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Abstract

The excision of introns from pre-mRNA is an essential step in mRNA processing. We developed 

LeafCutter to study sample and population variation in intron splicing. LeafCutter identifies 

variable splicing events from short-read RNA-seq data and finds events of high complexity. Our 

approach obviates the need for transcript annotations and circumvents the challenges in estimating 

relative isoform or exon usage in complex splicing events. LeafCutter can be used both for 

detecting differential splicing between sample groups, and for mapping splicing quantitative trait 

loci (sQTLs). Compared to contemporary methods, we find 1.4–2.1 times more sQTLs, many of 

which help us ascribe molecular effects to disease-associated variants. Strikingly, transcriptome-

wide associations between LeafCutter intron quantifications and 40 complex traits increased the 

number of associated disease genes at 5% FDR by an average of 2.1-fold as compared to using 

gene expression levels alone. LeafCutter is fast, scalable, easy to use, and available online.
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Introduction

The alternative removal of introns during mRNA maturation is essential for major biological 

processes in eukaryotes including cellular differentiation, response to environmental stress, 

and proper gene regulation1,2,3,4. Nevertheless, our ability to draw novel insights into the 

regulation and function of splicing is hindered by the challenge of estimating transcript 

abundances from short-read RNA-seq data.

Popular approaches for studying alternative splicing from RNA-seq estimate isoform 

ratios5,6,7,8 or exon inclusion levels9,10. Quantification of isoforms or exons is intuitive 

because RNA-seq reads generally represent mature mRNA molecules from which introns 

have already been removed. However, estimation of isoform abundance from conventional 

short-read data is statistically challenging, as each read samples only a small part of the 

transcript, and alternative transcripts often have substantial overlap11. Similarly, when 

estimating exon expression levels, read depths are often overdispersed due to technical 

effects, and there may be ambiguity about which version of an exon is supported by a read if 

there are alternative 5′ or 3′ splice sites.

Further, both isoform- and exon-quantification approaches rely on transcript models, or pre-

defined splicing events, both of which may be inaccurate or incomplete12. Predefined 

transcript models are particularly limiting when comparing splicing profiles of healthy 

versus disease samples, as aberrant transcripts may be disease-specific; or when studying 

genetic variants that generate splicing events in a subset of individuals only13. Even when 

transcript models are complete, it is difficult to estimate isoform or exon usage of complex 

alternative splicing events12.

An alternative perspective is to focus on what is removed in each splicing event. Excised 

introns may be inferred directly from reads that span exon-exon junctions. Thus, there is 

little ambiguity about the precise intron that is cut out, and quantification of usage ratios is 

very accurate12. A recent method, MAJIQ12, also proposed to estimate local splicing 

variation using split-reads and identified complex splicing events, however it does not scale 

well above 30 samples and has not been adapted to map splicing QTLs (sQTLs). At present, 

there are several software programs for sQTL mapping: GLiMMPS14, sQTLseekeR15 and 

Altrans16. However, all three rely on existing isoform annotations and both GLiMMPS and 

sQTLseeker reported modest numbers of sQTLs in their analyses.

Here we describe LeafCutter, a suite of novel methods that allow identification and 

quantification of novel and known alternative splicing events by focusing on intron 

excisions. We show LeafCutter’s utility by applying it to three important problems: (1) 

identification of differential splicing across conditions, (2) identification of sQTLs in 

multiple tissues or cell types, and (3) ascribing molecular effects to disease-associated 

GWAS loci. Using an early version of LeafCutter, we found that alternative splicing is an 

important mechanism through which genetic variants contribute to disease risk17. We now 

show that LeafCutter dramatically increases the number of detectable associations between 

genetic variation and pre-mRNA splicing, thus enhancing our understanding of disease-

associated loci.
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Results

Overview of LeafCutter

LeafCutter uses short-read RNA-seq data to detect intron excision events at base-pair 

precision by analyzing split-mapped reads (Figure 1). LeafCutter focuses on alternative 

splicing events including skipped exons, 5′ and 3′ alternative splice site usage and 

additional complex events that can be summarized by differences in intron excision12 

(Supplementary Figure 1). LeafCutter’s intron-centric view of splicing is motivated by the 

observation that mRNA splicing predominantly occurs through the step-wise removal of 

introns from nascent pre-mRNA19. (Unlike isoform quantification methods such as 

Cufflinks25, alternative transcription start sites, and alternative polyadenylation are not 

directly measured by LeafCutter as they are not generally captured by intron excision 

events.) The major advantage of this representation is that LeafCutter does not require read 

assembly or inference on which isoform is supported by ambiguous reads, both of which are 

computationally and statistically difficult. As a result we were able to improve speed and 

memory requirements by an order of magnitude or more as compared to similar methods 

such as MAJIQ12.

To identify alternatively-excised introns, LeafCutter pools all mapped reads from a study 

and finds overlapping introns demarcated by split reads. LeafCutter then constructs a graph 

that connects all overlapping introns that share a donor or an acceptor splice site. The 

connected components of this graph form clusters, which represent alternative intron 

excision events. Finally, LeafCutter iteratively applies a filtering step to remove rarely used 

introns, which are defined based on the proportion of reads supporting an intron compared to 

other introns in the same cluster, and re-clusters leftover introns (Methods, Supplementary 

Note). In practice, we found that this filtering is important to avoid arbitrarily large clusters 

when read depth increases to a level at which noisy splicing events are supported by multiple 

reads.

De novo identification of RNA splicing in mammalian organs

We tested LeafCutter’s novel intron detection method by analyzing mapped RNA-seq20 data 

from 2,192 samples (Supplementary Note) across 14 tissues from the GTEx consortium21. 

We then searched for introns predicted to be alternatively excised by LeafCutter, but that 

were missing in three commonly-used annotation databases (GENCODE v19, Ensembl, and 

UCSC). For this analysis, we ensured that the identified introns were indeed alternatively 

excised by only considering introns that were excised at least 20% of the time as compared 

to other overlapping introns, in at least one fourth of the samples, analyzing each tissue 

separately. We found that between 10.8% and 19.3% (Pancreas and Spleen, respectively) of 

alternatively spliced introns are unannotated – excluding testis which is the major outlier, in 

which 48.5% of alternatively spliced introns are novel (Figure 2a). The latter observation is 

compatible with the “out-of-testis” hypothesis, which proposes that transcription is more 

permissive in testis and allows novel genes or isoforms to be selected for if beneficial22,23. 

Thus 31.5% of the alternatively excised introns we detected are unannotated (Supplementary 

Note), consistent with a recent study that identified a similar proportion of novel splicing 

events in 12 mouse tissues12. To further confirm that these findings were not merely 
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mapping or GTEx-specific artefacts, we searched for junction reads in 21,504 human RNA-

seq samples from the Sequence Read Archive (SRA) obtained from Intropolis24. We found 

that most (86%, Figure 2b and Supplementary Figure 2) novel junctions identified in our 

study were also present in at least one RNA-seq sample from the corresponding tissue as 

identified in Intropolis. Furthermore, we found that, as expected, unannotated junctions tend 

to be tissue-specific, and often involve complex splicing patterns (Supplementary Figure 3 

and Supplementary Note).

We next asked whether these novel introns show evidence of functionality as determined by 

sequence conservation. When we averaged phastCons scores over unannotated splice sites of 

introns that were absent in annotation databases, we found a moderate, but significant, 

signature of sequence conservation (Figure 2c). In particular, we found that a significant 

number (4,616 or 15–25%) of novel splice sites are conserved across vertebrates (ave. 

phastCons ≥ 0.6, Supplementary Figure 4), indicating that the alternative excision of 

thousands of introns may be functional (Supplementary Note).

Fast and robust identification of differential splicing

LeafCutter uses counts from the clustering step to identify introns with differential splicing 

between user-defined groups. Read counts in an intron cluster are jointly modeled using a 

Dirichlet-multinomial generalized linear model (GLM), which we found offers superior 

sensitivity relative to a beta-binomial GLM that tests each intron independently 

(Supplementary Figure 5). The implicit normalization of the multinomial likelihood avoids 

the estimation of library size parameters required by methods such as DEXSEQ10.

We compared LeafCutter against other methods for differential splicing detection including 

Cufflinks25, MAJIQ12, and rMATS26. We note that comparisons between algorithms have 

the complication that they there is typically no one-to-one mapping between the splicing 

events quantified by different methods. We discuss this issue and our solution in the 

Supplementary Note. For comparison, we applied each method to identify splicing 

differences between 3, 5, 10, and 15 Yoruba (YRI) versus European (CEU) LCL RNA-seq 

samples. In terms of runtime, we observed a large difference in scalability (Figure 3a). In 

our hands, only LeafCutter completed all comparisons within an hour, while Cufflinks2, 

rMATS, and MAJIQ took as long as 7.8, 55.7, and 66.2 hours to complete the largest 

comparison, respectively. In terms of memory usage, we also found that LeafCutter greatly 

outperforms the other software, using less than 400Mb of RAM for all comparisons, while 

MAJIQ required over 50Gb to perform the larger comparisons (Supplementary Figure 6). 

Although this range of sample sizes is representative for most biological studies, identifying 

differential splicing across groups in large studies such as GTEx would be impractically 

slow using rMATS or MAJIQ.

To compare their ability to detect differential splicing, we reasoned that the p-values or 

posterior probabilities of the tests computed by each method are not directly comparable. We 

therefore computed an empirical FDR from the p-values of real comparisons between 

biologically distinct sample groups (i.e. YRI versus CEU here) and the p-values of permuted 

comparisons between samples with permuted labels (i.e. both groups contain YRI and CEU 

samples). If the p-values are well-calibrated, the p-value distribution of the permuted 
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comparisons are expected to be uniform. Indeed, we observed that the distributions of 

LeafCutter and rMATS p-values for the permutations were close to uniform (Figure 3b and 

Supplementary Figure 7). However, the Cufflinks2 p-values were overly conservative 

(Supplementary Note) and the posterior probabilities P reported by MAJIQ for the permuted 

comparisons did not track the expected false discovery rate (FDR) of 1 - P (Supplementary 

Note). Altogether, we found that LeafCutter p-values showed better callibration compared to 

other methods, and that LeafCutter detected more differentially spliced events at all 

reasonable FDRs (≤ 0.2). Importantly, not only did LeafCutter detect more differentially 

spliced events at fixed FDRs, but it also achieved lower false negative rates when we 

evaluated the four methods on artificial data in which we simulated various levels of fold-

changes in isoform levels (Figure 3c, Supplementary Note, Supplementary Figure 8). These 

comparisons show LeafCutter is a robust and highly scalable method for differential splicing 

analysis.

To evaluate LeafCutter’s suitability to detect differential splicing in a biological setting, we 

searched for intron clusters that show differential splicing between tissue pairs collected by 

the GTEx consortium, using all tissues to identify intron clusters. Combining all pairwise 

comparisons, we found 5,070 tissue-regulated splicing clusters at 10% FDR and with an 

estimated absolute effect size greater than 1.5 (Methods). As expected, GTEx samples 

mostly grouped by organ/tissue when hierarchically clustered according to the excision 

ratios of the five hundred most differentially spliced introns among all tissue pairs (Figure 

3d, Supplementary Note).

To assess LeafCutter’s applicability to studies with smaller sample sizes, we used a small 

subset of GTEx samples and then evaluated replication using a larger subset. Using 220 

samples (110 brain versus 110 muscle samples) we identified 1,906 differentially spliced 

clusters with estimated effect sizes greater than 1.5 at 10% FDR, compared to 885 when 

using only 8 samples (4 brain versus 4 muscle samples). Importantly, the strengths of 

associations (−log 10p-values) were highly correlated between our two analyses (Pearson R2 

= 0.72, Supplementary Note, Supplementary Figure 9), and 98% of alternatively spliced 

clustered identified at 10% FDR in the analysis using 8 total samples replicated in the 

analysis using 220 samples, also at 10% FDR. These observations indicate that LeafCutter 

can detect differentially spliced introns even when the number of biological replicates is 

small.

We investigated whether the differentially spliced clusters identified using LeafCutter are 

likely to be functional by assessing the pan-mammalian conservation of their splicing 

patterns across multiple organs. Two previous studies analyzed the evolution of alternative 

splicing in mammals. When using gene expression levels, they saw clustering by organ as 

expected, however when using exon-skipping levels, they instead saw a clustering by 

species27,28. These observations indicate that a large number of alternative skipping events 

may lack function or undergo rapid turnover.

We initially clustered using all splicing events and confirmed the previous findings27,28 that 

the samples mostly clustered by species (Supplementary Figure 10). We then focused on a 

subset of introns that LeafCutter identified as differentially excised across tissue pairs in 
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human and found that this subset shows splicing patterns that are broadly conserved across 

mammalian organs (Figure 3e, Supplementary Figure 11). To do this, we hierarchically 

clustered samples from eight organs in human and four mammals27 according to the 

orthologous intron excision proportions of differentially excised introns (p-value < 10−10 

and β > 1.5) from our pairwise analyses of human GTEx samples (Supplementary Note). 

Unlike in the previous analyses, this revealed a striking clustering of the samples by organ, 

implying that hundreds of tissue-biased intron excisions events are conserved across 

mammals and likely have organ-specific functional roles29. Thus, while the majority of 

alternative splicing events likely undergo rapid turnover, events that show organ-specificity 

are much more often conserved across mammals and, therefore, are more likely to be 

functionally important.

Mapping splicing QTLs using LeafCutter

To evaluate LeafCutter’s ability to map splicing QTLs, we applied LeafCutter to 372 EU 

lymphoblastoid cell line (LCL) RNA-seq samples from GEUVADIS, and identified 42,716 

clusters of alternatively excised introns. We used the proportion of reads supporting each 

alternatively excised intron identified by LeafCutter and a linear model30 to map sQTLs 

(Supplementary Note). We found 5,774 sQTLs at 5% FDR (compared to 620 trQTLs in the 

original study at 5% FDR, i.e., one ninth as many) and 4,543 at 1% FDR. To perform a 

controlled comparison, we also processed 85 YRI GEUVADIS LCLs RNA-seq samples and 

quantified RNA splicing events using LeafCutter, Altrans16, and Cufflinks25. We then 

uniformly standardized and normalized the estimates and used them as input to fastQTL30 to 

identify sQTLs (Supplementary Note). At a similar FDR, LeafCutter identifies 1.36X–1.46X 

and 1.83X–2.06X more sQTLs than Cufflinks2 and Altrans, respectively (Table 1). The rate 

of sQTL discoveries shared between methods is generally high (Storey’s π1 ranging from 

0.53 to 0.72 for sQTLs identified at 10% FDR, Supplementary Note, Supplementary Figure 

12), with LeafCutter sQTLs showing higher estimates of sharing (π1 = 0.70 and 0.72 with 

Cufflinks2 and Altrans, respectively) than Cufflinks2 sQTLs (0.52 with Altrans) or Altrans 

sQTLs (0.66 with Cufflinks2).

To further ensure that our sQTLs are not simply false positives, we verified that LeafCutter 

finds stronger associations between intronic splicing levels and SNPs previously identified 

as exon eQTLs and transcript ratio QTLs in GEUVADIS31 when compared to genome-wide 

SNPs (Figure 4a). Importantly, 399 (81.3%) of the 491 top trQTLs tested are significantly 

associated to intron splicing variation, as identified by LeafCutter (compared to 4.7% when 

our samples are permuted, Supplementary Note). Furthermore, we confirmed that the sQTLs 

we identified are located near splice sites, are close to the introns they affect (Figure 4b, 

Supplementary Figure 13), and are enriched in expected functional annotations such as 

“splice regions” and DNaseI hypersensitivity regions (Supplementary Figure 14).

We used LeafCutter to identify sQTLs in four tissues from the GTEx consortium. Overall, 

we found 442, 1,058, 1,047, and 692 sQTLs at 1% FDR in heart, lung, thyroid gland, and 

whole blood, respectively (Supplementary Note). Using these, we estimated that 75–93% of 

sQTLs replicate across tissue pairs (Figure 4c, Supplementary Figure 15, Supplementary 

Note). This agrees with a high proportion of sharing of sQTLs across tissues32; and contrasts 
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with much lower pairwise sharing reported for these data previously (9–48%)21. The high 

level of replication is likely due to LeafCutter’s increased power in detecting genetic 

associations with specific splicing events. Nevertheless, this leaves 7–25% of sQTLs that 

show tissue-specificity in our analysis. As expected we found that a large proportion of 

tissue-specific sQTLs arose from trivial cases where the intron is only alternatively excised, 

and therefore variable, in one tissue (Supplementary Figure 16). However, we also found 

cases in which the introns were alternatively excised in all tissues, yet show tissue-specific 

association with genotype (Figure 4d).

LeafCutter sQTLs link disease variants to mechanism

Finally, we asked whether sQTLs identified using LeafCutter could be used to ascribe 

molecular effects to disease-associated variants as determined by genome-wide association 

studies. eQTLs are enriched for disease-associated variants, and disease-associated variants 

that are eQTLs likely function by modulating gene expression31,21. We recently showed that 

sQTLs identified in LCLs are also enriched among autoimmune-disease-associated 

variants17. LeafCutter sQTLs can therefore help us characterize the functional effects of 

variants associated with complex diseases. Indeed, when we looked at the association signals 

of the top eQTLs and LeafCutter sQTLs from GEUVADIS to multiple sclerosis and 

rheumatoid arthritis (Supplementary Note), we found that both QTL types were enriched for 

stronger associations (Figure 5a) compared to genome-wide variants. Consistent with recent 

findings17, SNPs associated with multiple sclerosis are more highly enriched among sQTLs 

than eQTLs, while both eQTLs and sQTLs are similarly enriched among SNPs associated 

with rheumatoid arthritis (Figure 5a).

To further explore the utility of LeafCutter sQTLs for understanding GWAS signals, we 

applied S-PrediXcan33 to compute the association between predicted splicing quantification 

and 40 complex trait GWASs using models trained on GEUVADIS data (Methods and 

Supplementary Note). When applied to a rheumatoid arthritis (RA) GWAS, we found that 

considering intronic splicing allowed us to identify 18 putative disease genes (excluding 

genes in the extended MHC region), of which 13 were not associated using gene expression 

level measurements (Figure 5b). Novel putative disease genes associated through intronic 

splicing include CD40, a gene previously found to affect susceptibility to RA34. However, 

we found no overall enrichment of functional categories among the 18 or 13 putative disease 

genes. Overall, using LeafCutter splicing quantifications allowed us to increase the number 

of putative disease genes by an average of 2.1-fold as compared to using gene expression 

alone (Supplementary Data 1). These results demonstrate that by dramatically increasing the 

number of detected sQTLs, LeafCutter significantly enhances our ability to predict the 

molecular effects of disease-associated variants.

Discussion

While we applied LeafCutter to short-read RNA-seq data, the principles of LeafCutter could 

also be applied to long-read technologies. Long-read technologies may be particularly 

helpful in gene families where it is currently difficult to resolve splicing clusters with short 

reads due to multiple mapping.
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In conclusion, our analyses show that LeafCutter is a powerful approach to study variation in 

alternative splicing. By focusing on intron removal rather than exon inclusion rates, we can 

accurately measure the step-wise intron-excision process orchestrated by the splicing 

machinery. Our count based statistical modeling, accounting for overdispersion, allows 

identification of robust variation in intron excision across conditions. Most importantly, 

LeafCutter allows the discovery of far more sQTLs than other contemporary methods, which 

improves our interpretation of disease-associated variants.

Online Methods

Identifying alternatively excised introns

To identify clusters of alternatively excised intron, split-reads that map with minimum 6nt 

into each exon are extracted from aligned .bam files. Overlapping introns defined by split-

reads are then grouped together. For each of these groups LeafCutter constructs a graph 

where nodes are introns and edges represent shared splice junctions between two introns. 

The connected components of this graph define intron clusters. Singleton nodes (introns) are 

discarded. For each intron cluster, LeafCutter iteratively (1) removes introns that are 

supported by fewer than a number of (default 30) reads across all samples or fewer than a 

proportion (default 0.1%) of the total number of intronic read counts for the entire cluster, 

and (2) re-clustered introns according to the procedure above.

Dirichlet-multinomial generalized linear model

Intron clusters identified from LeafCutter comprise of two or more introns. More 

specifically, each intron clusters C identified using LeafCutter consists of J possible introns, 

which have counts yij for sample i and intron j (and cluster total niC = Σj′yij′)=, and N 
covariate column vectors xi of length P. LeafCutter uses a Dirichlet-Multinomial ( ℳ) 

generalized linear model (GLM) to test for changes in intron usage across the entire cluster, 

instead of testing differential excision of each intron separately across conditions or 

genotypes.

where the softmax transform is used to ensure Σjpij=1. We perform maximum likelihood 

estimation for the outputs: the J coefficient row vectors βj of length P, the intercepts μj and 

concentration parameters αj. We use the following regularization to stabilize the 

optimization:

The Dirichlet-Multinomial likelihood is derived by integrating over a latent probability 

vector π in the hierarchy
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where a = Σjaj, to give

In the limit πj = eaj/Σj′eaj′, aj → ∞ for all j, we have ℳ(n,a) → Multinomial(n,π). For the 

GLM this means that as αj → ∞ we recover a multinomial model with no overdispersion. 

Smaller values of αj correspond to more overdispersion.

Differential intron excision across conditions

To test differential intron excision between two groups of samples, we encode xi = 0 for one 

group and xi = 1 for the other in the Dirichlet-Multinomial generalized linear model. For 

each cluster we compare the null model with only the intercept term to an alternative model 

including x using a likelihood ratio test with K-1 degrees of freedom, where K is the number 

of introns in the cluster.

We apply two filters to ensure we only perform reasonable tests:

• Only introns which are detected (i.e. have at least one corresponding spliced 

read) in at least five samples are tested.

• A cluster is only tested if each group includes at least 4 individuals with 20 

spliced reads supporting introns in the cluster.

The thresholds in these filters are easily customizable as optional parameters.

Mapping splicing QTLs

To identify splicing QTLs, RNA-seq reads are mapped onto the genome using a RNA-

aligner such as STAR35 or OLego20. Because LeafCutter only uses reads that map across 

junctions to estimate intron excision rates, it is essential to remove read-mapping biases 

caused by allele-specific reads. This is particularly significant when a variant is covered by 

reads that also span intron junctions as it can lead to spurious association between the 

variant and intron excision level estimates. Subsequent to mapping, LeafCutter finds 

alternatively excised intron clusters and quantifies intron excision levels in all samples. 

LeafCutter outputs intron excision proportions, which are used as input for standard QTL 

mapping tools such as MatrixEQTL or fastQTL (Supplementary Note).
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S-PrediXcan analyses

Prediction models for intron quantification (LeafCutter) and gene expression (GEUVADIS) 

were trained using Elastic Net on GEUVADIS data. A value of α = 0.5 was chosen for the 

mixing parameter. Prediction performance for gene expression remains stable for a wide 

range of mixing parameters when α does not approach 0.0 (Ridge Regression)36,37. For each 

gene, we used SNPs within 1Mb upstream of the TSS and 1Mb downstream of the TTS. 

Similar windows around each splicing clusters were chosen.

We downloaded a genome-wide association meta-analysis summary statistics for 

Rheumatoid Arthritis (see URLs), and ran S-PrediXcan using these models. A total of 4,625 

gene associations were obtained for the genetic expression model, and 41,196 intron 

quantification cluster associations for the splicing model, that had a model prediction False 

Discovery Ratio under 5%.

Visualizing LeafCutter differential splicing output

Using the R Shiny framework and ggplot2, we created an interactive browser-based 

application, LeafViz, that allows users to visualize LeafCutter differential splicing analyses. 

LeafViz generates LeafCutter cluster plots with information on the significance of the 

detected differential splicing and the estimated differences of the splicing changes. All 

significant clusters are labelled as “annotated” or “cryptic” by intersecting junctions with a 

user-defined set of transcripts (e.g. gencode v19). Users can directly download plots from 

the website in PDF format, which can be easily edited for publication. An example of 

LeafViz applied to a differential splicing analysis between 10 brain and 10 heart samples 

from GTEx is available online (see URLs).

Data Availability Statement

The datasets analyzed during the current study are available through dbGaP accession 

phs000424.v6.p1 (GTEx), GEO accession GSE41637 (RNA-seq data from mammalian 

organs), and ENA accession PRJEB3366 (Geuvadis).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of LeafCutter. (a) LeafCutter uses split reads to uncover alternative choices of 

intron excision by finding introns that share splice sites. In this example, LeafCutter 

identifies two clusters of variably excised introns. (b) LeafCutter workflow. First, short reads 

are mapped to the genome. When SNP data are available, WASP18 should be used to filter 

allele-specific reads that map with a bias. Next, LeafCutter extracts junction reads from .bam 

files, identifies alternatively excised intron clusters, and summarizes intron usage as counts 

or proportions. Lastly, LeafCutter identifies intron clusters with differentially excised introns 

between two user-defined groups using a Dirichlet-multinomial model or maps genetic 

variants associated with intron excision levels using a linear model. (c) Visualization of 

differential splicing between 10 GTEx heart and brain samples using LeafViz. LeafViz is an 

interactive browser-based application that allows users to visualize results from LeafCutter 

differential splicing analyses. In this example, we observed that Rbfox1 shows differential 

usage of a mutually exclusive exon in heart compared to brain. For all examples, see URLs.
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Figure 2. 
LeafCutter discovers reproducible unannotated introns. (a) Using LeafCutter to discover 

novel introns, we find that for any given tissue, over 10% of alternatively excised introns are 

unannotated. Remarkably, 48.5% of testis alternatively excised introns are unannotated. 

Different colors denote the proportion of introns when one or more splice sites are 

unannotated “(ss absent)”, both splice sites are annotated but the intron is not part of any 

transcript “(ss present)”, or when the intron is annotated in some but not all databases. (b) 
Barplots showing the numbers of unannotated and annotated junctions discovered using 

LeafCutter that are also found in samples from the short read archive (SRA) using 

Intropolis24. Phenopredict25 was used to predict the tissue type corresponding to the SRA 

samples analyzed in Intropolis. (c) The unannotated splice sites of novel introns show 

moderate signature of sequence conservation as determined by vertebrate phastCons scores. 

Miss one: conservation of the unannotated splice site of an intron for which the cognate 

splice site is annotated. Miss both: conservation of splice sites of introns with both splice 

sites unannotated.
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Figure 3. 
Comparison of methods for detecting differential splicing. (a) Running time of differential 

splicing methods applied to comparisons between YRI and CEU LCLs RNA-seq samples. 

(b) Cumulative distributions of differential splicing test p-values (1-posterior for MAJIQ) for 

the 15 YRI versus 15 CEU LCLs comparison (red). The distribution of test p-values for a 

comparison with permuted labels is also shown (black). Cufflinks2 (not shown) detected 0 

significantly differentially spliced genes (Supplementary Figure 8). (c) Receiver operating 

characteristic (ROC) curves of LeafCutter, Cufflinks2, rMATS and MAJIQ when evaluating 

differential splicing of genes with transcripts simulated to have varying levels of differential 

expression. ROC curves that do not reach 1.00 True Positive Rates reflect genes simulated to 

be differentially spliced that were not tested. (d) LeafCutter identifies tissue-regulated intron 

splicing events from GTEx organ samples. Heatmap of the intron excision ratios of the top 

500 introns that were found to be differentially spliced between at least one tissue pair. 
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Tissues include brain (Br), muscle (Ms), heart (Ht), blood (Bd), pancreas (Pc), esophagus 

(Eg), and testis (Ts). (e) Heatmap showing intron exclusion ratios of introns differentially 

spliced between pairs of tissues (Muscle vs Colon, Brain vs Liver, and heart vs Lung). 

Heatmap shows 100 random introns (97 for the heart vs lung comparison) that were 

predicted to be differentially excised in human with p-value < 10−10 (LR-test) and no more 

than 5 samples with missing data. Heatmap of all introns that pass our criteria can be found 

in Supplementary Figure 11.
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Figure 4. 
LeafCutter sQTLs augment interpretation of GWAS hits. (a) QQ-plot showing genome-wide 

sQTL signal in LCLs (black), sQTL signal conditioned on exon eQTLs (purple) and 

conditioned on transcript ratio QTLs (dark purple) from31. Signal from permuted data in 

light grey shows that the test is well-calibrated. (b) Positional distribution of sQTLs across 

LeafCutter-defined intron clusters. 1,421 of 4,543 sQTLs lie outside the boundaries 

(Supplementary Figure 13 for all sQTLs). (c) High proportion of shared sQTLs across four 

tissues from21. (d) Example of a SNP associated to the excision level of an intron in blood 

but not in other tissues. Boxplot center line: median, box: interquartile range (IQR), 

whiskers: range of data, excluding outliers beyond 1.5x IQR.
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Figure 5. 
LeafCutter sQTLs enable interpret disease-variants. (a) Enrichment of low p-value 

associations to multiple sclerosis and rheumatoid arthritis among LeafCutter sQTL and 

GEUVADIS eQTL SNPs. The numbers of top sQTLs and eQTLs that are tested in each 

GWAS are shown in parentheses. (b) Manhattan plot of S-PrediXcan association p-values 

from prediction models for intron quantification (LeafCutter; top) and gene expression 

(GEUVADIS; bottom). Genes that were found to be associated through RNA splicing are 

highlighted in orange, those associated through gene expression in purple, and those 
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associated through both in black. The names of associated genes from the extended MHC 

region are not shown.
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Table 1

Summary of sQTLs identified in GEUVADIS samples using LeafCutter, Altrans16, and Cufflinks25. The 

numbers of transcript ratio QTLs (trQTLs) identified in the orginal GEUVADIS study31 are also listed in the 

sQTL columns. N/A: Not available.

Method YRI sQTLs (1% FDR) YRI sQTLs (5% FDR) CEU sQTLs (5% FDR)

LeafCutter 1,294 1,982 5,775

Altrans 624 1,083 N/A

Cufflinks2 888 1,459 N/A

GEUVADIS study N/A 83 620
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