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Abstract: This study aimed to evaluate the use of bioengineering tools, finite element analysis,
strain gauge analysis, photoelastic analysis, and digital image correlation, in computational studies
with greater validity and reproducibility. A bibliographic search was performed in the main health
databases PUBMED and Scholar Google, in which different studies, among them, laboratory studies,
case reports, systematic reviews, and literature reviews, which were developed in living individuals,
were included. Therefore, articles that did not deal with the use of finite element analysis, strain
gauge analysis, photoelastic analysis, and digital image correlation were excluded, as well as their
use in computational studies with greater validity and reproducibility. According to the method-
ological analysis, it is observed that the average publication of articles in the Pubmed database was
2.03 and with a standard deviation of 1.89. While in Google Scholar, the average was 0.78 and the
standard deviation was 0.90. Thus, it is possible to verify that there was a significant variation in
the number of articles in the two databases. Modern dentistry finds in finite element analysis, strain
gauge, photoelastic and digital image correlation a way to analyze the biomechanical behavior in
dental materials to obtain results that assist to obtain rehabilitations with favorable prognosis and
patient satisfaction.

Keywords: finite element analysis; computing methodologies; computer simulation; dentistry

1. Introduction

Countless simulation tools in bioengineering have been used to overcome the limita-
tions of in vitro and in silico analysis. Among them, Finite Element Analysis (FEA) and
Digital Image Correlation (DIC) gain notoriety, being a procedure that analyzes dental
materials, allowing a simulation with approximate characteristics of their mechanical be-
havior [1]. Strain Gauge Analysis (SGA) and Photoelastic Analysis (PA) is a techniques used
for the experimental stress and strain analysis in mechanical structures [2]. These structures
present strains under loading or the effect of temperature. Strain Gauge and Photoelastic or
evaluation through strain measurement are one of the most versatile methods of evaluating
mechanical behavior [3], as strain gauge sensors are widely used to measure strains in
larger structures such as crowns, bones, and anatomical structures, and also associated
with transducers to measure pressure, stress, force, and acceleration [2,3].

Dent. J. 2022, 10, 145. https://doi.org/10.3390/dj10080145 https://www.mdpi.com/journal/dentistry

https://doi.org/10.3390/dj10080145
https://doi.org/10.3390/dj10080145
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/dentistry
https://www.mdpi.com
https://orcid.org/0000-0003-4507-0785
https://orcid.org/0000-0002-1477-8599
https://orcid.org/0000-0002-0977-5350
https://orcid.org/0000-0002-5707-7565
https://doi.org/10.3390/dj10080145
https://www.mdpi.com/journal/dentistry
https://www.mdpi.com/article/10.3390/dj10080145?type=check_update&version=1


Dent. J. 2022, 10, 145 2 of 22

The FEA and DIC were created to solve structural engineering problems, as a study
tool. Where the analysis evaluated the strain and stress degree of a solid when certain
loads were applied [4]. In turn, it is based on a mathematical analysis, which consists
of the fragmentation of a complex element into small elements, maintaining the same
properties [5].

These elements are mathematical models described by differential equations, which
are solved by computational methods to obtain the desired results [5]. The mathematical
foundations of this method emerged at the end of the 18th century; however, its viability
became possible only with the advance in technology, facilitating the resolution of the
algebraic equations resulting from its application6. It is worth mentioning that its use
became common during the ‘60s when it underwent a great evolution and the resource was
transferred to the computer for arbitrary geometric analysis of materials that are subject to
any type of load [5].

In this context, Dentistry adhered to this technique in several specialties, finding in
Orthodontics great applicability of its resources [5] However, in other specialties, mainly in
implant dentistry and dental prosthesis, this resource should be used with caution, since
the supporting tissues are highly heterogeneous, however, when associated with other
methodologies, it allows estimating the occlusal stresses generated in the surrounding
bone, preventing bone resorption [6].

With this computational tool, complex biomechanical behaviors of prostheses and
surrounding structures can be measured and, for analysis, it is necessary to obtain an
experimental model of the object to be studied, which can be any structure of the stomatog-
nathic system [6]. From this, a model is obtained in CAD (Computer-Aided Designer) and
inserted in the finite element program ANSYSTM 19.2 (ANSYS Inc., Canonsburg, PA, USA)
and, within the program, the mechanical properties and different contact conditions of the
models to analyze the stress, strain, and displacements [5].

Thus, it is necessary to understand the failures that occur in the dental clinic, since
in vitro studies are often not able to explain such situations, and in vivo studies have
difficulties to be performed [7,8]. The use of in silico studies is an option to explain
mechanical dental conditions difficult to be reproduced by other types of studies [8,9]. In
this context, to gain a better understanding of biomechanical behavior in dental clinics,
in silico studies are increasingly being used through bioengineering tools, such as finite
element analysis [10,11]. Numerical analysis using FEA and DIC allows the simulation of
loads application and provides information regarding their respective stress distribution
and microstrain [12]. Whereas SGA and PA are a tool with high sensitivity that allows
strain analysis through the use of strain gauge sensors [13]. In addition, the association of
these two methodologies allows a correct analysis of the investigated events and helps to
understand some clinical manifestations, as well as their availability to assess biomechanical
behavior [14].

The present study is justified as there is in the literature an enormous variability and a
discrepancy in the properties used in FEA, SGA, PA, and DIC studies. This has contributed
to inaccurate searches or, at least, dubious results. Such a problem must be understood
and clarified, thus eliminating a substantial bias that can compromise the final result of
the study with the different tools in bioengineering applied in dentistry. Given what has
been exposed, this study aims to evaluate the literature regarding the use of bioengineering
tools, finite element analysis, strain gauge analysis, photoelastic analysis, and digital image
correlation, in computational studies with greater validity and reproducibility.

2. Materials and Methods
2.1. Source Selection

A bibliographic search was performed in the main health databases PUBMED and
Scholar Google, in which articles were published from 1955 to 2022 were collected. In the
first stage, the list of retrieved articles was examined by reading the titles and abstracts. In
the second stage, the studies were selected by reading the full contents. Two authors (JDMM
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and GRSL) performed stages 1 and 2. Experimental clinical, laboratory studies, case reports,
systematic reviews, and literature reviews, which were developed on living individuals,
were included. Therefore, articles that did not deal with the use of finite element analysis,
strain gauge analysis, photoelastic analysis, and digital image correlation were excluded,
as well as their use in computational studies with greater validity and reproducibility.

2.2. Data Source

Through bibliographic research, 100 articles were selected, 65 articles from PUBMED
and 35 from Scholar Google (Table 1). The following titles of specific medical subjects
and keywords were used: Dentistry; (DeCS/MeSH Terms), Computing Methodologies
(DeCS/MeSH Terms), Computer Simulation (DeCS/MeSH Terms).

Table 1. Mean ± standard deviation of the number of studies in the main health databases. CI
indicates confidence interval.

Database Mean Value ± Standard Deviation CI 95%

Pubmed 2.03 ± 1.89 a (0.19–3.92)
Google Scholar 0.78 ± 0.90 b (0.12–1.68)

Legend: CI indicates confidence interval. Different letters indicate statistically significant differences between columns.

3. Results

According to Table 1, it can be seen that the average publication of articles in the period
from 1955 to 2022 from the PubMed database was 2.03 and with a standard deviation of 1.89.
While at Scholar Google, the average was 0.78 and the standard deviation 0.90. Different
letters have a statistically significant difference. Thus, it is possible to verify that there was
a significant variation in the number of articles, in both databases. Given the result with
p > 0.005, there were statistically significant differences between the main health databases.

4. Literature Review

The difficulties found in randomized clinical studies to evaluate the biomechanical
performance of materials and peri-implant tissues, since the strain and stress distribution do
not allow them to be directly assessed by non-destructive means, can be overcome with the
use of bioengineering tools. In this sense, finite element analysis is being used extensively
in biomechanical investigations with osseointegrated implants [15]. This methodology
consists of the computational mathematical analysis of a theoretical model that allows
obtaining information from regions that are often inaccessible by other methods and also
allows formulating consistent initial theories for the development of future research, in
addition to presenting results that corroborate and support other methodologies in the
same investigation [5,6,16].

The precision and applicability of the results obtained through finite element analysis
are directly related to the quality of the models used in the research. Thus, the complexity
of the structures involving the anatomy of the jaws and implant-supported prostheses
requires the use of three-dimensional models to make the simulations similar to clinical
or laboratory reality [16]. These three-dimensional models can be obtained through tools
available by several CAD programs (Computer-Aided Design), scanning, or computed
tomography. However, if the investigation involves a specific area, the analysis can be done
in a section of the jaws to be studied and for laboratory studies. The symmetric specimens
allow a faithful reproduction of the three-dimensional model, while more complex samples
can also have their geometry simplified without compromising the results [5,6,17].

After obtaining the three-dimensional models, each structure must be configured ac-
cording to its clinical or laboratory correspondent and for this, some information regarding
the characteristics of the simulated materials is essential. To carry out the calculations of
isotropic materials using the finite element method, some information is required regarding
the properties of the materials, such as the elastic modulus and Poisson’s coefficient [18].
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The elastic modulus or Young’s modulus (E) is a mechanical property that measures the
stiffness of solid material and is defined by the stress (force per unit area) and strain (propor-
tional strain) ratio, which is calculated by the tension (σ) and the strain (ε) ratio, therefore,
E = σ/ε = (F/A)/(∆L/Lo) [17]. The Poisson’s coefficient (v) is a dimensionless property
that measures the transverse strain (about the longitudinal direction of load application),
which is calculated by the ratio of the extension in the “x” direction, which is transversal,
by the extension in the “z”, which is longitudinal, given by the formula, v = −εx/εz [19].

In the three-dimensional simulation of bone tissue models, the density can be cali-
brated according to its anatomical region, however, most studies use uniform values of
elastic modulus for cortical bone with average values of 13.7 GPa, whereas medullary bone
is highly variable, with mean values of 0.3 to 9.5 GPa [20,21]. For laboratory study, the
simulation of bone tissue occurs through the use of polyurethane, since the material has
been validated for this purpose by Miyashiro et al. (2011) [21] for presenting an elastic
modulus between the cortical bone and the medullary bone, that is 3.6 GPa. The cortical
bone, the medullary bone, and the polyurethane have Poisson’s coefficient with a value of
0.322. Other materials widely used in these implant restorations simulations are titanium
with values of 110 GPa and 0.33 and NiCr (Nickel-Chromium) with values of 206 GPa
and 0.3, for the properties of elastic modulus and coefficient Poisson’s, respectively [22,23].
In this context, three-dimensional models for the investigation of implants, components,
and bone tissue or similar, allow all materials to be considered homogeneous, linear and
isotropic [24].

To conclude the configuration of the three-dimensional models, the contact between
the different materials must be determined. Different types of contacts are found in the
literature to investigate the behavior of restorations on implants, and for linear analyzes, it
can be assumed that the structures are perfectly bonded [25]. This condition is accepted
based on experimental studies since, during the removal of osseointegrated implants, the
fracture does not occur at the bone-implant interface [26].

On the other hand, the contacts can be considered non-linear and present a coefficient
of friction between them. Previous studies used different values of friction coefficient for
the contact of the medullary and cortical bone with the implant, with values of 0.65 and
0.7727, in addition to the friction coefficient for the contact between the implant and the
prosthetic components, with values from 0.3 to 0.5 [17,27]. The correct configuration of the
models allows for obtaining results regarding the stress distribution (tension, compression,
and shear), strain, and displacement closer to the clinical or laboratory reality.

4.1. Measure Strain and Microstrain

There are several ways to approach finite element theory, one of the main ways
to elucidate FEA, is through the Rayleigh-Ritz procedure [20]. Where it is one of the
most intuitive and didactic methods, which allows the approximation of problem-solving
through the principle of virtual work [28,29].

The principle of virtual work states that the total potential energy of an elastic system
is minimal (or stationary) when the system is in equilibrium being the total potential energy
is the sum of the gravitational potential energy and the elastic strain energy [30]. This
method in turn reduces a continuous medium with infinite degrees of freedom (product of
the number of nodes in a mesh by the number of unknowns per node) to a system with a
finite number of degrees of freedom [31,32].

The method makes this possible, based on the hypothesis that the displacements are
a function of a finite number of indeterminate coefficients that must be determined. The
problem becomes the determination of these coefficients [29,33,34].

The solution to the problem is to find an expression for the potential energy of the
system in terms of A the constant of the equations that describe the beam strain, differentiate
this equation concerning A and equal to zero, according to the boundary conditions
(Table 2) [29–43].
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Table 2. Comparative chart for material analysis methods.

Raleigh-Ritz Method Finite Element Method

The structure is treated as a single entity; therefore, it consists
of a single element [29–31,35].

The structure consists of multiple elements connected by nodes
[6,44–50].

The variables to be optimized are the coefficients A, B, C, etc.,
of the equations describing the problem [29,32,35–38].

Offsets and rotations are the variables to be optimized
[5,6,44,46,47,51].

Less intuitive. You need to specify boundary conditions and
restrictions regarding the amplitude of sine waves [29,39–43].

More intuitive, as the boundary conditions and restrictions refer
to displacements and rotations [5,6,44–56].

4.2. Finite Element Method or Analysis

A continuous element is one whose geometry is completely defined by its nodes
(triangles, quadrilaterals, tetrahedrons, among others) [57]. The internal displacements
of these elements are described by the displacements of the nodes using interpolation
functions generally polynomial, from these functions’ expressions are obtained for the
energy that must be minimized to obtain a set of algebraic equations [58]. The solutions to
the equations describe the displacements in the nodes. The displacement values at each
node are analogous to the values of coefficient A calculated in the example of the simply
supported beam [59].

By determining the displacements in each node, it is possible to determine the displace-
ments and stresses in the entire continuous element. In general, displacements calculated
in this way are more accurate than stresses (Figure 1).
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Figure 1. Continuous elements in two dimensions profile (2D). Legend: (a) row optimization;
(b) polyline command.

To make the results closer to the real situation, CAD software allows the creation of
3D models, and symmetric models can be performed in a simplified way. For this, we
can import images using the background bitmap command, allowing lines to be traced,
generating a 2D image of half of the body (e.g., dental implant). After selecting the traced
lines (Figure 2a), the planar surface command can be used to form a surface between the
lines (Figure 2b), and then the revolve command (full circle) is used with rotation about the
“y” axis to form a three-dimensional model of an implant (Figure 2c,d).
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Figure 2. Steps to create the 3D symmetric model. Legend: (a) selection of lines; (b) surface created
between the lines; (c) selection of the revolve command (full circle) on the “y” axis; (d) 3D volumetric
model of the implant.

To obtain models with more complex anatomies, the object can be scanned (eg pros-
thesis). In this case, the prosthesis was fixed on a condensation silicone base and its surface
was coated with a matte spray (Cerec Optispray, Sirona, Bensheim, Germany) to facilitate
the scanning process. Then the set was adjusted to the base of the extra-oral scanner (Sirona,
InEos Blue, Beinsheim, Germany), allowing to obtain a “.STL” file using the software
(CEREC inLab, Sirona Dental Systems, Erlanger, Germany) ensuring the faithful anatomical
reproduction of a 3-element multiple prosthesis.

After obtaining the “.STL” file, it was exported to Rhinoceros software (version 5.4.2
SR8, McNeel North America, Seattle, WA, USA). Then, lines were drawn over the imported
file using the polylineonmesh command (Figure 3a). The lines were then cut in all directions
with the split command and simplified using the rebuild command. With the selection of
four contiguous lines, several alternating surfaces were created using the networksurface
command. The surface was finalized using the hide command for the lines and again the
networksurface command was used between the edges of the surfaces previously created
(Figure 3b).
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For structural static analyses, all three-dimensional models are exported to CAE
software. Material properties are reported to the software, models are renamed according
to what they are representing, and all structures may have different characteristics (e.g.,
homogeneous, isotropic, and elastic) and different contacts (e.g, bonded, coefficient of
friction, smooth), trying to reproduce a condition closer to the real. Then, loads can be
applied in different directions and with different intensities (Figure 4).
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After the simulations, different solutions were obtained for the different structures
evaluated (eg.: von Mises stress, maximum/minimum principal stress, displacement,
microstrain, among others).

A large number of finite element problems can be solved using linearization as a
hypothesis, where the strains are small and the behavior of the materials is considered
linearly elastic [60]. The solutions are generally quick, however, there are a large number
of non-linear problems in which the stresses and displacements are not proportional to
the applied loads. The solutions requrigiire interactive techniques and heavy computing
resources [61].

Problems involving large strains, inelastic materials, creep, plastic relaxation, hys-
teresis, phase transformations, and residual stresses are also addressed using nonlinear
modeling [28]. Modeling involves knowledge and models that precede finite element
modeling: plasticity theory, and fluency models, among others [62].

For static structural problems, the finite element method results in part of a complex
problem transforming it into several simple equations that can be expressed in the formula
(Figure 5) [29].
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The finite element method employs interconnected elements, so a displacement func-
tion is attached to each finite element [29]. As far as it is concerned, each element is
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interconnected through common interfaces, that is, by nodes [30,31,35–37]. Thus, the prob-
lem can be described by an equation, where the force is equal to the stiffness times the
displacement ([F] = [K] [u]) (Figure 2) [32,34,38,39].

Finite element problems can be greatly simplified by considering structures containing
elements of symmetry (translation, rotation, reflection) [58]. The computational resources
needed to solve a problem can be greatly reduced when using symmetry [59].

Axisymmetric symmetry is a particular case of rotational symmetry. Axisymmetric
symmetry makes it possible to reduce a three-dimensional problem to a two-dimensional
one [44]. When in addition to geometry there is the symmetry of load application (boundary
condition and material model) it is simple to reduce the problem to the fundamental
region [45].

Finite element modeling involves defining and manipulating the geometry, specifying
the material and its properties, generating the finite element mesh, and defining the loads
and displacements that will be applied to the component (Figure 6) [46].
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In pre-processing, the properties of the materials are defined, whether they are constant
or variable. Variable properties depend on time, temperature, etc., and often consume 80%
of the processing time [29,44–50,54,63–65].

The results provide tables with thousands or millions of numerical values [29,50,65].
Values can be descriptive of scalar, vector, or tensor quantities. Post-processing allows for
efficient interpretation of these numbers [63,64]. Color graphics, vector fields, ellipses, etc.,
allow easy visualization of the results obtained.

The mesh size, precision, and processing time are one of the most discussed points in
the FEA, so numerous measures are developed to build a design that presents a mesh that is
thin enough to give good answers, but thick enough to run without the need extraordinary
computing resources [66].

When the number of nodes in the mesh is reduced, the results tend to be more
inaccurate, increasing the number of nodes and the number of degrees of freedom in
the mesh increases the accuracy, the number of equations, and the time required for
processing [56].

4.3. Strain Gauge

With the increase in market competitiveness, it becomes essential that projects have
reduced costs without losing the quality of their results. In this sense, the need arose to
elaborate simplified methods that would allow evaluating the real conditions of material
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when submitted to different loads. These evaluations were based on Robert Hooke’s
discovery in 1678, which became known as Hooke’s Law, which related the efforts applied
to a material, through the generated stress (σ), with the resulting strain (ε), expressed by
the following formula, σ = E. ε, where E is the elastic modulus [67].

Initially, essentially mechanical devices appeared that had flaws in the measurements,
which proved to be a limited method. In 1843, the field of electro-electronics already
showed considerable advances, a period in which Charles Wheatstone found that the
effects of the variation of an electrical conductor caused by the application of mechanical
stress on a material allowed the measurement of its strain. In the following decade, Wilian
Thomson (1856) managed to measure such strain and, with that, several later studies
allowed the development of the first electrical resistance strain gauges or Strain Gauge
Analysis (SG) [68].

The strain gauge sensors allow a high sensitivity measurement of the strain suffered
by a given material (µε/m) under static or dynamic loads [69,70]. This is considered
an indirect measurement performed by equipment that translates variations in electrical
resistance into strain levels [18,71]. Strain is described by the elongation of a section that can
occur by mechanical or thermal loading and calculated by the ratio between the absolute
variation in length (∆L) and the measure of the original section (Lo), given by the formula,
ε = ∆L/Lo. Therefore, compressive loads generate negative values, while tension loads
generate positive values (Figure 7) [18].
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Figure 7. Illustration showing the positive (tensile) and negative (compression) strain of material.

The strain gauge sensors are arranged in an electrical circuit, the Wheatstone bridge,
capable of measuring the variation in electrical resistance. This bridge can have different
configurations, including 1

4 bridge, 1
2 bridge, 1

2 diagonal bridge, and complete bridge.
When 1

4 of the Wheatstone bridge is used, it is formed by four resistors (R1, R2, R3, and R4)
with direct or alternating voltage. If the resistance values are the same (R1 = R2 = R3 = R4)
and an input voltage (Vin) and an output voltage (Vout) are connected to the circuit, there
will be no potential difference (DDP) (Figure 8) [30].

In SGA, the resistance of 120 Ω or 350 Ω is normally used for stress analysis. When the
strain of the material occurs, where the strain gauges are installed, there is an imbalance in
the bridge, which causes some of these resistances to vary and have different values from
the others. This makes the bridge unbalanced, so there is a different voltage at the output
terminal, that is, a voltage variation, due to its rebalancing [18].
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The variable voltage sensor has resistance (Rg), while the other components are fixed
value resistors [69], so the output voltage (Vout) can be calculated, as shown in Formula (1).

Vout = Vin

(
R3

R3 + Rg
− R2

R1 + R2

)
(1)

Formula (1) is output voltage formula. Legend: Vin = input voltage; Vout = output voltage;
R = resistance.

When Rg is the only active strain gauge, a small variation in Rg will result in an output
voltage of the bridge. The gauge factor (GF) is defined as the ratio between the fractional
change in electrical resistance and the fractional change in length (Formula (2)) [69].

Strain (ε) =

(
∆Rg
Rg

)
GF

(2)

Formula (2) is engineering strain formula. Legend: ε = strain; R = resistance; GF = gauge factor.
This information obtained by the strain gauges goes through a voltage amplifier and

the information is obtained by a data acquisition board, normally, they are obtained as
electrical voltage and expressed by the millivolt (mV) unit. These data allow to be processed
and transformed in a specific quantity, for example, the microstrain (µε) [71].

The strain gauges are composed of support material, a measuring grid, and its leads,
they can still present a variety of models and sizes for different forms of use (Figure 9).

The size of the grid does not affect the sensitivity of the strain gauges, as it measures
the relative strain of material. In this sense, the use of reduced-size strain gauge sensors
(approximately 1 mm) allows for the investigation of border regions, which has been used
for decades as a routine methodology in research with osseointegrated implants and their
structures [3,18,23,72].
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In addition, strain gauges vary their resistance according to the strain measurement
grid in the effective direction, which coincides with the direction of their filaments. When
the strain gauge measures only the strain in the direction of its filaments, it is considered
unidirectional (Figure 10), however other models can vary its resistance when the strain is
transversal to the effective direction, known as transversal sensitivity. When the direction
of voltages at the measurement site is not known, strain gauges with more than one grid
can be used and arranged at different angles on the same support material.
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Figure 10. Representation of the unidirectional strain gauge sensor and the effective strain direction
of the grid.

To perform the SG tests, the terminals of each strain gauge are glued to the surface of
interest and installed in an electrical signal conditioning device to record the variations in
electrical resistance and transform them into a microstrain (µε) (Figure 11).
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The realization of previous theoretical tests, such as FEA, optimizes the laboratory
investigations since it can provide information about the regions under higher stress
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concentration and even the direction of the stresses on the studied material. In addition,
when there is a similarity that allows correlating results obtained through laboratory
methodologies, such as, for example, microstrain results (µε) obtained through the SGA,
with results of the same magnitude obtained through theoretical models, it is possible
to conclude that the theoretical models were validated, thus, other information can be
obtained with considerable scientific value [14].

4.4. Photoelastic Analysis

The concern with achieving longevity and success with implants has brought about
several types of studies, from planning bone losses and masticatory loads to the postopera-
tive period [56]. Prosthetic planning involves several types of methods that aim to avoid
these losses [73]. To better understand each patient’s condition, prosthetic plans can be
simulated by direct polymerization of photoelastic materials on the patients [74]. The goal
is to improve the knowledge of the stability of the implants and ensure more accuracy in
this procedure, besides the prospect of giving greater longevity to the prosthesis [73–75].

According to Torres (2005) [73], several methods can be used to observe the stress gen-
erated between the bone and the implant, with particular notes being given to photoelastic
analysis [74]. This analysis is increasingly used due to it being a simple method presenting
some advantages and its effectiveness [73,74]. Photoelastic Analysis (PA) provides labora-
tory standards that are reliable for clinical applications. This technique uses a polariscope
with a monochromatic light source, that hits the polarizer in several directions. However,
only parallel wave components are transmitted [76].

Some of the advantages of PA include the joint visualization of internal stresses in bodies
without the need for graphs or diagrams. It can also be applied to bodies with more complex
morphology. It is limited by the requirement of models with a perfected reproduction of the
original object, free of the stresses performed before the analysis [55,56,73–76].

The photoelastic analysis phenomenon was first observed in 1816 by Sir David Brew-
ster, but it was only in 1935 that this method was introduced into dentistry by Zak. In the
1960s, PA analysis gained prominence with the aid of synthetic resins. It is initially based
on the appearance of colored bands on some types of transparent materials that have been
subjected to stress and also received polarized light. The bands may be evaluated over
qualitative or quantitative aspects [73].

Currently, there are numerous ways of analyzing the fringe pattern adopted for each
case, as well as the microstrain imposed on the surface of the material. Therefore, the main
way of evaluating the strain of the material is by measuring and determining the change in
the fringe pattern, this inference being allowed through the use of a fringe graph, resulting
from a sequence of fringes generated with white light (Matthys, 1997). However, there are
limitations in the use of this technique to evaluate the strain through comparison by a wave
of fringes, given this, it was proposed by Silva et al. (2017) [34] a quantitative assessment of
the fringe waves generated on the surface of the material. Since this would allow a more
accurate assessment of the failure or strain pattern of the material structure. Therefore, this
analysis is carried out as follows, the average reference area is defined as the product of the
average horizontal length by the average vertical length of the surface of the parallelepiped
from the perspective of passing light (Figure 12).

The determination of the procedure for each image is indicated from the capture of n
horizontal lines and their determined lengths in pixels; then the average of the lengths of the
horizontal lines and their uncertainty is calculated. After obtaining the captures, the vertical
lines are traced and the lengths in pixels of the lines are determined and finally, the average
of the lengths of the vertical lines and their uncertainty are calculated. Notwithstanding
this, the average area is calculated from the product between the average lengths of the
horizontal and vertical lines and their uncertainty.
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The average area of the fringe region is defined as the product of the average horizontal
length and the average vertical length of the selected surface (Figure 13).
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Figure 13. A selected area of a fringe is produced from external stress.

The determination of procedures for each fringe or a fringe per image occurs by
capturing n horizontal lines and determining their lengths in pixels; after that, the average
of the lengths of the horizontal lines and their uncertainty is calculated. Then vertical
lines are captured, and their lengths are determined in pixels; the average of the lengths
of the vertical lines and their uncertainty are taken into account. Finally, the average area
from the product between the average lengths of the horizontal and vertical lines and their
uncertainty (Figures 14 and 15).

Regarding the average relative strain from the areas, it establishes the relationship
between the fringe area, 〈a〉k, by the reference area 〈A〉k-, and it is always necessary to
determine the relationship between the fringe area by the reference area and its respective
uncertainty, by the expressions (Figure 16).

At the end of these initial steps, the graph of the force factor by the average strain, in
which there is a transfer of uncertainty from the independent variable to the dependent
variable (Figure 17).
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abutment/implant (Straumann PURE Two-Piece Ceramic Implant, Bone Level, Straumann Dental
System Implant, Basel, Switzerland); (B) Two-piece titanium abutment/implant (Straumann BLT
Implant, Bone Level, Straumann Dental System Implant, Basel, Switzerland).
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Regarding the determination of the transfer of uncertainty from the independent
variable to the dependent variable, it was done through the assumption of the adjustment
function as linear. Thus, the combined uncertainties, from the uncertainties of the depen-
dent and independent variables, using expression (8.1); then it is necessary to tabulate the
values of force*factor(a), relative mean strains, and combined uncertainties; consecutively
it is necessary to include the experimental values and their combined uncertainties in
the graph of force*factor(a) by average strain; finally, performing the linear regression to
determine the best line that represents the chosen linear function, expression (8) (Figure 15).

Torres (2005) [73] indicates that the PA model replicates the formation of bands or
fringes that can be light or dark, proportionally to the differences in the main stresses that
exist in the observed model. The PA technique transforms these stresses present inside the
body into visible light patterns. The higher the quanta of the fringe or band, the higher the
stress concentration [73–75].

Some studies presented in Torres (2005) [73] highlight the illustrative capacity that
photoelastic analysis has in the fields of stress localization and characterization [74–76].
This analysis is being successfully used in research on interactions in tissue responses
and physical characteristics of prosthetic restorations and implants [76]. Studies with PA
verified the possibility to perceive the stress generated in the implants when there are
maladjustments in these elements, together with the fact that the intensity of tightening of
the implant screws did not influence the observed photoelastic patterns. and that the main
purpose of PA is to evaluate the stress generated by different types of prostheses [56,73–77].

Torres (2005) [73] cites that the photoelastic technique was tested in an experiment
where orthodontic appliances were installed in cats. There was a positive correction
between the photoelastic patterns [76]. The tensile forces found in the models presented
evidence of stretching of the periodontal ligament. Other research evidence resulted in the
verification of periodontal fiber compression in the area of photoelastic pressure as well as
the appearance of areas of hyalinization in the histological material in sites of high-stress
concentration [73–77].

Another study developed with the aid of PA included a comparison of stresses gener-
ated in implants by pillars with different angulations [74,75]. As a complementary method,
strain gauges were used. At the end of the verification, it was evident that the numerical
data was similar to the visual interpretation of the photoelastic fringes which accurately
illustrated the stress areas [76,77].
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Given all this, it can be said that PA can be applied to check the stress generated on
implants, in structures with different levels of vertical misfit, when installing two types of
three-unit fixed partial dentures, to study the interactions between tissue responses, stress
distribution, adaptive passivity of splinted structures, the biological behavior of implants
and the relationship between the size and location of maladjustments {55,56,73–77].

4.5. Digital Image Correlation (DIC)

In parallel with photoelastic analysis, digital imaging in dentistry emerged in the
1980s, able to accurately analyze object strain both in 2D and 3D [51] (Figure 17). With
the advent of technology, photography and computer-aided image processing techniques
appeared as methods to study specific deformed objects [55,56,73]. Among the advantages
of these methods, the cost stands out, being less expensive than photoelastic analysis, the
Moiré method, and Holographic Interferometry [56]. One of the advantages of digital
imaging is its flexibility and good adaptability [56,73].

For Beleza (2017) [51], the procedure to implement digital image correlation consists
of three stages: the preparation of the specimen, the acquisition of data, and its analy-
sis [77]. Allied to these stages we have the computer with the most suitable software [78].
This technique is not restricted to the dental area and is often used in engineering, for
example [79].

According to Beleza (2017) [51], the digital image correlation (DIC) method is based on
the analysis of points on a specimen’s surface using image capture. The correspondence is
performed using a correlation algorithm. For this to occur accurately, a stochastic criterion
is applied to the study material [78,79].

The loads applied to a certain object can cause strains that point to the properties of the
material it is made of. To be sure about the size of this strain it is essential to quantify it to
know the level of support and to fulfill the purpose of its creation [79]. Strains can also give
information about stress distribution and stress-strain relationships to reveal underlying
properties. DIC is an advantageous alternative, because, it can globally analyze the object’s
strain [80].

For analysis, the main images are divided into sections where they are then visualized
in the next image [81] (Figure 17). The acquisition of these images can be done using a digital
camera or by illuminating a test sample to obtain more precise images [82] (Figure 18).
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Digital images are the fundamental elements of the DIC and it needs the pixels in the
correct format for the proper execution by the algorithm [78]. To be effective it needs to
have good resolution, correspondence, and other parameters (internal and external) [80–82]
(Figure 17). The internal parameters are the cost function, block size, size of the region of
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interest, and interpolating function. The external ones are camera resolution, illumination,
stochastic pattern, acquisition frequency, and lens distortion. It is also important to properly
select the software that will be used to obtain the results. They must be accurate and reliable
and not require mandatory technical knowledge about their handling [79].

One of the methods adopted in digital imaging is “block correspondence”. This allows
only translations of the block from one image to another [51,78–80]. Considering that the
object can suffer tensions, cuts, tractions, and rotations, it is possible that the block can
assume another form, thus not leading to incorrect correspondences [51,80].

The software used for DIC can present several features that can assist in the identifica-
tion of large strains. Their analysis speed and the presentation of results can be made in
color scales while pointing out possible distortions [78–81].

Therefore, the digital image correlation method has the advantage of being able to
continuously evaluate stress distributions through the images resulting from the passage of
time [51,78–80]. Both methods (PA and DIC) must obtain the model composed of different
materials to serve as a reference and with the same purposes, to analyze the stresses on the
implants, their biomechanical behavior, the mismatches, and strains of the object [51,78–82].

5. Discussion

In recent years, research in dentistry has been growing, this can be noted by the increase
in the number of publications on the properties of dental materials and their techniques of
use in different databases [83]. However, the difficulty of producing laboratory tests with
relevant information can make theories unfeasible to present scientific validity [83]. In this
sense, the wide use of computational methodologies is due to their high efficiency and low
investment for their realization, since clinical or laboratory methodologies have their use
limited by non-destructive means [84].

The three-dimensional models, used for such methodology, allow its simplification,
which can generate unreliable data. Such inaccuracies are reflected in scientific production,
when this information is used by other studies, generating also inaccurate results that, when
used by the scientific community, produce a cascade of errors and data with questionable
validity [5,6,83]. This fact has been observed in the studies of the mechanical properties
of dental materials and biological structures, particularly affecting the results obtained
through the FEA, SGA, PA, and DIC, which apply the elastic properties of materials
obtained in the literature [11,13,76,82,83,85]. The way to assess the accuracy of these
methodologies is to associate more than one experiment and verify the compatibility of
their results. The compatibility values are essential to demonstrate behavior as close as
possible to the real [83].

The studies that used the finite element analysis generally present tables with the values
for the elastic modulus of the materials used [11,13,23,83–87]. The tracking of the cited
references reveals the inconsistency of the information. The issue of the system of units is a
problem in the literature, since the results are provided in different systems and units within
each system, which makes it difficult to compare studies, and often generates erroneous
transformations and error overlaps in bibliographic citations and numerical studies [83].
Especially when using SGA and PA, this type of analysis has a limitation when used for
in vivo studies in which bone conditions are simulated [11,13,51,55,56,66,73,83,88,89]. It is
worth mentioning that it is not possible to obtain accurate identification of the load that
will be transmitted through the crown to the implant and consecutively to the bone, due to
the non-fixation of the devices on the surface of the crown or implant, which may result in
values lower than those established by literature [83,90,91].

When comparing the main methods of biomechanical analysis (FEA, SGA, PA, and
DIC), in implants with conical connections, the authors noticed that there was a similarity
in the data collected in terms of qualitative factors, however, there were differences between
the methods, when evaluated on an aspect of quantification [51,55,56,65,66,73–83,92–95].

In this context, it can be noted that the FEA is validated by the SGA or PA, since
this method assesses the stress transferred from one body to the other, thereby causing
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a stress distribution [83,96]. Studies show that both methods showed similar results,
which may indicate the places with the highest stress concentration [83,97]. However,
the FEA and PA were less sensitive than other methods of measuring stresses and are
not restricted only to the polarization of translucent materials [76,83,98]. FEA is also less
sensitive to environmental vibrations than the SGA, PA, and DIC [83]. In addition, the
FEA can detect the movement of a body and simultaneously measure in three dimensions
(mm to µm) [83,98–100].

However, there can be several failures in the validation of theoretical models, among
them, errors in the measurements of laboratory tests, too much simplification of three-
dimensional models, and areas of non-coincident loading between theoretical and labora-
tory models. This means that when there is a discrepancy between the results presented by
the methodologies adopted the lack of compatibility and the existence of an imprecise theo-
retical model are evident [55]. Therefore, theoretical models can be considered validated
when the failure criterion adopted is similar in approximately 10% of the results found in
laboratory tests [23].

Among the limitations of theoretical simulations and laboratory tests, we can mention
the absence of factors inherent to the complexity existing in the oral cavity, among them,
the variation of humidity, temperature, and pH. We can also mention the use of homo-
geneous structures in three-dimensional models, which do not allow internal defects in
their geometries. However, these limitations do not invalidate the results presented in
well-designed studies but suggest caution in their interpretation and the need to associate
the data presented with others available in the literature.

6. Conclusions

Despite the great variability of the sample used in this study, modern dentistry finds
finite element analysis, strain gauge analysis, photoelastic analysis, and digital image
correlation a way to analyze the biomechanical behavior in dental materials to obtain
results that assist to obtain rehabilitation with favorable prognosis and patient satisfaction.
In addition, the combination of two or more methods provides a more accurate description
of the material’s behavior, avoiding limitations caused by the use of a single analysis
method. However, further studies are needed to better understand the subject addressed in
this study.
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