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Background: Freezing of gait (FOG) in multiple system atrophy (MSA) is

characterized by a higher risk of falls and a reduced quality of life; however,

the mechanisms underlying these effects have yet to be identified by

neuroimaging. The aim of this study was to investigate the differences in

functional network when compared between MSA patients with and without

freezing.

Methods: Degree centrality (DC) based on the resting-state functional

magnetic resonance imaging was computed in 65 patients with MSA and 36

healthy controls. Brain regions with statistically different DC values between

groups were selected as seed points for a second seed-based functional

connectivity (FC) analysis. The relationships between brain activity (DC and

FC alterations) and the severity of freezing symptoms were then investigated

in the two groups of patients with MSA.

Results: Compared to MSA patients without FOG symptoms (MSA-nFOG),

patients with MSA-FOG showed an increased DC in the left middle temporal

gyrus but a reduced DC in the right superior pole temporal gyrus, left anterior

cingulum cortex, left thalamus, and right middle frontal gyrus. Furthermore,

in patients with MSA-FOG, the DC in the left thalamus was negatively

correlated with FOG scores. Using the left thalamus as a seed, secondary

seed-based functional connectivity analysis revealed that patients with MSA-

FOG commonly showed the left thalamus-based FC abnormalities in regions

related to cognition and emotion. In contrast to the patients with MSA-nFOG,

patients with MSA-FOG showed an increased FC between the left thalamus

and the left middle temporal gyrus (MTG), right inferior parietal lobule (IPL),

bilateral cerebellum_8, and left precuneus.
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Conclusion: Freezing of gait is associated with centrality of the impaired

thalamus network. Abnormal FC between the thalamus and left MTG, right

IPL, bilateral cerebellum_8, and left precuneus was involved in FOG. These

results provide new insight into the pathophysiological mechanism of FOG in

MSA.

KEYWORDS

multiple system atrophy, freezing of gait, degree centrality, functional connectivity,
fMRI

Introduction

Multiple system atrophy (MSA) is a sporadic and
progressive neurodegenerative disease that is manifested
by prominent autonomic nerve function symptoms such as
urinary retention and orthostatic hypotension (Fanciulli et al.,
2019). Freezing of gait (FOG) is a debilitating symptom defined
as a brief, episodic absence or marked reduction in forward
progression of the feet despite the intention to walk (Nutt et al.,
2011). Epidemiological studies have shown that approximately
76% of patients with MSA experience a frozen gait, thus
leading to an increased risk of fall and a reduced quality of
life (Gurevich and Giladi, 2003). Although the incidence of
MSA with frozen symptoms gradually increases with disease
progression, not all patients with MSA develop FOG (Factor,
2008). Therefore, identifying FOG-driven alterations in the
associated pathophysiological mechanism may help to provide
a better understanding of this disabling symptom and help
clinicians to provide appropriate interventions.

Functional magnetic resonance imaging (fMRI) techniques
appear to be ideally suited to investigate the neuropathology of
FOG. It was previously found that regional homogeneity values
in the left supplementary motor area and the left superior frontal
region were significantly reduced in patients with Parkinson’s
disease (PD) and FOG when compared to PD patients without
FOG (Zhou et al., 2018). Patients with PD-FOG showed wider
alterations in the resting-state network than patients with non-
FOG; furthermore, freezing severity was modulated by the left
superior temporal gyrus in patients with PD (Liu et al., 2019).
Patients with PD-FOG also showed more significant reductions
in the volume of the cortical gray matter in the parietal lobe
and subcortical caudate areas (Kostic et al., 2012; Herman
et al., 2014) and increased damage in the white matter of the
corticopontine-cerebellar pathways (Wang et al., 2016) than PD
patients without FOG. Taken together, these data indicate that
structural integrity and the potential functional disconnection of
cortical regions and the subcortical nucleus are related to FOG
in PD. However, FOG symptoms are more common in patients
with MSA than in patients with PD (Factor, 2008). To date, such
investigations have not been conducted in patients with MSA.

To explore the impairments in the functional network of
MSA patients with FOG symptoms, we first used data-driven
research methods to analyze DC to detect the hub alteration
in the FOG-associated network in patients with MSA. The
advantage of this strategy is to avoid bias caused by seed
point selection. In the second step, we used a secondary
seed-based functional connection method to select altered
DC brain areas as seeds to investigate the cortical hub-based
circuit in the regulation of FOG in patients with MSA from
point to surface. We hypothesized that patients with MSA-
FOG would have impairments in cortical and subcortical
structure and function and that these impairments would
reflect the severity of FOG in patients with MSA. By selecting
these brain regions as seed points, we further hypothesized
that these specific brain regions would be used mainly to
cooperate or antagonize the abnormalities of other brain
networks participating in the regulation of FOG symptoms in
patients with MSA.

Materials and methods

Subjects

In total, 65 patients with MSA and 36 healthy controls
(HCs) were recruited from the Department of Neurology
at Renmin Hospital of Wuhan University. All participants
were Han Chinese and right-handed. The inclusion criteria
were patients who were diagnosed with probable or possible
MSA (H-Y stage score ≤ 4, Mini-Mental State Examination,
MMSE score ≥ 25) by a movement disorder specialist
according to the 2008 Second Edition MSA Diagnostic
Criteria (Gilman et al., 2008). Patients were excluded
if they had a history of other neurological diseases or
any predominant physical diseases. This study, involving
human participants, was reviewed and approved by the
Renmin Hospital of Wuhan University Ethics Committee.
The patients provided their written informed consent to
participate in this study.
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All patients experienced a 12-h drug washout before
examination (clinical motor and non-motor scale evaluation
and MRI scans). MSA disease severity and stage was scored
using the Unified Multiple System Atrophy Rating Scale
III (UMSARS III) and the Hoehn and Yahr (H-Y) stage,
respectively. Global cognitive function and mood of the patients
with MSA were assessed by the Mini-Mental State Examination
(MMSE), and the 24-item Hamilton Depression Rating Scale
(HAMD-24), respectively.

Freezing episodes were observed by experienced
neurologists during hospital visits, self-reported by patients, or
described by their caregivers. Patients were diagnosed as the
so-called freezers who had a positive FOG according to items 1
and 3 on the FOG questionnaire (FOG-Q) (Giladi et al., 2009). If
the patients, or their family members, could not understand the
definition of FOG, a description or a possible FOG subtype was
determined by neurologists during hospital visits. According to
the FOG-Q scale, there were 36 patients with MSA-FOG and 29
MSA patients without FOG (MSA-nFOG). Patients with MSA
were follow-up patients who were taking levodopa drugs and
were classified as the “OFF-FOG” group.

MRI acquisition

All subjects underwent an MRI examination with a
3T MRI scanner (GE Discovery MR750W; GE Healthcare,
United States) using a 16-channel head coil. Participants
completed a high-resolution, three-dimensional, sagittal
magnetization gradient echo imaging sequence (3D-T1)
with the following acquisition parameters: repetition
time/echo time = 8.5/3.3, matrix = 256 × 256, flip
angle = 12◦, voxel size = 1.0 mm × 1.0 mm × 1.0 mm,
slice thickness = 1 mm without slice gap, FOV = 256
mm2

× 256 mm2, and slice number = 180. The participants
also received a blood oxygen level-dependent (BOLD)
sequence scan using the following parameters: repetition
time = 2,000 ms, echo time = 25 ms, flip angle = 90◦, slice
number = 40, slice thickness = 3 mm without slice gap,
FOV = 240 mm × 240 mm, matrix size = 64 × 64, and voxel
size = 3 mm × 3 mm × 3 mm.

Degree centrality and functional
connectivity analysis

Degree centrality analysis
Resting-state functional MRI data processing and analysis

were performed using DPABI software (Data Processing
and Analysis for Brain Imaging, version 6.01). The first

1 www.restfmri.net

10 time points were discarded due to non-homogeneity of
magnetic resonance field strength and a noise adaptation
period for subjects. The remaining images were slice timed
and realigned; subjects with head movement greater than
0 mm or 2.5◦ in any direction were excluded from subsequent
analysis. The remaining data were then normalized into
a Montreal Neurological Institute template standard space
of 3 mm3

× 3 mm3
× 3 mm3 (DARTEL technique)

(Ashburner, 2007). For the regression of nuisance covariates,
we applied Friston-24 parameters and removed signals from
the white matter and cerebrospinal fluid. Subsequently,
linear trends were removed and band-pass filtered (0.01–
0.08 Hz). Any volume with a frame-wise displacement value
exceeding 0.5 images was excluded to remove nuisance
covariate effects.

DPABI software was used to analyze the non-smoothened
and preprocessed fMRI data, so that we could calculate
density correlations. Pearson’s correlation method was utilized
to correlate the time series of each voxel and those of all
other voxels to create a whole brain DC map and obtain the
connection matrix of correlation coefficients for the whole brain.
R > 0.25 was selected as the threshold value to eliminate
low time correlations caused by signal noise (Wang et al.,
2018; Yang et al., 2020). Then, 6 mm × 6 mm × 6 mm full
width at half maximum Gaussian kernels were used to spatially
smoothen all individual zDC maps. Only positively weighted
Pearson’s correlation coefficients were considered as the number
of functional connections at the individual level because of the
uncertainty arising when interpreting negative values.

Secondary seed-based functional connectivity
analysis

For seed-based FC calculation, the preprocessed image
was further smoothened with a 6 mm3 Gaussian kernel.
We selected significant DC alterations associated with the
FOG-Q scale as hubs between the MSA-FOG and patients
with MSA-nFOG. Specifically, we extracted the reference time
series from the DC results by averaging the time series of
every voxel in seed regions and conducted further correlation
analyses between the time courses and time series of voxels
inside and outside of the seed regions in the entire brain.
The correlation coefficients were then converted into Z-values
using Fisher’s r-to-z transformation. In addition, we further
analyzed the FC map of the spherical region within a 3-mm
radius that covered the peak group difference between DC
values to eliminate seed selection-related influences (refer to
supplementary material 1).

Statistical analysis

Statistical Package for the Social Sciences (SPSS) version
22.0 software (SPSS Inc., Chicago, IL, United States) was
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used to compare demographic and clinical variables between
groups. Demographic data were presented as mean ± standard
deviation (SD) for continuous variables. The independent
sample t-test and Kruskal–Wallis test, or analysis of variance
(ANOVA) followed by Tukey’s test for normally distributed data
or the Bonferroni test for non-normally distributed data, were
used for cross-group comparisons of quantitative variables. The
chi-squared test was used to compare categorical variables. We
set the threshold at p < 0.05 for the level of significance.

The SPM statistical analysis module was used for
neuroimaging data. One-way ANOVA was used to identify
DC differences among the MSA-FOG, MSA-nFOG, and HC
groups by controlling confounding factors including age,
gender, MMSE, Unified Multiple System Atrophy Rating
Scale (UMSARS), and HAMD score covariates; then, significant
different brain areas were extracted as a mask. Next, post hoc and
multiple comparison corrections (FDR correction, p < 0.05)
were performed to identify the differences between groups
within the masks and in the whole brain.

To identify the relationship between brain activity and the
severity of FOG, Pearson’s correlation was computed between
the DC values and FOGQ scores. Brain regions with significantly
different FOG-related DC values were selected as seeds for a
secondary seed-based FC analysis.

Results

Clinical and neuropsychological
characteristics

The demographic and clinical characteristics of the MSA-
FOG, MSA-nFOG, and HC groups are shown in Table 1.
There were no significant differences between the three
groups in terms of age, gender, education, and MMSE scores.
Furthermore, there were no significant differences between

the MSA-FOG and MSA-nFOG groups with regard to clinical
subtypes, H-Y grade, and the UMSARS score.

Degree centrality analysis

Compared to the HC group, the MSA-FOG group showed
an increased DC in the left inferior, middle and superior
temporal gyrus, the left middle occipital gyrus, and the left
hippocampus but a reduced DC in the right inferior orbit
frontal gyrus, right superior temporal gyrus, right anterior
cingulum cortex, and right medial frontal gyrus. The patients
with MSA-nFOG had an increased DC in the cerebellum
vermis IV/V and left middle temporal gyrus but a reduced
DC in the right inferior orbit frontal gyrus and bilateral
middle orbit frontal gyrus. Compared to the MSA-nFOG
group, the MSA-FOG group showed an increased DC in the
left middle temporal gyrus but a decreased DC in the right
superior pole temporal gyrus, left anterior cingulum cortex,
left thalamus, and right middle frontal gyrus (Figure 1 and
Table 2).

Seed-based functional connectivity
analysis

Compared to the HC group, the MSA-FOG group
showed a decreased thalamus-based FC in the bilateral
MTG, right hippocampus, right insula, right inferior frontal
cortex, and right calcarine. In contrast, the MSA-nFOG group
showed a decreased thalamus-based FC in the inferior and
middle temporal gyrus. Direct comparison of the MSA-FOG
and MSA-nFOG groups revealed thalamus-based FC in the
left middle temporal gyrus, right inferior parietal lobule,
bilateral cerebellum_8, and the left precuneus (Figures 2, 3
and Table 3).

TABLE 1 Demographic and clinical characteristics.

Characteristics (mean ± SD) Control (n = 36) MSA-FOG (n = 36) MSA-nFOG (n = 29) F/χ2 P-value

Age (years) 63.25 ± 3.34 64.50 ± 7.31 62.83 ± 8.32 0.59 0.56

Gender (male, female) 22:14 16:20 15:14 1.20 0.28

Education 11.72 ± 2.74 10.14 ± 3.08 10.48 ± 3.78 2.43 0.09

Disease duration N 4.17 ± 1.96 2.67 ± 1.32 2.32 0.13

UMSARS score N 37.51 ± 14.10 29.67 ± 15.91 0.67 0.42

Hoehn and Yahr N 2.94 ± 0.98 2.40 ± 0.76 0.80 0.38

LEED (mg/day) N 548.60 ± 308.14 403.02 ± 230.45 2.43 0.12

Clinical phenotype (P/C) N 16:20 16:13 2.04 0.36

MMSE score 28.67 ± 1.07 28.31 ± 0.92 28.52 ± 1.09 1.13 0.328

HAMD-24 score 1.69 ± 2.35 2.50 ± 1.82 2.21 ± 1.50 1.57 0.214

SD, standard deviation; MSA, multiple system atrophy; MSA-FOG, multiple system atrophy with freezing of gait symptoms; MSA-nFOG, multiple system atrophy without freezing of gait
symptoms; HCs, healthy controls; UMSARS, Unified Multiple System Atrophy Rating Scale; LEED, levodopa equivalent dose; P/C, Parkinson’s type/cerebellar type; MMSE, Mini-Mental
State Examination; HAMD-24, 24 items Hamilton Depression Scale; p < 0.05 was considered statistically significant.
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FIGURE 1

(A–C) Differences in degree centrality among the MSA-FOG, MSA-nFOG, and HC groups. The threshold value was set as an FDR-corrected
p < 0.05. MSA-FOG, multiple system atrophy with freezing of gait; MSA-nFOG, multiple system atrophy without freezing of gait symptoms; HCs,
healthy controls.
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Correlation between degree centrality
and seed-based functional
connectivity changes with depression
scores in the multiple system atrophy
group

Cerebral areas of the zDC results between the MSA-FOG
group and MSA-nFOG group were used to conduct correlation
analysis; only the left thalamus zDC was shown to be related
to the clinical FOGQ score (Figure 2). Then, using the left
thalamus as a seed, we identified brain regions showing FC
alterations between the MSA-FOG group and the MSA-nFOG
group; none of the resulting areas (left middle temporary
gyrus, right inferior parietal lobe, bilateral cerebellum_8,
and left precuneus) were significantly correlated with FOGQ
scores (Figure 2).

Discussion

Freezing of gait is a common and disabling symptom in
patients with MSA (Gurevich and Giladi, 2003). As the first step

in our study, DC values were used to identify the differences
of hubs in resting-state fMRI among patients with MSA-FOG,
patients with MSA-nFOG, and HCs. Then, in the second stage,
differences in ROI-based FC in patients with MSA with FOG
were used to detect DC alterations. DC values were found to
vary more widely in patients with MSA-FOG than patients with
MSA-nFOG; significantly reduced DC values were detected in
the thalamus of patients with MSA-FOG when compared to
the MSA-nFOG and HC groups. Furthermore, the mean zDC
values for the thalamus were negatively correlated with FOGQ
scores. In addition, thalamus-dominated FC analyses indicated
that increased thalamus-based FC, including the bilateral
cerebellum_8, the right IPL, and the left MTG could provide
new insight into the thalamus-dominated pathophysiological
mechanism underlying FOG in MSA.

Of the areas showing alterations in DC, only the left
thalamus was identified to be positively correlated with the
severity of FOG; other DCs showing intergroup differences
between the MSA-FOG and MSA-nFOG groups were not
correlated with FOGQ scores. These results suggested that
the disruption of DC in the thalamus was involved in the
pathophysiological mechanism underlying FOG and may serve
as a potential neuroimaging marker. In fact, by connecting with

TABLE 2 Brain area differences in degree centrality between patients with MSA and HC.

Peak MNI co-ordinate

Brain regions Hem Cluster BA X y Z T-value

MSA-FOG vs. HC

Inferior temporal gyrus L 39 20 −54 −27 −30 4.10

Middle temporal gyrus L 179 21 −63 −54 12 3.89

Hippocampus L 47 37 −30 −33 −3 4.55

Superior temporal gyrus L 20 NA 51 9 −6 −4.27

Inferior orbit frontal gyrus R 37 47 27 27 −6 −4.14

Superior temporal gyrus R 93 48 63 0 3 −5.74

Anterior cingulum cortex R 36 10 9 45 3 −4.10

Middle occipital gyrus L 46 NA −48 −81 24 4.21

Medial frontal gyrus R 23 6 6 −9 60 −3.45

MSA-nFOG vs. HC

Inferior orbit frontal gyrus R 22 47 27 27 −6 −4.04

Middle orbit frontal gyrus L 25 47 −36 45 −6 −3.74

Middle orbit frontal gyrus R 28 47 36 45 −6 −4.47

Cerebellum Vermis IV and V NA 21 NA 0 −60 6 3.62

Middle temporal gyrus L 28 37 −60 −57 9 3.19

MSA-FOG vs. MSA-n FOG

Superior pole temporal gyrus R 25 48 48 6 −12 −3.59

Middle temporal gyrus L 19 21 −60 −12 −15 3.87

Anterior cingulum cortex L 35 NA 0 18 18 −3.87

Thalamus L 20 NA −6 −15 15 −3.31

Middle frontal gyrus R 25 45 48 27 21 −3.66

A negative T-value represents decreased degree in MSA group. MSA-FOG, MSA-nFOG, multiple system atrophy patients with and without freezing of gait symptoms. BA, Brodmann
area. L, R, left and right.
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FIGURE 2

The left thalamus was the only degree centrality (DC)-altered brain area in correlation with FOG-Q scores between MSA-FOG and MSA-nFOG
groups. Scatter plot showed a negative correlation between FOG-Q scores and the left thalamus zDC values in patients with MSA-FOG.

the basal ganglia, the cerebellum, and the cortex, the thalamus
participates in feedback and feed-forward mechanisms and
plays a modulatory role in the integration of information across
the parallel motor, cognitive and limbic circuits (Alexander et al.,
1986; Haber and McFarland, 2001; Borra et al., 2015; Quartarone
et al., 2020). Our results further highlight the importance of
the thalamus in MSA patients with FOG symptoms. From
the perspective of transmitter disorder, this is easy to explain;
on the one hand, normal postural function depends in part
on the ability of the postural control system to integrate
visual, proprioceptive, and vestibular sensory information.
The degeneration of cholinergic neurons in the brainstem
pedunculopontine nucleus complex and their thalamic efferent
terminals can directly cause postural control deficits (which
will induce FOG or fall symptoms) in both PD and MSA
diseases (Gilman et al., 2010; Bohnen et al., 2019; Wilson
et al., 2021). On the other hand, supported by findings that
dopamine therapy is a protective factor in patients with MSA
(Yang et al., 2022), we hypothesize that a reduction in dopamine
availability or effectiveness in patients with both PD and MSA
results in reduced inhibitory action in the thalamic nuclei

that trigger thalamo-striatal feedback or thalamo-cortical feed-
forward mechanisms during the augmentation of motor output
and the indirect induction of FOG symptoms (Nanda et al.,
2009), which can be proved by the fact that striatal dopaminergic
denervation is critical in the pathophysiology of FOG in MSA,
given that it occurs most frequently when patients are in the OFF
state and all patients recruited in this study belong to dopamine-
responsive FOG variations. Of course, the present fMRI study
only indicated that thalamic DC alterations were involved in the
regulation of FOG symptoms in patients with MSA. Whether
this process involves a disorder in the cholinergic neurons
or dopamine transmitter function needs further PET-specific
transport receptor research.

It is worth noting that patients with MSA-P and MSA-C
subtypes (MSA Parkinsonian and the cerebellar variant) were
included in this study. The incidence of FOG was almost equal
in the MSA-P and MSA-C subtypes in our study; this finding
is inconsistent with previous studies, which found that thalamic
injury was more significant in patients with MSA-P (Minnerop
et al., 2007; Campabadal et al., 2022; Yang et al., 2022).
Furthermore, we found no significant difference between the
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FIGURE 3

(A–C) Differences in left thalamus dominated FC among MSA-FOG, MSA-nFOG, and HCs using post hoc correction for two-sample t-test
(FDR-corrected p = 0.05).

two subtypes in terms of non-motor symptoms and autonomic
nervous function symptoms or when compared between the
presence and absence of FOG symptoms. Although MSA-P

and MSA-C subtypes were characterized by impairments in
the supratentorial basal ganglia and infratentorial cerebellum,
respectively, both MSA variants showed dysfunction in the
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thalamus and cerebellum (Minnerop et al., 2007; Dash et al.,
2019); therefore, any dysfunction in the cerebellar-thalamo-
cortical (CTC) or striatal-thalamo-cortical (STC) circuits in
patients with MSA would be expected to lead to the onset of
FOG; this possibility requires further investigation.

Compared to the patients with MSA-nFOG, the patients
with MSA-FOG showed a decreased FC between the thalamus
and the bilateral cerebellum. Abnormal cerebellar processing
is expected to reflect FOG symptoms in patients with MSA.
The cerebellar processing of proprioceptive information is
important in the regulation of ongoing movements and the
maintenance of a stable gait (Takakusaki, 2008). The most
consistent finding arising from studies of MSA is damage to

the cerebellar structure. Previous studies found that cerebellar
injury is a clear risk factor for FOG symptoms in patients
with MSA (Gurevich and Giladi, 2003) and that the cerebellar
locomotor region is responsible for FOG-like symptoms (Fasano
et al., 2017). In this study, we first revealed FOG symptoms
in patients with MSA by the application of neuroimaging
techniques despite indirect focus on the cerebellum; our findings
were consistent with previous studies, thus suggesting that
the cerebellum could play an important role in the neural
mechanisms underlying FOG symptoms in patients with MSA.
In addition, increased FC between the thalamus and cerebellum
may imply a compensatory role through the CTC circuits
in patients with MSA-FOG. Unfortunately, our correlation

TABLE 3 Brain area differences in right thalamus dominated FC network between patients with MSA and HC.

Peak MNI co-ordinate

Brain regions Hem Cluster BA x y Z T-value

MSA-FOG vs. HC

Cerebellum crus2 L 1536 NA 42 −78 −33 −5.56

Cerebellum_8 R 60 NA 9 −48 −48 −4.66

Inferior temporal gyrus R 39 NA 57 −3 −42 −4.13

Inferior temporal gyrus L 33 20 −60 −12 −24 −4.03

Middle temporal gyrus R 189 20 63 −33 −12 −4.67

Inferior frontal gyrus L 63 11 −30 42 −15 −4.65

Putamen L 152 48 −24 3 −9 −5.01

Medial frontal gyrus R 116 NA 0 63 18 −4.85

Putamen R 159 11 21 12 −3 −5.41

Superior frontal gyrus R 643 8 18 27 60 −5.94

MSA-nFOG vs. HC

Cerebellum_Crus2 L 121 NA −39 −72 −48 −4.92

Cerebellum_8 R 69 NA 33 −48 −54 −5.93

Cerebellum_Crus2 R 126 NA 45 −69 −39 −5.83

Inferior temporal gyrus L 23 20 −57 −15 −33 −4.58

Cerebellum_6 L 95 NA −30 −33 −24 −5.29

Cerebellum_6 R 65 NA 15 −66 −24 −4.80

Inferior temporal gyrus R 30 37 57 −54 −24 −4.89

Middle temporal gyrus L 72 21 −63 −36 −6 −4.80

Putamen L 291 NA −15 9 0 −6.75

Middle cingulum cortex L 110 23 −3 −30 36 −4.57

Middle frontal gyrus L 61 9 −30 30 45 −5.06

Inferior parietal lobule R 30 40 39 −54 51 −4.63

Precuneus L 28 5 −3 −39 66 −4.69

Superior frontal gyrus R 30 6 18 −3 69 −4.80

MSA-FOG vs. MSA-nFOG

Middle temporal gyrus L 40 20 −57 −45 −9 3.50

Inferior parietal lobule R 29 40 39 −54 51 3.54

Cerebellum_8 R 19 NA 39 −48 −57 4.00

Cerebellum_8 L 21 NA −33 −48 −45 3.48

Precuneus L 19 5 −6 −42 60 3.28

A negative T-value represents decreased right thalamus dominated FC in MSA group. MSA-FOG, MSA-nFOG, multiple system atrophy patients with and without freezing of gait
symptoms; BA, Brodmann area; L, R, left and right.
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analysis did not detect a reduction in the cerebellar ZFC value
in relation to FOG score. Future studies should involve a
larger number of patients and directly compare the changes
in cerebellar structure and function between FOG and patients
with nFOG; such analysis should identify specific neuroimaging
mechanisms in the cerebellum of patients with MSA.

In addition to the thalamus and cerebellum, when compared
to patients with MSA-nFOG, the patients with MSA-FOG also
showed DC abnormalities in the right superior pole temporal
gyrus, left middle temporal gyrus, left anterior cingulum cortex
right, inferior orbit frontal gyrus, and the right middle frontal
gyrus, as well as thalamus-based FC dysfunction in the left
middle temporal gyrus, right inferior parietal lobule, and
left precuneus. Both the inferior orbit frontal gyrus and the
superior/middle temporal gyrus are known to be more engaged
in non-motor (memory and emotional) processing, whereas
the middle frontal gyrus, the cingulum cortex, and the inferior
parietal lobule belong to the node of default-mode network
(DMN). Our current findings add to the body of the literature
that supports the fact that the regulation of FOG in patients with
MSA depends on non-motor circuits. It is worth noting that
patients with MSA-FOG showed reduced DC in the thalamus
but an increase in the FC between the thalamus and non-
motor cortex, although no specific correlation was detected
between the non-motor cortex and clinical FOGQ scores.
We hypothesize that the purpose of the increased thalamus-
nonmotor circuit FC was to overcome the reduced level of
processing in the depleted sensorimotor circuits. Over time, it
is likely that altered processing in these compensatory circuits
predisposes them for gait breakdown and the onset of FOG.

There were limitations in our study that need to be
considered. First, despite a 12 h washout before the scan, the
influence of the medication used cannot be fully excluded;
the specific effect of levodopa on MSA and the effects of
residual dopamine on FOG remain unknown (Nonnekes et al.,
2020). Second, as described in the previous studies (Wang
et al., 2018; Yang et al., 2020), we only used r > 0.25
as a threshold in our study when calculating DC. In the
future studies, we aim to include other thresholds for
comparison; this may help us to eliminate the influence of
methodological choice on experimental results. Third, the
clinical symptoms of patients with MSA and patients with
spinocerebellar ataxia partially overlap; therefore, to avoid
the impact of misdiagnosis on our experimental results, we
conducted a series of spinocerebellar ataxia 1, 2, 3, 6, and
7 gene tests (the most common subtypes in the Chinese
population) (Wang et al., 2010), and the lack of detection
for other genetic subtypes has had an inevitable effect on
FOG research in patients with MSA. Comprehensive genetic
testing is recommended in the future studies to rule out
confounding diseases, such as hereditary and subacute diseases
combined with degeneration of the spinal cord. Fourth, the
thalamus of each hemisphere can be subdivided into 15

subregions. Each thalamic subregion participates in different
functional processes, either individually or collaboratively.
Thus, considering the overall functional changes may not reveal
panoramic information relating to specific thalamic nuclei; this
is a notable limitation of this study. Multicenter prospective
cohort studies and longer follow-ups of FOG symptoms might
overcome these limitations.

Conclusion

In this RS-fMRI study, we showed that the thalamus
is the hub region for DC alterations in FOG-associated
MSA. Behavioral associations and thalamocortical connectivity
suggested that the non-motor circuit played a compensatory role
in MSA. These findings provide neuroimaging evidence for a
better clinical understanding of non-pure depression and may
help us to develop new therapeutic strategies.
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