that ‘temperature chaos’, or TC, is an inherent property of the (classical) free-energy 
landscape of certain (hard) optimization problem instances, and is expected to universally hinder the 
performance of any heuristic optimization algorithm.

Applying our method to an experimental quantum annealing optimizer, the DW2 chip, we have 
found that its performance is more susceptible to changes in thermal hardness than classical algorithms. 
This is in contrast with the performance of the best-known state-of-the-art classical solver on Chimera 
graphs, the ‘non-thermal’ HFS algorithm, which scales (unsurprisingly) better. Our results are not meant 
to suggest that the DW2 chip is not a quantum annealer, but rather that its performance is greatly 
impeded by much-undesired classical effects.

We have identified and quantified two probable causes for the observed behavior: A possibly too 
high temperature, or more probably, J-chaos, the random errors stemming from the digital-to-analog 
conversion in the programming of the coupling parameters. One may hope that the scaling of current 
DW2 chips would significantly improve if one or both of the above issues are resolved. Clearly, lowering 
the temperature of the chip and/or reducing the error involved in the programming of its parameters 
are both technologically very ambitious goals, in which case error correcting techniques may prove very 
useful49. We believe that quantum Monte Carlo simulations of the device will be instrumental to the 
understanding of the roles that temperature and magnitude of programming errors play in the perfor-
mance of the chip (and of its classical counterparts). In turn, this will help sharpening the most pressing 
technological challenges facing the fabrication of these and other future quantum optimizing devices, 
paving the way to obtaining long-awaited insights as to the difference between quantum and classical 
hardness in the context of optimization. We are currently pursuing these approaches.

Methods
Computation of the mixing time τ.  Because we follow ref. 22 we just briefly summarize here the 
main steps of the procedure. Considering one of the NT system copies in the PT simulation, let us denote 
the temperature of copy i at Monte Carlo time t by Tit

, where ≤ ≤i N1 t T  (see inset of Fig. 1). At equi-
librium, the probability distribution for it is uniform (namely, 1/NT) hence the exact expectation value of 
it is = ( + )/i N 1 2t T . From the general theory of Markov Chain Monte Carlo20, it follows that the 
equilibrium time-correlation function may be written as a sum of exponentially decaying terms:

∑ τ τ( ) = −
( + )

= ( > > …).
( )

τ
+

− /C s i i
N

a
1

4
e

2t t s
T

n
n

s
PT

2

1 2
n

The mixing time τ is the largest ‘eigen-time’ τ1. We compute numerically the correlation function 
( )C sPT  and fit it to the decay of two exponential functions (so we extract the dominant time scale τ and 

a sub-leading time scale). The procedure is described in full in ref. 22.

D-wave data acquisition and analysis.  Data acquisition.  In what follows we briefly summa-
rize the steps of the experimental setup and data acquisition for the anneals performed on the 414 
randomly-generated instances in the various thermal-hardness groups.

1.	 The Jij couplings of each of the 414 instances have been encoded onto the D-Wave chip using 
many different choices of annealing times in the allowed range of 20 μs ≤  ta ≤  20 ms.

2.	 For each instance and each choice of ta the following process has been repeated hundreds to thou-
sands of times: 

(a)	First, a random ‘gauge’ has been chosen for the instance. A gauge transformation does not 
change the properties of the optimization problem but has some effect on the performance of 
the chip which follows from the imperfections of the device that break the gauge symmetry. 
The different gauges are applied by transforming the original instance η→h hi i i, η η→J Jij i j ij, 
to the original cost function Eq. (1). The above gauge transformations correspond to the change 

η→s si i i in configuration spin values. Here, the N gauge parameters η = ±1i  were chosen 
randomly.

(b)	The chip was then programmed with the gauge-transformed instance (inevitably adding pro-
gramming bias errors, as mentioned in the main text).

(c)	 The instance was then solved, or annealed, X times within the programming cycle/with the 
chosen gauge. We chose ≈ /X t1 sec a, the maximally allowed amount.

(d)	After the X anneals were performed, the number of successes Y, i.e., the number of times a 
minimizing configuration had been found, was recorded. The probability of success for the 
instance, for that particular gauge/programming cycle and annealing time ta was then estimated 
as = /p Y X. Note, that in cases where the probability of success is of the order of 1/X, the 
probability p will be a rather noisy estimate (see data analysis, below, for a procedure to 
mitigate this problem).

(e)	 If the prefixed number of cycles for the current instance and ta has not been reached, return to 
(2a) and choose a new gauge.
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Data analysis and time-to-solution estimates.  The analysis of the data acquisition process described 
above proceeded as follows.

1.	 For each instance and each annealing time, the total number of hits = ∑Y Yi itot  was calculated, 
where i sums over all the gauge/programming cycles. Denoting = ∑X Xi itot  as the total number 
of annealing attempts, the probability of success for any particular instance and anneal time was 
then calculated as = /P Y Xtot tot.

2.	 The above probability was then converted into an average time-to-solution ts for that instance and 
ta according to ts =  ta/P, where the special case of P =  0 designates an estimate of an infinite ts, 
where in practice the true probability lies below the resolution threshold of 1/Xtot.

3.	 A typical runtime for a hardness group was then obtained by taking the median over all minimal 
ts values of all the instances in the group.

Simulated Annealing (SA) runs.  We employed the following protocol to find ground states for all 
414 tested instances. Each annealing schedule was run 1024 times. The temperature range was chosen to be 
identical to that used in our Parallel Tempering simulations with a starting temperature of = .T 1 632max , 
where the system was left to equilibrate for 1000 full-lattice Metropolis sweeps, and a final temperature 
of = .T 0 045min  which is below typical TC critical points (see Fig.  2). The cooling schedule that was 
chosen is linear in β = /T1  with the temperature decreasing after each full-lattice sweep. In the initial 
cooling rate, we sent the temperature from Tmax down to Tmin in 256 cooling steps. If the number of 
independent runs reaching a ground state at the end of each anneal was found to be less than one eighth 
of the total anneals (i.e., if less than 128 runs ended in a ground state), the number of cooling steps was 
doubled and the runs were restarted. The procedure was iterated until the “one-eighth success rate” cri-
terion has been met. We then took the final number of cooling steps as a figure of merit for the success 
of the SA algorithm on that particular instance. Finally, we computed the median over the instances of 
each hardness group in order to obtain a characteristic time-to-solution ts. Interestingly, for several of 
the hardest problems, the “one-eighth success rate” criterion was not met even with 2 ×  109 cooling 
sweeps (40 instances in the τ-generation group 106, as well as thirteen out of the fourteen instances in 
the τ ~ 107 group).
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