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Introduction
A quarter of all conceived human embryos are aneuploid, i.e., 

they either have too many or too few chromosomes (Hassold 

and Hunt, 2001). The consequences of such chromosomal 

 abnormalities are profound, affecting not only fertility, but also 

triggering spontaneous miscarriages. A few abnormal karyo-

types are compatible with human life, including Down’s 

 (trisomy 21), Turner (a single X chromosome), and Klinefelter’s 

(XXY) syndromes, but are also associated with developmental 

disabilities of variable penetrance. Analysis of human sperm 

and eggs has revealed that aneuploidy affecting  embryos is 

 primarily caused by an error-prone meiotic chromosome segre-

gation mechanism in oocytes. Whereas �1–2% of  human 

sperm have an abnormal chromosomal content (the same level 

of aneuploidy is recorded in mouse haploid germ cells, includ-

ing oocytes), an astonishing 20–25% of the human oocytes are 

aneuploid (Hassold and Hunt, 2001). The cause of this high 

 error rate for the meiotic process in human female germ cells 

is unclear.

Meiosis is a specialized cell division process that gener-

ates  genetically distinct haploid cells through a process that in-

volves one DNA replication step followed by two cell divisions 

(Zickler and Kleckner, 1999; Page and Hawley, 2004). The 

newly replicated sister chromatids are bound by cohesin com-

plex proteins that ensure that cohesion between sister chroma-

tids is  retained at the fi rst cell division, but lost at the second 

meiotic division (Petronczki et al., 2003). Each pair of cohesin-

bound sister chromatids constitutes a chromosome, which sub-

sequently becomes connected with its homologous partner at 

the zygotene to pachytene stages of prophase I in a process 

called synapsis. The synaptic process is promoted by the forma-

tion of a large number of DNA double-stranded breaks (DSBs) 

that are generated by the topoisomerase II–related transesterase 

SPO11 (Gerton and Hawley, 2005). The repair of a subset of the 

DSBs results in crossovers between the homologous chromo-

somes and, ultimately, in chiasmata, providing essential physi-

cal links between the chromosomes (Zickler and Kleckner, 

1999; Gerton and Hawley, 2005; Marcon and Moens, 2005). 

Synapsis is also  dependent on a conserved proteinaceous struc-

ture called the synaptonemal complex (SC). The SC is com-

posed of two axial elements (AEs) and a large number of 

individual transverse  fi laments that connect the AEs along their 

entire length. In addition, a central element has been defi ned at 
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the center of the transverse fi lament structure (Zickler and 

Kleckner, 1999; Page and Hawley, 2004). In mammalian male 

and female germ cells, several different meiosis-specifi c pro-

teins have been defi ned as components of the SC, including the 

AE proteins SC protein 2 (SYCP2) and 3 (Dobson et al., 1994; 

Lammers et al., 1994; Schalk et al., 1998) and the transverse fi l-

ament protein SYCP1 (de Vries et al., 2005). The AE proteins 

SYCP2 and -3 are found at the interchromatid domains of the 

sister chromatids, which is where they jointly form axial cores 

together with the cohesin complex proteins.

Several different error surveillance systems (checkpoints) 

have been characterized in meiotic cells (Lydall et al., 1996; 

Roeder and Bailis, 2000; Di Giacomo et al., 2005). A failure to 

repair DSBs that is caused by inactivation of DNA repair/ 

recombination proteins such as DMC1, MSH4, and MSH5, or 

DNA damage checkpoint proteins such as ATM, will activate a 

DNA damage checkpoint that results in female germ cell death 

at early postnatal development (Di Giacomo et al., 2005). The 

mismatch repair protein MLH1 takes part in the conversion of 

crossovers into chiasmata at a late stage of the recombination 

pathway (Baker et al., 1996; Edelmann et al., 1996; Hunter and 

Borts, 1997). Surprisingly, inactivation of this protein in murine 

germ cells does not activate a DNA damage checkpoint.  Instead, 

in mouse oocytes that are defi cient for Mlh1, the resulting 

 achiasmatic mutant germ cells cannot establish a proper meiotic 

spindle and are eliminated at the metaphase I stage by the 

 spindle checkpoint (Woods et al., 1999).

The absence of SYCP3 results in decompaction of the 

meiotic chromosome axis, premature loss of cohesin complexes 

from the meiotic chromosome axis, and irregular interruptions 

of the synaptic process as defi ned by SYCP1 (Yuan et al., 2002; 

Kouznetsova et al., 2005). Female Sycp3−/− mice are fertile, 

 although one-third of their offspring die in utero at an early 

stage of embryonic development as a result of aneuploidy (Yuan 

et al., 2002). We investigated the nature of the chromosomal 

 errors introduced by the absence of SYCP3 and how these er-

rors evade the meiotic quality assurance systems, thereby gen-

erating aneuploid offspring. Our results illustrate the importance 

of the axial element of the synaptonemal complex for effi cient 

repair of recombination events.

Results
Loss of SYCP3 affects germ cell cyst 
survival and primordial follicle formation
The absence of SYCP3 results in a complete elimination of 

male spermatocytes at the zygotene–pachytene transition of 

prophase I (Yuan et al., 2000). To investigate how the elimina-

tion of SYCP3 affects the oocyte maturation process, ovarian 

morphology and oocyte numbers were analyzed in pre- and 

postnatal animals from embryonic day (E) 16.5 to 8 d postpar-

tum (dpp). Sequential sections of ovaries taken from wild-type 

or Sycp3−/− animals were either stained with hematoxylin and 

eosin or immunostained using antibodies against germ cell  nuclear 

antigen (GCNA) or c-kit. GCNA and c-kit specifi cally stain the 

nuclei and the cytoplasm of oocytes, respectively (Manova et al., 

1990; Enders and May, 1994). Histomorphometric analysis 

 revealed no difference in the relative numbers of oocytes at 

E16.5, E18.5, or at birth when ovaries from wild-type or Sycp3−/− 

 females were compared (Fig. 1 A and Fig. 2 A). This shows that 

germ cell development is not interrupted before the diplotene 

stage in Sycp3−/− females. A majority of the oocytes in 1-dpp 

mice are found in small clusters, called germ cell cysts, which 

are seen in both wild-type and mutant ovaries (Fig. 1, A and B). 

Starting at 2 dpp, we noted a distinct loss of germ cell cysts in 

the Sycp3−/− ovary, which was not seen in the wild-type ovary 

(Fig. 1, C and D, and Fig. 2 B). The relative loss of germ cell 

cysts in the Sycp3−/− ovary was further accentuated 4 dpp (Fig. 1, 

E and F; and Fig. 2 C). We also noted a reduction in the number 

of primordial oocytes in Sycp3−/− ovaries in 2- and 4-dpp mice, 

Figure 1. Sycp3−/− oocytes are rapidly and 
selectively lost after birth. Oocytes were de-
tected in ovary sections by anti-GCNA1 (A–F) 
and anti–c-kit (G and H) immunohistochemistry 
(brown stain). At 1 dpp, both germ cell cysts 
(arrowhead) and primordial follicles were 
found in wild-type (A), as well as in Sycp3−/− 
ovaries (B) in a similar number. The inset in 
B indicates germ cell cysts. (C) At 2 dpp, germ 
cell cysts (arrowhead) and primordial follicles 
were detected mostly in the periphery in wild-
type. (D) A signifi cant loss of germ cell cysts 
(arrowhead) and primordial follicles (inset) 
were observed in the Sycp3−/− ovary at 2 dpp. 
At 4 dpp, both primordial follicles (arrowhead) 
and primary follicles were detected in wild 
type (E). A further loss of primordial follicles 
(arrowhead) was found in the Sycp3−/− ovary 
(F), but no signifi cant difference in the numbers 
of primary follicles (inset) was detected 
 between wild type and mutant (F). (G and H) 
At 8 dpp, primordial (arrowheads), primary, 
and secondary follicles (inset) were detected 
in wild-type (G) and the Sycp3−/− ovaries (H), 
but the number of primordial follicles was 
 further reduced in the Sycp3−/− ovary. 
Bars, 30 μm.
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compared with wild type (Fig. 1 and Fig. 2, B and C). It is likely 

that the loss of primordial oocytes is attributable to the rapid 

elimination of the germ cell cysts seen during early postnatal 

development, as the primordial oocytes develop from these 

cysts. We found that the collective loss of germ cell cysts and 

primordial oocytes in the mutant ovary amounts to 34% in 2-dpp 

mice and 52% in 4-dpp mice (Fig. 2 A). A further reduction in 

primordial follicle number occurs at 8 dpp (Fig. 1 and Fig. 2 D), 

suggesting that primordial follicles are also susceptible to elim-

ination within the mutant ovary environment.  Notably, however, 

the residual fraction of primordial follicles in the Sycp3−/− 

ovary gives rise to both primary and secondary follicles in num-

bers that closely match the wild-type situation. We conclude 

that loss of SYCP3 function results in a drastic loss of germ cell 

cysts and primordial follicles during early postnatal develop-

ment. The oocyte pool established 8 dpp in Sycp3−/− females is 

reduced, with �66% compared with wild-type, but no further 

depletion occurs relative to wild type, giving rise to an oocyte 

reservoir in 8–12-wk-old Sycp3−/−  females that can sustain nor-

mal levels of fertility at this age (Yuan et al., 2002).

The loss of germ cell cysts and primordial follicles in the 

ovary of the mutant females could be caused by an apoptotic 

process that is introduced by the absence of SYCP3. TUNEL 

staining showed an increase in the number of apoptotic cells 

at 1 and 2 dpp in the Sycp3−/− ovary, compared with the wild-

type counterpart (Fig. S1, available at http://www.jcb.org/cgi/

content/full/jcb.200512077/DC1). The ovarian cells labeled by 

TUNEL staining in the Sycp3−/− females are predominantly 

localized at the cortex area (at the outer edge of the ovary sec-

tions), suggesting that the affected cells correspond to the germ 

cell cysts that are preferentially lost in the mutant background. 

The number of TUNEL-positive cells is low, relative to the to-

tal number of oocytes that are lost in the mutant ovary. This is 

most likely because of the transient nature of the TUNEL stain-

ing, which is also described in another mouse model monitor-

ing female germ cell death during early postnatal development 

(Rajkovic et al., 2004).

Absence of SYCP3 affects the effi ciency 
of the DSB repair process in meiotic cells
The temporal profi le of the oocyte loss in Sycp3−/− females sug-

gests the involvement of the DNA damage checkpoint, which 

is known to become active at an early stage of postnatal devel-

opment in oocytes (Di Giacomo et al., 2005). Therefore, we 

monitored the progression of DNA repair of DSBs in zygotene 

to diplotene mutant oocytes. The principles used to defi ne the 

 different meiotic stages in Sycp−/− oocytes are described in 

Fig. S1, Materials and methods, and Kouznetsova et al. (2005). 

In brief, both early zygotene and zygotene oocytes were de-

rived from E16.5 embryos, whereas pachytene and diplotene 

oocytes were derived from E18.5 or E19.5 embryos. Formation 

of the axial cores was monitored by STAG3 staining, synapsis 

(transverse fi lament formation) was monitored by SYCP1 stain-

ing, and centromere morphology was monitored by CREST 

 staining. Introduction of DSBs in meiotic DNA at the lepto-

tene stage of prophase I results in the phosphorylation of H2AX 

(generating a modifi ed form called γH2AX). γH2AX appears at 

leptotene in chromatin regions throughout the nucleus and gen-

erally form large, cloud-like patterns, suggesting that the ma-

jority of the affected H2AX molecules are found in chromatin 

loops that project out from the axial cores of the chromosomes 

( Mahadevaiah et al., 2001; Celeste et al., 2002). Subsequent re-

pair of DSBs results in the disappearance of most of the γH2AX 

signal at the pachytene stage. A second and independent wave 

of γH2AX staining appears in late zygotene and pachytene 

cells, which are associated specifi cally with the asynapsed 

 axial cores of the meiotic chromosomes (de Vries et al., 2005; 

Turner et al., 2005). We found that γH2AX immunostaining of 

wild-type early zygotene oocytes revealed dispersed, cloud-like 

 signals throughout the nucleus (Fig. 3, C and D), whereas only 

a few patches of γH2AX signals associated with the remaining 

asynaptic axial cores were observed in pachytene nuclei (Fig. 3, 

G and H).We also consistently observed a few residual γH2AX 

patches in diplotene nuclei, the nature of which is not clear 

(Fig. 3, K and L). We then analyzed the distribution of γH2AX 

Figure 2. Germ cell cysts and primordial fol-
licles are preferentially lost in the Sycp3−/− 
ovary. (A) The ratio of Sycp3−/−/wild-type (wt) 
oocytes indicates no difference in the relative 
numbers found in wild-type and Sycp3−/− 
 ovaries at E16.5 (n = 4), E18.5 (n = 3), or 
at birth (1 dpp; n = 5). The oocyte number 
in Sycp3−/− ovary was reduced by �34% at 
2 dpp (n = 5), �52% at 4 dpp (n = 5), and 
�66% at 8 dpp (n = 7), as compared with 
wild-type. No further reduction was detected 
in Sycp3−/− ovary at 8 wk (68%; n = 4). 
A signifi cant reduction of germ cell cysts and 
primordial follicles were observed in the 
Sycp3−/− ovary at 2 (B) and 4 dpp (C), whereas 
a large fraction of the primordial follicles in 
Sycp3−/− ovaries were lost at 8 dpp (D). The 
numbers of the primary and secondary follicles 
remain the same in both wild-type and mutant 
ovaries during early follicle development at 
2 (B), 4 (C), and 8 dpp (D). Values shown rep-
resent the mean ± SEM. Statistical analysis 
was performed by one-way analysis of vari-
ance, and signifi cance was shown in p-values.
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in Sycp3−/− oocytes at the early zygotene stage and noted that 

it was indistinguishable from the pattern observed in wild-type 

cells at this stage (Fig. 3, A and B). This suggests that neither 

SPO11-derived DSB formation nor phosphorylation of H2AX 

is dependent on SYCP3 expression. Surprisingly, however, 

analysis of pachytene and diplotene Sycp3−/− oocytes revealed 

that a majority of these cells retained a strong, cloud-like nu-

clear γH2AX signal, which is similar to the pattern seen in early 

zygotene cells (Fig. 3, E, F, I, and J). Strong γH2AX staining 

in late meiotic cells could refl ect ineffi cient DNA repair or re-

sidual asynapsis. The nuclear distribution of the γH2AX pattern 

seen in pachytene and diplotene Sycp3−/− oocytes, however, is 

very different from the γH2AX pattern seen in meiotic cells 

with asynapsed chromosomes (de Vries et al., 2005; Turner 

et al., 2005). Our results show that SYCP3 is required for ef-

fi cient  dephosphorylation of γH2AX during meiosis, and the 

nuclear pattern displayed by this marker in pachytene and dip-

lotene Sycp3−/− oocytes suggests that the DNA repair process is 

impaired in the mutant cells.

Absence of SYCP3 affects the turnover 
of recombination-related proteins
To monitor if the meiotic repair/recombination process is 

 affected in Sycp3−/− oocytes, the spatial and temporal distribu-

tion of several DNA repair/recombination proteins were studied 

during meiosis. The RecA homologues RAD51 and DMC1 take 

part in heteroduplex formation during meiosis (Shinohara and 

Shinohara, 2004). RAD51 and DMC1 foci are formed along the 

AEs in wild-type meiotic cells and are observed on both asyn-

apsed and synapsed parts of the SC, but these foci disappear 

during pachytene (Moens et al., 2002). We observed a similar 

number of RAD51/DMC1 foci at the early zygotene and zygo-

tene stages in Sycp3−/− oocytes, as seen in wild-type cells (Fig. 4,

A, C, and D). However, as meiosis progressed, an increased 

number of foci were retained in Sycp3−/− pachytene and diplo-

tene oocytes, compared with wild-type cells (Fig. 4, G, H, K, 

and L). Most of the persistent RAD51/DMC1 foci in Sycp3−/− 

oocytes were found in the nuclear space next to the SCs 

 (labeled by SYCP1), but an increased number of foci associated 

with the SC were also seen (Fig. S2, available at http://www.

jcb.org/cgi/content/full/jcb.200512077/DC1). RPA is a single-

stranded DNA–binding protein that promotes DNA DSB repair 

(Alani et al., 1992; Wang and Haber, 2004). RPA foci appear 

on the SCs later than RAD51/DMC1 foci and have been sug-

gested to be part of an antirecombination protein complex that 

prevents the formation of superfl uous reciprocal recombination 

events (Moens et al., 2002). We found that the number of RPA 

foci at early zygotene, zygotene, and late zygotene was similar 

in wild-type and Sycp3−/− oocytes (Fig. 4, B, E, and F). Starting 

at pachytene, however, the number of RPA foci observed in 

Sycp3−/− oocytes did not decrease, as in wild-type oocytes at 

this stage (Fig. 4, I and J). Furthermore, many RPA foci  re-

mained in Sycp3−/− diplotene oocytes, despite an almost com-

plete loss of such foci in wild-type oocytes at the same stage 

(Fig. 4, M and N). MSH4 is a MutS homologue that promotes 

homologous alignment and crossover formation (Neyton et al., 

2004). MSH4 foci overlap with RPA foci, but appear slightly 

later during meiosis in mouse germ cells (Moens et al., 2002). 

We found that an increased number of MSH4 foci persist at late 

meiotic stages in Sycp3−/− oocytes (unpublished data).

Finally, we monitored the expression of the DNA  mismatch 

repair protein MLH1 in Sycp3−/− oocytes. MLH identifi es the 

sites of meiotic exchanges along the pachytene chromosomes 

and is critical for chiasma formation (Baker et al., 1996; 

 Edelmann et al., 1996; Hunter and Borts, 1997; Anderson et al., 

1999). It has been shown that the number of MLH1 foci varies 

according to the length of the SC (Lynn et al., 2002). This cor-

relation, however, does not apply to SYCP3-defi cient meiotic 

Figure 3. Absence of SYCP3 strongly affects 
𝛄H2AX distribution during meiotic prophase 
 development. (A–D) γH2AX (green) staining is 
abundantly distributed throughout the nucleus in 
early zygotene wild-type and Sycp3−/− oocytes. 
Synapsed regions are labeled by SYCP1 (red) and 
centromeres (white) are visualized by CREST. 
(G and H) Only a few γH2AX patches remain in 
pachytene wild-type oocytes. The γH2AX staining 
is associated with the SYCP1-labeled structures of 
the SC and protrudes from these structures. (E and F) 
Pachytene Sycp3−/− oocytes retain a strong and 
ubiquitously distributed γH2AX staining pattern. 
(K and L) A few residual γH2AX patches were 
 detected in diplotene wild-type oocytes. (I and J) 
Strong γH2AX staining similar to the pattern seen in 
early zygotene and pachytene oocytes is retained 
in diplotene Sycp3−/− oocytes. Bar, 10 μm.
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chromosomes. Despite a twofold increase in axial core length, 

approximately the same amount of MLH1 foci are observed in 

both wild-type and Sycp3−/− pachytene oocytes (Yuan et al., 

2002). We have monitored the abundance of MLH1 foci in 

wild-type and Sycp3−/− oocytes at postpachytene meiotic stages 

to reveal if the temporal distribution of this protein is affected in 

the absence of SYCP3. We found that MLH1 foci persisted into 

the diplotene stage in wild-type oocytes, as previously described 

(Moens et al., 2002), but that these MLH1 foci disappeared at 

the end of diplotene (Fig. 5, C and D, G and H, and K and L). 

In contrast to this, we found that a considerably larger number 

of MLH1 foci persisted into the late diplotene stage in Sycp3−/− 

oocytes, and that many of these foci also remained until the 

very late diplotene stage (Fig. 5, A and B, E and F, and I and J). 

No MLH1 foci were observed in oocytes after birth (unpublished

data). Many of the residual MLH1 foci that were retained at the 

very late diplotene stage were not associated with SYCP1 staining 

(Fig. 5, E and I). The most likely explanation for this is that the 

time course of the desynaptic process (i.e., the removal of SYCP1) 

is not affected in mutant oocytes (Fig. 5), whereas MLH1 foci 

persist for longer in these cells. The residual MLH1 foci, how-

ever, remain in association with the meiotic chromosome axis, 

as shown by the association of these foci with STAG3-staining 

regions in late diplotene mutant oocytes (Fig. 5, O and P). We 

noted that mutant oocytes that retained a large number of residual 

MLH1 foci also displayed a strong nuclear γH2AX staining 

(Fig. 5, F and J), suggesting that the impaired repair process 

 affects DNA associated with the chromosome axis, as well as 

with DNA loops that project out from this axis. In summary, we 

found that the absence of SYCP3 results in a persistent γH2AX 

pattern during meiotic prophase and in a  delayed removal of 

RAD51/DMC1, RPA, MSH4, and MLH1 from meiotic chromo-

somes. We conclude that the recombination process is impaired 

in Sycp3−/− oocytes.

Analysis of Sycp3−/− oocytes at different stages of meiosis, 

using antibodies that detect γH2AX, RAD51/DMC1, RPA, 

MSH4, and MLH1, consistently identifi ed two groups of cells, 

where one group retained less staining than the other (Table I). 

Figure 4. Absence of SYCP3 affects the turn-
over of DMC1/RAD51 and RPA foci during 
meiosis. (A and B) The number of RAD51/
DMC1 and RPA foci was presented as the 
mean ± SEM of analyzed oocytes from fi ve 
meiotic stages (na, counted wild-type oocytes; 
nb, counted Sycp3−/− oocytes). (A) The num-
ber of RAD51/DMC1 foci (green) shows no 
difference between wild-type and Sycp3−/−

oocytes at the early zygotene (nab = 11) 
and the zygotene stages (C and D; na = 12; 
nb = 19). Excessive RAD51/DMC1 foci were 
retained in late zygotene to late diplotene 
Sycp3−/− oocytes, whereas this number rap-
idly decreased in wild-type oocytes (G and H 
and K and L; LZ, na = 30 and nb = 38; LP/ED, 
na = 16 and nb = 20; LD, na = 14 and nb = 38). 
However, a subset of the Sycp3−/− oocytes dis-
plays fewer foci than the rest (a late diplotene 
stage oocytes is shown as an example in O). 
(B) The number of RPA foci (green) is similar 
in wild-type and Sycp3−/− oocytes at the 
early zygotene (na = 11; nb = 13), zygotene 
(E and F; na = 11; nb = 12), and late zygo-
tene stages (nab = 14). The RPA foci number 
remained high in Sycp3−/− oocytes from 
pachytene until the late diplotene stage, 
whereas this number sharply decreased in 
wild-type oocytes (I and J and M and N; LP/ED, 
na = 43 and nb = 30; LD, na = 13 and nb = 32). 
Synapsed regions were labeled by SYCP1 an-
tibodies (red) and centromeres were visualized 
by CREST (white). Bars, 10 μm.
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For example, �29% of the Sycp3−/− late diplotene oocytes dis-

played weak γH2AX staining. Furthermore, the same percent-

age of Sycp3−/− oocytes at late diplotene also contained 

relatively few RAD51/DMC1 and MLH1 foci (Table I, Fig. 4 O, 

and Fig. 5, M and N). Although the division of the oocytes 

into two groups is clearly arbitrary, it shows that the repair/ 

recombination process in Sycp3−/− oocytes is impaired, not 

blocked, giving rise to a spectrum of mutant cells with different 

levels of damage.

Sycp3−/− ovaries at 2 dpp display a striking 
increase in oocytes that contain 
univalent chromosomes
A decreased effi ciency of the DNA repair/recombination pro-

cess should have consequences for completion of the crossing-

over process between the homologous chromosomes. A failure 

to form or maintain chiasmata between the homologous chro-

mosomes during meiosis will result in premature chromosome 

separation, giving rise to two separately labeled univalents 

(achiasmatic) chromosomes. To investigate this, chromosome-

specifi c probes were labeled and used in FISH experiments. 

We found, as expected, that the chromosome-specifi c probes 

(19, 17, 12, 2, 1, and X) labeled single individual chromosome 

structures in wild-type oocytes (Fig. 6, A–D). In contrast, FISH 

analysis identifi ed a large number of Sycp3−/− oocytes that con-

tained univalent chromosomes (Fig. 6, E–H, and Table II). The 

incidence of univalency for each of the six different  meiotic 

Figure 5. Absence of SYCP3 delays the re-
moval of MLH1 during meiosis. The distribution 
of MLH1 foci (white) and association with syn-
apsed regions (labeled by SYCP1; red) at dif-
ferent stages of meiosis are shown for Sycp3−/− 
oocytes (C, G, K, and M), whereas wild-type 
oocytes are shown as a control (A, E, and I). 
γH2AX (green) and centromeres visualized by 
CREST (blue) were added to these pictures for 
Sycp3−/− oocytes (D, H, L, and N) and wild-
type oocytes (B, F, and J). A subset of the 
Sycp3−/− oocytes displays fewer foci than the 
rest (a very late diplotene stage oocytes is 
shown as an example [M and N]). A majority 
of the MLH1 foci in late diplotene Sycp3−/− 
oocytes was not associated with SYCP1 stain-
ing (O, arrows), but was associated with the 
asynapsed axial cores as defi ned by the cohe-
sin complex protein STAG3 (P, arrows). (Q) The 
number of MLH1 foci was presented as the 
mean ± SEM of analyzed oocytes from fi ve 
meiotic stages (na, counted wild-type oocytes; 
nb, counted Sycp3−/− oocytes). The number of 
MLH1 foci shows no difference between wild-
type and Sycp3−/− oocytes at the pachytene 
(middle to late; A and C; na = 50; nb = 35) 
and early (na = 36; nb = 41) to middle diplo-
tene (na = 24; nb = 29). An increased number 
of MLH1 foci relative to wild-type is seen in 
late (G) and very late diplotene (K) Sycp3−/− 
oocytes, (LD, na = 20 and nb = 42; VLD, na = 20 
and nb = 24). Bars, 10 μm.

Table I. Sycp3−/− oocytes display variable 𝛄H2AX staining 
and different numbers of DMC1/RAD51 and MLH1 foci

Sycp3−/− 
oocytes

L pachytene/
E diplotene
(na = 103; 
nb = 20)

L diplotene
(na = 114; 
nb = 38; 
nc = 42)

VL diplotene
(nb = 41; 
nc = 24)

γH2AX 74% stronger
26% weaker

71% stronger
29% weaker

DMC1/RAD51 80% foci >20
20% foci <20

71% foci >10
29% foci (0–10)

66% foci >5
34% foci (0–5)

MLH1 71% foci >15
29% foci (0–15)

67% foci >5a

33% foci (0–5)

Sycp3−/− oocytes were classifi ed in groups depending on their level of γH2AX 
staining or the number of DMC1/RAD51 and MLH1 foci (na, counted oocytes 
for γH2AX; nb, counted oocytes for DMC1/RAD51; and nc, counted oocytes for 
MLH1) and shown as a relative percentage. E, early; L, late; VL, very late.
aThese oocytes (except for one cell) also showed a stronger γH2AX staining 
pattern by coimmunostaining with MLH1 (Fig. 6).
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chromosomes analyzed in Sycp3−/− oocytes at 2 dpp varied 

considerably (Table II). The difference in univalency rate for 

the six different chromosomes in the analyzed mutant mouse 

 oocytes is best explained in the context of their reported mean 

chiasmata frequency (Hulten et al., 1995; Lawrie et al., 1995; 

Broman et al., 2002). Chromosomes 1 and 2 display an al-

most twofold higher mean chiasmata frequency than reported 

for chromosomes 12, 17, and 19, strongly suggesting that ho-

mologous chromosomes connected with two or more chiasmata 

are more likely to retain at least one chiasma even in the ab-

sence of SYCP3. Analysis of mutant oocytes using two or three 

 chromosome-specifi c FISH probes simultaneously showed that 

many Sycp3−/− oocytes contain multiple univalent chromo-

somes  (Table II). We conclude that the reduced effi ciency of the 

DSB repair process in Sycp3−/− oocytes give rise to achiasmatic 

chromosomes and results in a sharp increase in the number of 

oocytes that contain univalent chromosomes at 2 dpp.

Oocytes containing univalent chromosomes 
are preferentially eliminated during early 
postnatal development
To follow the fate of the mutant oocytes during follicle forma-

tion, we studied the same six chromosomes in oocytes derived 

from females at 8 dpp by using FISH (Table II). We found that 

the percentage of mutant oocytes at 8 dpp that contained univa-

lents for the analyzed chromosomes was reduced considerably 

compared with 2 dpp. For example, the percentage of oocytes 

having a univalent chromosome 19 at 2 dpp was reduced from 

13 to �6% at 8 dpp. Based on the reduced number of oocytes at 

8 dpp in the Sycp3−/− ovary, our results suggest that oocytes that 

contain univalent chromosomes are preferentially eliminated 

during postnatal development. Using the combined statistics 

derived for the six chromosomes analyzed in Table II, we esti-

mate that although �36% of the oocytes at 8 dpp retain univa-

lent chromosomes, �75% of the oocytes at 2 dpp contain 

univalent chromosomes. Our results therefore show that more 

than half of the oocytes that contain univalent chromosomes 

at 2 dpp are eliminated as the germ cell cysts mature into 

 primordial follicles.

Discussion
Absence of SYCP3 reduces the effi ciency 
of the meiotic DNA DSB repair process 
and affects crossover formation
It has been proposed that structural changes in the organiza-

tion of the axial cores of meiotic chromosomes could affect 

the maturation of DSBs into crossovers (Blat et al., 2002). 

We show that loss of SYCP3 impairs both the DNA DSB repair 

process and the formation of crossovers between homologous 

chromosomes. The time course and nuclear distribution of phos-

phorylated H2AX and several recombination-related  proteins 

were monitored during meiosis in Sycp3−/− oocytes. We found 

that several aspects of meiotic progression were not affected 

in Sycp3−/− oocytes, including the temporal  appearance of 

γH2AX, the recruitment of RAD51/DMC1, RPA, MSH4, and 

MLH1 to DNA DSBs, or the time course of meiotic markers 

such as STAG3, SYCP1, and CREST. In contrast, we found that 

the removal of the phosphorylated form of H2AX was  severely 

delayed in Sycp3−/− oocytes. Similarly, RAD51/DMC1, RPA, 

MSH4, and MLH1 foci persisted for an extended time period 

at the late meiotic stages in the mutant oocytes. Such patterns 

were not observed in wild-type oocytes and likely refl ect a fail-

ure to complete recombination within the temporal window 

provided by meiotic prophase I. In agreement with this, we 

found that �75% of the Sycp3−/− oocytes contain univalents 

Figure 6. Sycp3−/− oocytes frequently contain 
univalent chromosomes as detected by FISH. A sin-
gle integral chromosome structure was detected by 
single- or triple-chromosome paints, as shown for 
Chr1 (A), Chr19 (B), ChrX (C), and Chr19 (red) + 
Chr17 (green) + Chr12 (yellow; D), in wild-type 
oocytes at 2 dpp. In contrast, two separately la-
beled univalent (achiasmatic) chromosomes were 
frequently detected in Sycp3−/− oocytes at 2 dpp, 
as visualized by the distinctly separated FISH sig-
nals shown for Chr1 (E), Chr19 (F), and ChrX (G). 
(H) Triple chromosome painting of a Sycp3−/− 
oocyte shows two signals for Chr19 (red), two sig-
nals for Chr17 (green), and one signal for Chr12 
(yellow). (I) Oocytes were distinguished from ovar-
ian somatic cells based on cell size and positive 
staining for the germ cell–specifi c marker GCNA. 
Bars, 10 μm.
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at 2 dpp. It has been shown that the inactivation of proteins 

that participate in the repair of meiotic DNA DSBs activates 

a DNA damage checkpoint during early postnatal develop-

ment, resulting in the complete elimination of affected oocytes 

(Di Giacomo et al., 2005). In agreement with this, we found that 

a majority of the Sycp3−/− oocytes are eliminated beginning 

at 2 dpp. Furthermore, the increased loss of oocytes with univa-

lent chromosomes during early postnatal development suggests 

that oocytes with incompletely repaired DNA are preferentially 

eliminated in Sycp3−/− females. Together, these results suggest 

that the absence of SYCP3 activates a DNA damage checkpoint 

in oocytes.

The delayed removal of MLH1 foci in very late diplotene 

oocytes also provides an explanation to a previously contradic-

tory observation in Sycp3−/− oocytes (Yuan et al., 2002). It was 

shown that although the number of MLH1 foci at the pachytene 

stage in wild-type and Sycp3−/− oocytes were approximately 

the same (Fig. 5 Q), the number of chiasmata at the MI stage 

was reduced in Sycp3−/− oocytes compared with wild-type 

 oocytes. Loss of MLH1 from meiotic chromosomes in wild-

type meiotic cells normally precedes the removal of the SYCP1 

protein, suggesting that the crossing-over process is completed 

in the context of an intact SC (Anderson et al., 1999; Moens 

et al., 2002). We found that some of the persistent MLH1 foci in 

very late diplotene Sycp3−/− oocytes do not colocalize with 

 residual SYCP1 staining. We propose that the uncoupling of 

the recombination process from synapsis in Sycp3−/− oocytes 

affects the effi ciency of the remaining MLH1 recombination 

complexes and that a subset of these fails to complete the 

 crossing-over process.

A failure to establish chiasmata between homologous 

chromosomes could also be caused by an impaired positive 

 genetic-interference mechanism (Jones, 1984; Novak et al., 

2001). This mechanism ensures that crossovers are correctly 

distributed between chromosomes. A partially inactivated inter-

ference mechanism could lead to an unregulated distribution of 

a fi xed number of chiasmata and result in a loss of obligatory 

chiasmata, thereby generating achiasmatic chromosomes. It has 

been proposed that the SC ensures a high level of interference 

(Zickler, 1999; Nabeshima et al., 2004, MacQueen et al., 2005; 

Carlton et. al., 2006). We have studied if SYCP3 is required for 

interference by monitoring the number of MLH1 foci, which is 

a cytological marker for chiasmata distribution along SYCP1-

labeled meiotic chromosomes (Baker et al., 1996; Edelmann 

et  al., 1996; Hunter and Borts, 1997; Anderson et al., 1999). 

Sycp3 defi ciency increases the length of the meiotic chromo-

some axes by twofold and introduces irregular gaps in SYCP1 

staining along the axes (the meiotic axis in the SYCP1-negative 

gaps cannot be traced with certainty, as antisera against cohesin 

complex proteins such as STAG3 only weakly stain these re-

gions; Yuan et al., 2002; Kouznetsova et al., 2005). Therefore, it 

is  impossible, using only cytological markers, to determine if 

individual meiotic chromosomes in Sycp3−/− oocytes lack asso-

ciated MLH1 foci. Instead, we selected Sycp3−/− pachytene 

 oocytes that displayed relatively intact SYCP1-labeled meiotic 

chromosomes and monitored the frequency of such structures, 

Table II. Sycp3−/− oocytes that contain univalent chromosomes are preferentially eliminated during early postnatal development

Chromosome 2 dpp WT 2 dpp Sycp3−/− 8 dpp WT 8 dpp Sycp3−/−

Univalents/
Total

% Univalents/
Total

% Univalents/
Total

% Univalents/
Total

%

ChrX 22/1,554 1.42 238/1,672 14.23 1/529 0.19 55/591 9.31

Chr1 13/1,025 1.27 11/350 3.14 2/888 0.23 2/304 0.66

Chr2 7/642 1.09 10/312 3.21 1/607 0.20 2/348 0.60

Chr12 22/1,865 1.18 113/1,350 8.37 3/1,240 0.24 15/808 1.86

Chr17 18/1,540 1.17 126/1,443 8.66 7/1,625 0.43 23/777 2.96

Chr19 23/1,939 1.19 191/1,414 13.51 5/1,339 0.37 48/857 5.60

Chr12 + 19 1/1,093 0.09 17/444 3.83 0/569 0.00 2/651 0.31

Chr17 + 19 0/930 0.00 17/517 3.29 0/723 0.00 2/666 0.30

Chr12 + 17 0/496 0.00 9/439 2.05 0/569 0.00 1/651 0.15

Chr12 + 17 + 19 0/496 0.00 5/439 1.14 0/569 0.00 0/651 0.00

ChrX + 19 0/338 0.00 11/251 4.38 0/187 0.00 2/142 1.42

ChrX + 17 2/338 0.59 11/251 4.38 0/187 0.00 2/184 1.09

ChrX + 17 + 19 0/338 0.00 4/251 1.59 0/187 0.00 0/142 0.00

Six individual chromosomes, and combinations of either two or three of these chromosomes, were analyzed by immunofl uorescence FISH, and single or double FISH 
signals were scored. The number of oocytes that contained univalent chromosomes (separated FISH signals) versus the total numbers of oocytes was determined and 
the percentage of univalency was calculated for each analyzed chromosome. A similar analysis was done for oocytes derived from wild-type (WT) and Sycp3−/− 
oocytes at postnatal days 2 and 8. The total number of univalent oocytes in the Sycp3−/− ovary at 2 and 8 dpp was estimated as follows. A strong correlation exists 
between genetic chromosome length and chiasmata frequency (Lawrie et al., 1995). We found that the univalency rate for the chromosomes analyzed in this table 
followed this correlation, to a large extent. Therefore, we assumed that the average univalency rate affecting chromosomes 1–18 in Sycp3−/− oocytes was 6% (the 
average observed for chromosomes 1, 2, 12, and 17). The univalency rates for chromosomes 19 and X was signifi cantly higher compared to chromosomes 1–18 and, 
therefore, was added separately. A summary of the estimated univalency for all 20 chromosomes that was calculated as described above produced an outcome of 
135%. However, as shown in Table II, many Sycp3−/− oocytes contain multiple univalent chromosomes. We estimated this redundancy factor for all 20 chromosomes 
to affect 44% of the oocytes. (Whereas 45% of the oocytes analyzed for chromosomes 12, 17, 19, and X displayed univalency for one of the measured chromosomes, 
20% of the oocytes analyzed using chromosomes 12, 17, 19, and X contained multiple univalent chromosomes. By dividing the 20% by 45%, we got a percentage 
of 44.) Therefore, the percentage of Sycp3−/− oocytes affected by univalency should amount to �75% (1.35 × [1 – 0.44]). A similar calculation used to estimate the 
percentage of univalent cells at 8 dpp in Sycp3−/− oocytes suggests that 36% of them contain achiasmatic chromosomes. The latter fi gure is in close agreement with 
the estimated aneuploidy rate observed for Sycp3−/− females (Yuan et al., 2002).
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which had two MLH foci associated to them. Analysis of 24 

Sycp3−/− oocytes and 31 wild-type oocytes produced a very 

similar  result, where both groups showed an average of �3.5 

intact SYCP1-labeled structures each having two MLH1 foci 

per cell. This result, therefore, does not support a model where 

the loss of SYCP3 negatively infl uences the impact of positive 

genetic  interference in Sycp3−/− oocytes. It is important to note 

that in cases in Sycp3−/− oocytes where the TF structure as la-

beled by SYCP1 is severely fragmented, making it impossible 

to trace the meiotic chromosome axis, we cannot analyze if the 

MLH1 distribution pattern is affected. However, we only rarely 

identify entirely asynapsed homologous chromosomes (FISH 

studies suggest that �1–2% of the pachytene Sycp3−/− oocytes 

contain asynapsed confi gurations of chromosome 19; unpub-

lished data), excluding this as an important mechanism to  explain 

the univalency statistics observed at 2 dpp in mutant oocytes.

Absence of SYCP3 generates oocytes with 
different levels of DNA damage, a subset 
of which evades two meiotic checkpoints
Our experiments show that loss of SYCP3 affects the effi ciency 

of the DNA repair/recombination process. However, in contrast 

to the situation in mouse models, where components of the re-

pair machinery have been inactivated (Di Giacomo et al., 2005), 

the repair/recombination process in Sycp3−/− oocytes is im-

paired, not blocked. We provide two sets of evidence for this; 

we found that �34% of the oocyte pool remains at 8 dpp and 

of those that remain only approximately one-third contain 

univalent chromosomes. We also found a large diversity in the 

γH2AX staining pattern and the number of foci corresponding 

to RAD51/DMC1 and MLH1 in individual Sycp3−/− oocytes, 

strongly suggesting that loss of SYCP3 generates a temporal 

spectrum of recombination intermediates.

A fascinating aspect of the Sycp3−/− mouse model is the 

effectiveness with which it contributes to the formation of aneu-

ploid offspring (Yuan et al., 2002). We have shown that Sycp3−/− 

oocytes that contain univalent chromosomes can bypass the 

DNA damage checkpoint at early postnatal development. 

A similar situation has been noted in mice that are defi cient for 

MLH1 (Baker et al., 1996; Edelman et al., 1996). In these mice 

the fi nal crossovers are not completed, giving rise to the forma-

tion of achiasmatic chromosomes; however, the DNA damage 

checkpoint does not become activated. In sharp contrast to Mlh-

defi cient oocytes (Woods et al., 1999), however, Sycp3-defi cient 

oocytes that contain univalent chromosomes also bypass the 

spindle checkpoint at the fi rst meiotic cell division and give rise 

to aneuploid offspring (Yuan et al., 2002). Our results for Sycp3-

defi cient oocytes are in agreement with studies of human 

 oocytes that suggest that a reduced level of recombination is 

linked to an increase in aneuploidy (Hassold and Hunt, 2001). 

Interestingly, it has been observed that γH2AX signals are more 

slowly removed during meiosis in human oocytes compared 

with sperm, suggesting that progression of DSB repair is slower 

in oocytes (Roig et al., 2004).

We have shown that loss of Sycp3−/− oocytes does not oc-

cur until the diplotene stage. In contrast, Sycp3−/− spermato-

cytes are already eliminated at the zygotene/pachytene stage of 

meiosis (Yuan et al., 2000). A similar temporal difference in the 

loss of damaged male and female germ cells has been noted for 

a large number of gene defi ciencies (Hunt and Hassold, 2002). 

We propose that the relative incidence of aneuploidy observed 

for male and female gametes can be partly explained by a tem-

poral difference in the activation of the DNA damage check-

point during meiosis. In cases where a mutation generates a 

temporal spectrum of recombination defi ciencies, the timing of 

the activation of the DNA damage checkpoint becomes crucial. 

The late activation of the female DNA damage checkpoint dur-

ing meiosis, relative to the temporal activation of the same 

checkpoint in male germ cells, provides additional time for the 

formation of advanced recombination intermediates that can no 

longer be detected by this checkpoint in oocytes. This increases 

the risk that such recombination intermediates will contribute to 

the formation of univalent chromosomes.

Materials and methods
Generation of Sycp3−/− mice
Derivation of the Sycp3 knockout mice has been previously described (Yuan 
et al., 2000). In brief, C57BL/6NCrkBR wild-type males were mated with 
Sycp3−/− females to generate Sycp3+/− offspring. Nonsibling Sycp3+/− 
males and females were then mated to produce Sycp3+/+ (wild-type) and 
Sycp3−/− mice. To detect the pregnancy, two females were caged with 
one male after 16:00 (4:00 pm). The vaginal plugs were  examined daily 
between 8:00 and 9:00 (am). The day that the plug was found was de-
fi ned as E0.5. For ovary collection at embryonic stages, pregnant mice 
were killed at E16.5, E17.5, and E18.5. For ovary collection at postnatal 
stages, the pups were killed after birth at days 1, 2, 4, and 8, which were 
referred to as 1, 2, 4, and 8 dpp. Ovaries from adult mice were also col-
lected at 8 wk.

Histomorphometry
Ovaries were fi xed in 4% paraformaldehyde for 4 h before paraffi n embed-
ding. The entire ovary embedded in the paraffi n was sequentially sectioned 
at 5 μm. Every tenth section was stained either by hematoxylin and eosin or 
immunostained for GCNA, which is a germ cell marker (Enders and May, 
1994), or c-kit, which is an oocyte marker (Manova et al., 1990). These 
sections were then used for estimation of oocyte numbers. In embryonic 
and newborn ovaries, oocytes can be clearly distinguished from somatic 
cells by GCNA staining. Immunohistochemistry was performed with a rat 
anti–GCNA-1 (a gift from G.C. Enders, University of Kansas Medical Cen-
ter, Kansas City, KS) and a polyclonal rabbit anti–c-kit (PC34; Oncogene 
Research Products), using the Vectastain Elite ABC kit (SK 4100; Vector 
Laboratories), according to the manufacturer’s instructions. The peroxidase 
substrate DAB (DakoCytomation) was used to visualize the immunostaining 
reaction and hematoxylin was used for counterstaining. For the postnatal 
mice ovaries, primordial and primary follicles were defi ned by their mor-
phology and by c-kit immunostaining. Oocyte counts were fi rst determined 
individually for germ cell cysts (germ cells that were not individually sepa-
rated by stromal cells), primordial follicles (small oocytes surrounded by a 
few fl attened pregranulosa cells), primary follicles (oocytes with a visible 
nucleolus surrounded by a single layer of cuboidal granulosa cells, rang-
ing from fi ve to nine cells), and secondary follicles (an oocyte with a visible 
nucleolus surrounded by two layers of cuboidal granulosa cells made up of 
more than eight granulosa cells). Only follicles with a visible nucleus were 
counted to avoid double counting. The total oocyte numbers for each ovary 
were summarized from different follicle stages by using fi ve sections/ovary 
(6 sections/ovary in 8-dpp mice and 15 sections/ovary in 8 wk-old mice). 
Three to seven ovaries per genotype (null and wild-type mice were from the 
same litter) were included in each group.

TUNEL assay
Apoptotic cells in paraffi n-embedded sections of ovaries were identifi ed 
using a TUNEL staining kit (Seriologicals Corp.), following the  manufacturer’s 
instructions. The sections were counterstained with methyl green. Every 
tenth section from the same ovary used for oocyte counting was also used 
for TUNEL staining. The relative number of apoptotic cell was summarized 
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from fi ve sections/ovary for each study group, with the exception of six 
sections taken from ovaries derived from 8-dpp mice.

Statistics
Statistical calculations of oocyte numbers were performed by one-way 
analysis of variance, using the SigmaStat program (SPSS, Inc.). P ≤ 0.05 
indicates a signifi cant difference.

Immunofl uorescence microscopy
Wild-type and Sycp3−/− oocytes were obtained using a “dry-down” technique 
(Peters et al., 1997) from ovaries at E16.5 (early and later zygotene 
oocyte), E18.5, and E19.5 (pachytene and diplotene oocytes). RAD51/
DMC1, RPA, and MSH4 foci counting was performed at fi ve different 
 meiotic stages in wild-type and Sycp3−/− oocytes. Staging of oocytes was 
performed using several markers, including SYCP1, STAG3, and CREST, 
as well as DAPI (Fig. S2; Kouznetsova et al., 2005). In early zygotene, 
synapsis has started and short SYCP1 fi bers are visible, but centromeres 
are not yet paired (around 40 CREST foci). In zygotene, up to 50% of the 
AEs take part in synapsis and centromere pairing has been initiated. In late 
 zygotene, 50–80% of the AEs take part in synapsis and most centromeres 
are paired (generating �20 CREST foci). In late pachytene and early 
 diplotene, a majority of the AEs are synapsed, and if some bivalents have 
desynapsed they appear to repel each other; most centromeres are still 
paired. In late diplotene, most of the SYCP1 fi bers have disappeared, and 
the number of CREST foci varies between 20 and 40. Mutant oocytes were 
assigned a stage when the aforementioned criteria were fulfi lled. Primary 
antibodies and dilutions used were guinea pig anti-SYCP1 and anti-STAG3 
at 1:200 (Kouznetsova et al., 2005), human anti-CREST at 1:1,000, 
mouse anti-γH2AX (Upstate Biotechnology) at 1:100, rabbit anti-DMC1/
RAD51 at 1:100 and rabbit anti-RPA at 1:500 (gifts from P. Moens, York 
University, Toronto, Canada), rabbit anti–human MSH4 (a gift from C. Her, 
Washington State University, Pullman, WA) at 1:100, and mouse anti–
 human MLH1 (BD Biosciences). All primary antibody incubations were 
performed overnight at 4°C or 37°C. Secondary antibodies were swine 
anti–rabbit conjugated to FITC (DakoCytomation) at 1:100, donkey anti–
guinea pig conjugated to Cy3 (Jackson ImmunoResearch Laboratories) 
at 1:1,000, goat anti–human conjugated to Cy5 (GE Healthcare), goat 
anti–mouse Alexa Fluor 488 (Invitrogen) at 1:1,000, and goat anti–rabbit 
 Alexa Fluor 350 (Invitrogen) at 1:500. All secondary antibodies were 
 incubated for 1 h at room temperature. DNA was stained with DAPI. Slides 
were mounted with antifade medium before being analyzed. Slides were 
viewed at room temperature using fl uorescence microscopes (DMRA2 and 
DMRXA; Leica) and 100× objectives (Leica) with an aperture of 1.4 pro-
viding epifl uorescence. Images were captured with a digital charge-
 coupled device camera (model C4742-95; Hamamatsu) and the Openlab 
3.1.4 software (Improvision). Images were processed using Photoshop 
 version 9 (Adobe).

Identifi cation of univalent chromosomes by immunofl uorescence FISH
Oocytes were obtained from 2- and 8-dpp female mice ovaries. To increase 
the yields of oocytes from 8-dpp mice, ovaries were initially incubated for 
30 min at 37°C with collagenase and DNase (Eppig, 1994). The cells 
were isolated by pipetting and fi xed by using 1% paraformaldehyde and 
0.15% Triton X-100. Oocytes were detected by GCNA staining. The oo-
cytes were also distinguished from somatic cells on the basis of their size, 
the dispersed nature of their chromatin, and a characteristic congregation 
of centromeres at several distinct locations within the nucleus (Hodges 
et al., 2001). After immunostaining, the slides were washed and air dried, 
and then denatured in 70% formamide and 2× SSC at 70°C for 2–4 min. 
Hybridization with specifi c chromosome probes was performed for 40 h at 
37°C. The Cy3-labeled chromosomal probes (Chrombios GmbH) were 
used to identify chromosomes 1, 2, 12, 17, 19, and X in the oocyte by us-
ing FISH. Double- and triple-color FISH probes were labeled with Chr19-
Cy3, Chr17-Cy5, and Chr12 (or ChrX)-DEAC. The washing step followed 
the manufacturer’s protocols (Chrombios GmbH). DAPI was used as a DNA 
counterstain, and slides were mounted with antifade  before analysis.

Online supplemental material
Fig. S1 shows that an increased number of oocytes are TUNEL positive in 
the Sycp3−/− ovary. Fig. S2 shows the classifi cation of zygotene and 
 diplotene stage meiotic cells. Online supplemental material is available at 
http://www.jcb.org/cgi/content/full/jcb.200512077/DC1.

We thank Drs. George C. Enders, Peter Moens, and Chengtao Her for gener-
ously providing us with antibodies. We also thank Marie-Louise Spångberg for 
technical assistance.

This work was supported by grants from the Swedish Cancer Society, 
the Swedish Research Council, Petrus and Augusta Hedlunds Stiftelse, and the 
Karolinska Institutet.

Submitted: 14 December 2005
Accepted: 18 April 2006

References
Alani, E., R. Thresher, J.D. Griffi th, and R.D. Kolodner. 1992. Characterization 

of DNA-binding and strand-exchange stimulation properties of y-RPA, 
a yeast single-strand-DNA-binding protein. J. Mol. Biol. 227:54–71.

Anderson, L.K., A. Reeves, L.M. Webb, and T. Ashley. 1999. Distribution of 
crossing over on mouse synaptonemal complexes using immunofl uores-
cent localization of MLH1 protein. Genetics. 151:1569–1579.

Baker, S.M., A.W. Plug, T.A. Prolla, C.E. Bronner, A.C. Harris, X. Yao, D.M. 
Christie, C. Monell, N. Arnheim, A. Bradley, et al. 1996. Involvement 
of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. 
Genet. 13:336–342.

Blat, Y., R.U. Protacio, N. Hunter, and N. Kleckner. 2002. Physical and func-
tional interactions among basic chromosome organizational features 
 govern early steps of meiotic chiasma formation. Cell. 111:791–802.

Broman, K.W., L.B. Rowe, G.A. Churchill, and K. Paigen. 2002. Crossover 
 interference in the mouse. Genetics. 160:1123–1131.

Carlton, P.M., A.P. Farruggio, and A.F. Dernburg. 2006. A link between meiotic 
prophase progression and crossover control. PLoS Genet. 2:e12.

Celeste, A., S. Petersen, P.J. Romanienko, O. Fernandez-Capetillo, H.T. Chen, 
O.A. Sedelnikova, B. Reina-San-Martin, V. Coppola, E. Meffre, M.J. 
Difi lippantonio, et al. 2002. Genomic instability in mice lacking histone 
H2AX. Science. 296:922–927.

de Vries, F.A., E. de Boer, M. van den Bosch, W.M. Baarends, M. Ooms, 
L. Yuan, J.G. Liu, A.A. van Zeeland, C. Heyting, and A. Pastink. 2005. 
Mouse Sycp1 functions in synaptonemal complex assembly, meiotic 
 recombination, and XY body formation. Genes Dev. 19:1376–1389.

Di Giacomo, M., M. Barchi, F. Baudat, W. Edelmann, S. Keeney, and M. Jasin. 
2005. Distinct DNA-damage-dependent and -independent responses drive 
the loss of oocytes in recombination-defective mouse mutants. Proc. Natl. 
Acad. Sci. USA. 102:737–742.

Dobson, M.J., R.E. Pearlman, A. Karaiskakis, B. Spyropoulos, and P.B. Moens. 
1994. Synaptonemal complex proteins: occurrence, epitope mapping and 
chromosome disjunction. J. Cell Sci. 107(Pt 10):2749–2760.

Edelmann, W., P.E. Cohen, M. Kane, K. Lau, B. Morrow, S. Bennett, A. Umar, 
T. Kunkel, G. Cattoretti, R. Chaganti, et al. 1996. Meiotic pachytene 
 arrest in MLH1-defi cient mice. Cell. 85:1125–1134.

Enders, G.C., and J.J. May II. 1994. Developmentally regulated expression of 
a mouse germ cell nuclear antigen examined from embryonic day 11 to 
adult in male and female mice. Dev. Biol. 163:331–340.

Eppig, J.J. 1994. Further refl ections on culture systems for the growth of oocytes 
in vitro. Hum. Reprod. 9:974–976.

Gerton, J.L., and R.S. Hawley. 2005. Homologous chromosome interactions in 
meiosis: diversity amidst conservation. Nat. Rev. Genet. 6:477–487.

Hassold, T., and P. Hunt. 2001. To err (meiotically) is human: the genesis of 
 human aneuploidy. Nat. Rev. Genet. 2:280–291.

Hodges, C.A., R. LeMaire-Adkins, and P.A. Hunt. 2001. Coordinating the segre-
gation of sister chromatids during the fi rst meiotic division: evidence for 
sexual dimorphism. J. Cell Sci. 114:2417–2426.

Hulten, M.A., C. Tease, and N.M. Lawrie. 1995. Chiasma-based genetic map of 
the mouse X chromosome. Chromosoma. 104:223–227.

Hunt, P.A., and T.J. Hassold. 2002. Sex matters in meiosis. Science. 
296:2181–2183.

Hunter, N., and R.H. Borts. 1997. Mlh1 is unique among mismatch repair pro-
teins in its ability to promote crossing-over during meiosis. Genes Dev. 
11:1573–1582.

Jones, G.H. 1984. The control of chiasma distribution. Symp. Soc. Exp. Biol. 
38:293–320.

Kouznetsova, A., I. Novak, R. Jessberger, and C. Hoog. 2005. SYCP2 and SYCP3 
are required for cohesin core integrity at diplotene but not for centromere 
cohesion at the fi rst meiotic division. J. Cell Sci. 118:2271–2278.

Lammers, J.H., H.H. Offenberg, M. van Aalderen, A.C. Vink, A.J. Dietrich, and 
C. Heyting. 1994. The gene encoding a major component of the lateral 
elements of synaptonemal complexes of the rat is related to X-linked 
 lymphocyte-regulated genes. Mol. Cell. Biol. 14:1137–1146.

Lawrie, N.M., C. Tease, and M.A. Hulten. 1995. Chiasma frequency, distribution 
and interference maps of mouse autosomes. Chromosoma. 104:308–314.



A PATHWAY TO ANEUPLOIDY • WANG AND HÖÖG 495

Lydall, D., Y. Nikolsky, D.K. Bishop, and T. Weinert. 1996. A meiotic recom-
bination checkpoint controlled by mitotic checkpoint genes. Nature. 
383:840–843.

Lynn, A., K.E. Koehler, L. Judis, E.R. Chan, J.P. Cherry, S. Schwartz, A. Seftel, 
P.A. Hunt, and T.J. Hassold. 2002. Covariation of synaptonemal complex 
length and mammalian meiotic exchange rates. Science. 296:2222–2225.

MacQueen, A.J., C.M. Phillips, N. Bhalla, P. Weiser, A.M. Villeneuve, and A.F. 
Dernburg. 2005. Chromosome sites play dual roles to establish homolo-
gous synapsis during meiosis in C. elegans. Cell. 123:1037–1050.

Mahadevaiah, S.K., J.M. Turner, F. Baudat, E.P. Rogakou, P. de Boer, J. Blanco-
Rodriguez, M. Jasin, S. Keeney, W.M. Bonner, and P.S. Burgoyne. 2001. 
Recombinational DNA double-strand breaks in mice precede synapsis. 
Nat. Genet. 27:271–276.

Manova, K., K. Nocka, P. Besmer, and R.F. Bachvarova. 1990. Gonadal 
 expression of c-kit encoded at the W locus of the mouse. Development. 
110:1057–1069.

Marcon, E., and P.B. Moens. 2005. The evolution of meiosis: recruitment and 
modifi cation of somatic DNA-repair proteins. Bioessays. 27:795–808.

Moens, P.B., N.K. Kolas, M. Tarsounas, E. Marcon, P.E. Cohen, and B. 
Spyropoulos. 2002. The time course and chromosomal localization of 
recombination-related proteins at meiosis in the mouse are compatible 
with models that can resolve the early DNA-DNA interactions without 
reciprocal recombination. J. Cell Sci. 115:1611–1622.

Nabeshima, K., A.M. Villeneuve, and K.J. Hillers. 2004. Chromosome-wide reg-
ulation of meiotic crossover formation in Caenorhabditis elegans requires 
properly assembled chromosome axes. Genetics. 168:1275–1292.

Neyton, S., F. Lespinasse, P.B. Moens, R. Paul, P. Gaudray, V. Paquis-Flucklinger, 
and S. Santucci-Darmanin. 2004. Association between MSH4 (MutS 
 homologue 4) and the DNA strand-exchange RAD51 and DMC1 proteins 
during mammalian meiosis. Mol. Hum. Reprod. 10:917–924.

Novak, J.E., P.B. Ross-Macdonald, and G.S. Roeder. 2001. The budding yeast 
Msh4 protein functions in chromosome synapsis and the regulation of 
crossover distribution. Genetics. 158:1013–1025.

Page, S.L., and R.S. Hawley. 2004. The genetics and molecular biology of the 
synaptonemal complex. Annu. Rev. Cell Dev. Biol. 20:525–558.

Peters, A.H., A.W. Plug, M.J. van Vugt, and P. de Boer. 1997. A drying-down 
technique for the spreading of mammalian meiocytes from the male and 
female germline. Chromosome Res. 5:66–68.

Petronczki, M., M.F. Siomos, and K. Nasmyth. 2003. Un menage a quatre: 
the molecular biology of chromosome segregation in meiosis. Cell. 
112:423–440.

Rajkovic, A., S.A. Pangas, D. Ballow, N. Suzumori, and M.M. Matzuk. 2004. 
NOBOX defi ciency disrupts early folliculogenesis and oocyte-specifi c 
gene expression. Science. 305:1157–1159.

Roeder, G.S., and J.M. Bailis. 2000. The pachytene checkpoint. Trends Genet. 
16:395–403.

Roig, I., B. Liebe, J. Egozcue, L. Cabero, M. Garcia, and H. Scherthan. 2004. 
Female-specifi c features of recombinational double-stranded DNA 
 repair in relation to synapsis and telomere dynamics in human oocytes. 
Chromosoma. 113:22–33.

Schalk, J.A., A.J. Dietrich, A.C. Vink, H.H. Offenberg, M. van Aalderen, and C. 
Heyting. 1998. Localization of SCP2 and SCP3 protein molecules within 
synaptonemal complexes of the rat. Chromosoma. 107:540–548.

Shinohara, A., and M. Shinohara. 2004. Roles of RecA homologues Rad51 
and Dmc1 during meiotic recombination. Cytogenet. Genome Res. 
107:201–207.

Turner, J.M., S.K. Mahadevaiah, O. Fernandez-Capetillo, A. Nussenzweig, 
X. Xu, C.X. Deng, and P.S. Burgoyne. 2005. Silencing of unsynapsed 
 meiotic chromosomes in the mouse. Nat. Genet. 37:41–47.

Wang, X., and J.E. Haber. 2004. Role of Saccharomyces single-stranded DNA-
binding protein RPA in the strand invasion step of double-strand break 
repair. PLoS Biol. 2:E21.

Woods, L.M., C.A. Hodges, E. Baart, S.M. Baker, M. Liskay, and P.A. Hunt. 
1999. Chromosomal infl uence on meiotic spindle assembly: abnormal 
meiosis I in female Mlh1 mutant mice. J. Cell Biol. 145:1395–1406.

Yuan, L., J.G. Liu, J. Zhao, E. Brundell, B. Daneholt, and C. Hoog. 2000. The 
murine SCP3 gene is required for synaptonemal complex assembly, 
 chromosome synapsis, and male fertility. Mol. Cell. 5:73–83.

Yuan, L., J.G. Liu, M.R. Hoja, J. Wilbertz, K. Nordqvist, and C. Hoog. 2002. 
Female germ cell aneuploidy and embryo death in mice lacking the 
 meiosis-specifi c protein SCP3. Science. 296:1115–1118.

Zickler, D. 1999. The synaptonemal complex: a structure necessary for pairing, 
recombination or organization of the meiotic chromosome? J. Soc. Biol. 
193:17–22.

Zickler, D., and N. Kleckner. 1999. Meiotic chromosomes: integrating structure 
and function. Annu. Rev. Genet. 33:603–754.


