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Abstract: Physical activity (PA) at recommended levels contributes to the prevention of non-
communicable diseases, such as atherosclerotic cardiovascular disease (asCVD) and type 2 diabetes
mellitus (T2DM). Since the composition of the gut microbiota is strongly intertwined with dietary
intake, the specific effect of exercise on the gut microbiota is not known. Moreover, multiple other
factors, such as ethnicity, influence the composition of the gut microbiota, and this may be derived by
distinct diet as well as PA patterns. Here we aim to untangle the associations between PA and the gut
microbiota in a sample (n = 1334) from the Healthy Life In an Urban Setting (HELIUS) multi-ethnic
cohort. The associations of different food groups and gut microbiota were also analyzed. PA was
monitored using subjective (n = 1309) and objective (n = 162) methods, and dietary intake was
assessed with ethnic-specific food frequency questionnaire (FFQ). The gut microbiota was profiled
using 16S rRNA gene amplicon sequencing, and the functional composition was generated with the
Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt2).
Associations were assessed using multivariable and machine learning models. In this cohort, a
distinct gut microbiota composition was associated with meeting the Dutch PA norm as well as with
dietary intake, e.g., grains. PA related parameters such as muscle strength and calf circumference
correlated with gut microbiota diversity. Furthermore, gut microbial functionality differed between
active and sedentary groups. Differential representation of ethnicities in active and sedentary groups
in both monitor methods hampered the detection of ethnic-specific effects. In conclusion, both PA and
dietary intake were associated with gut microbiota composition in our multi-ethnic cohort. Future
studies should further elucidate the role of ethnicity and diet in this association.

Keywords: the HELIUS study; gut microbiota; physical activity; diet; muscle strength; calf circumfer-
ence; creatinine; creatinine kinase; cross-sectional; multi-ethnic population

1. Introduction

Urbanization and associated behavioral changes have led to humans being physically
less active [1,2]. Insufficient physical activity (PA), defined as less than 150 min of moderate
aerobic activity or 75 min of vigorous aerobic activity throughout the week, characterizes
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a lifestyle of approximately 28% of the adult population worldwide [2,3]. Notably, less
PA contributes to a multitude of diseases, such as atherosclerotic cardiovascular disease
(asCVD) and type 2 diabetes mellitus (T2DM), and hence, contributes to overall morbidity
and mortality [4–8].

Although PA is critical in the prevention and treatment of non-communicable diseases,
such as asCVD and T2DM [9–11], many other factors have also been shown to contribute
to the development of these diseases, e.g., the composition of the gut microbiota [12–15].
Dietary habits have the greatest impact on gut microbiota composition [16,17]. Recent find-
ings, however, indicate that exercise independently modulates the gut microbiota and gut
microbial metabolism [18]. Exercise changes the composition of the gut microbiota, although
the direction is still controversial since increased [19–22] as well as decreased [23,24] gut
microbiota diversity has been associated with exercise. The intensity of exercise may be an
important factor explaining the effect on the gut microbiota [25]. This may be partly due
to the direct influence on the gastrointestinal track, i.e., gut permeability. There are also
indications that the composition of the gut microbiota in athletes is associated with gut
microbial metabolism and proxies of exercise, such as plasma creatinine kinase (CK) [18].
Consequently, different PA levels, moderate vs. vigorous, might also convey differential
effects on the composition of the gut microbiota [13].

Thus far, most studies have focused on the extremes (professional athletes or patients
with comorbidities) and there is a lack of crucial information on dietary intake and other
confounders, such as age, gender and ethnicity. Different PA levels are reported in boys
and girls [26], and PA preferences might change during aging [27]. Ethnicity is also of
importance because ethnicity has been associated with different PA levels [28], dietary
intake [29] and gut microbiota composition [30] as well as with differences in the risk for
asCVD and T2DM [31,32]. A paucity of studies exist on the influence of PA on the gut
microbiome on a population level and its generalizability across different populations.

Therefore, we set out to study the associations between PA, dietary intake and gut
microbiota composition in a cross-sectional population-based cohort involving different
ethnic groups. We used the Healthy Life In an Urban Setting (HELIUS) cohort that focusses
on health and disease in population with different ethnic backgrounds in Amsterdam, The
Netherlands [29,30]. We aimed to investigate whether subjectively and objectively moni-
tored PA and/or dietary intake associate with gut microbiota composition and functionality.

2. Results
2.1. Characterization of the Study Population by Physical Activity Level

Characteristics of the included complete study population (n = 1334) and groups
stratified by the subjective monitor (Short Questionnaire to Assess Health-enhancing
physical activity (SQUASH), n = 1309, sedentary n = 441, active n = 868) and by the
objective monitor (ActiHeart, n = 162, sedentary n = 100, active n = 62) are presented
in Table 1. The subjective monitor data show that 66% of the study population meets
the Dutch PA guideline targets. The active participants were older than the sedentary
(53.4 ± 10.5 vs. 49.0 ± 10.5 years of age, t(1307) = −7.138, p < 0.001), had a lower body
mass index (BMI) (26.7 ± 4.5 vs. 28.0 ± 5.2 kg/m2, t(772,552) = 4.605, p < 0.001) and
relative fat mass (30.0 ± 9.1 vs. 31.7 ± 9.5%, t(1307) = 3.171, p = 0.002), as well as smaller
waist circumference (93.3 ± 11.7 vs. 95.3 ± 13.6 cm, t(779,811) = 2.591, p = 0.007). The
active participants had a higher maximum muscle strength than the sedentary participants
(212.3 ± 76.6 vs. 201.0 ± 77.8 N, t(1281) = −2.493, p = 0.001), as well as higher creatinine
levels (73 µmol/L [95% CI 72.7–76.5] vs. 75 µmol/L [95% CI 75.1–77.2], Mann–Whitney
U = 208,719, p = 0.007). In regard to ethnicity, individuals of European descent were
relatively overrepresented in the active group while other ethnicities were more frequently
represented in a sedentary group, except Moroccans. Only waist-to-hip-ratio (WHR) was
significantly lower in the active group compared to the sedentary group, when stratified
by objective monitoring of the physical activity levels (PAL) (0.91 ± 0.1 vs. 0.93 ± 0.1,
t(159) = 2.133, p = 0.034).
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Table 1. Characterization of the study population by the adherence to the Dutch physical activity (PA) guideline based on the Short Questionnaire to Assess Health-enhancing physical
activity (SQUASH), and by PA level based on ActiHeart. Chi-Square for categorical variables, t-test for parametric variables and non-parametric Mann–Whitney test were used for
statistical testing to compare the active vs. sedentary group. Data are expressed as means ± SD, absolute numbers with percentages or medians with 95% CI.

Complete SQUASH: Subjective Monitoring ActiHeart: Objective Monitoring
Complete Sedentary Active p-Value Complete Sedentary Active p-Value

n 1334 1309 441 868 162 100 62
Age 51.0 ± 10.8 51.9 ± 10.7 49.0 ± 10.5 53.4 ± 10.5 <0.001 51.1 ± 7.4 51.8 ± 6.5 50.0 ± 8.5 0.125
Seks (n, %)

Men 647 (48.5) 633 (48.4) 203 (46.0) 431 (49.1) 0.187 76 (46.9) 47 (47.0) 29 (46.8) 0.975
Women 687 (51.5) 673 (51.4) 238 (54.0) 435 (50.9) 0.187 86 (53.1) 53 (53.0) 33 (53.2) 0.975

Ethnicity (n, %)
AS 170 (12.7) 166 (12.7) 75 (17.0) 91 (10.5) 0.001 13 (8.0) 6 (6.0) 7 (11.3) 0.250
SAS 99 (7.4) 92 (7.0) 46 (10.4) 46 (5.3) 0.001 11 (6.8) 5 (5.0) 6 (9.7) 0.228
Maroccan 346 (25.9) 344 (26.3) 110 (24.9) 234 (27.0) 0.434 43 (26.5) 28 (28.0) 15 (24.2) 0.597
Turkish 286 (21.4) 281 (21.5) 109 (24.7) 172 (19.8) 0.041 32 (19.8) 22 (22.0) 10 (6.2) 0.362
Dutch origin 434 (32.5) 426 (32.5) 101 (22.9) 325 (37.4) <0.001 63 (38.9) 39 (39.0) 24 (38.7) 0.971

Weight (kg) 77.4 ± 15.0 77.4 ± 14.9 79.4 ± 16.5 76.4 ± 14.0 0.001 76.7 ± 14.9 76.8 ± 15.0 76.7 ± 14.9 0.971
BMI (kg/m2) 27.1 ± 4.8 27.3 ± 4.8 28.0 ± 5.2 26.7 ± 4.5 <0.001 26.5 ± 4.6 26.6 ± 4.7 26.2 ± 4.4 0.577
Fat mass (%) 30.6 ± 9.2 30.6 ± 9.3 31.7 ± 9.5 30.0 ± 9.1 0.002 30.9 ± 7.8 31.4 ± 7.9 30.1 ± 7.6 0.314
WC (cm) 94.0 ± 12.4 94.0 ± 12.4 95.3 ± 13.6 93.3 ± 11.7 0.007 93.1 ± 11.5 93.9 ± 10.8 91.7 ± 12.5 0.235
WHR 0.92 ± 0.1 1.00 ± 2.1 0.91 ± 0.1 0.98 ± 1.7 0.292 0.92 ± 0.1 0.93 ± 0.1 0.91 ± 0.1 0.034
TC (cm) 58.8 ± 10.3 58.9 ± 10.4 59.8 ± 10.2 58.4 ± 10.4 0.022 58.2 ± 9.8 58.0 ± 8.4 58.6 ± 11.8 0.733
CC (cm) 37.5 ± 3.4 37.5 ± 3.4 37.9 ± 3.9 37.3 ± 3.2 0.001 37.6 ± 3.4 37.9 ± 3.6 37.2 ± 3.1 0.233
Muscle strength (N) 208.6 ± 76.9 208.5 ± 76.9 201.0 ± 77.8 212.3 ± 76.2 0.013 209.5 ± 69.1 208.0 ± 70.0 211.7 ± 68.3 0.745
Creatinine (µmol/L) 74 (74.6–76.5) 74 (74.7–76.6) 73 (72.7–76.5) 75 (75.1–77.2) 0.007 * 74.0 (72.6–77.4) 76.8 (71.1–76.7) 72.5 (72.4–81.2) 0.642 *
CK (µmol/L) 119 (146.7–161.9) 120 (147.2–162.7) 112 (141.1–175.7) 123 (145.5–160.9) 0.141 * 123.5 (132.8–167.0) 117.0 (122.0–159.6) 134.0 (131.2–197.9) 0.305 *

AS, African Surinamese; BMI, body mass index; CC, calf circumference; CK, creatinine kinase; N, newton; SAS, South-Asian Surinamese; TC, thigh circumference; WC, waist circumference; WHR, waist-to-hip-ratio.
* Non-parametric Mann Whitney U test.
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2.2. Dietary Intake in Relation to Physical Activity

The summarized data on dietary intake retrieved from the ethnic-specific semi quanti-
tative food frequency questionnaires (FFQ) did not show significant differences between
participants in the active group compared to those in the sedentary group, apart from a
slightly higher daily intake of dietary fiber and alcohol consumption in the active group
(Table 2). When taking total daily energy intake into consideration, the significance of the
increased fiber intake by the active group disappears (2.7 ± 0.7 vs. 2.6 ± 0.7 g/MJ, t(1307) =
−0.884, p = 0.38). When stratifying alcohol consumption by gender, we saw a significantly
higher consumption in men than in women (2.9 ± 6.2 vs. 1.7 ± 3.5 g/d, t(1051,566) = 6.644,
p < 0.001). On the other hand, when analyzing the dietary data in a more detailed manner
by food groups, we saw a significantly higher consumption of fruits, mixed foods, dairy
and non-alcoholic beverages in the active group compared to the sedentary group after
correction for multiple testing (Figure 1A,B, Supplementary Figure S2, Wilcoxon test with
Benjamini–Hochberg p-value adjustment).

Table 2. Total daily dietary intake of macronutrients and energy, and daily alcohol consumption and fiber intake in the
study population stratified by the adherence to the Dutch physical activity (PA) guideline. Data are expressed as means ±
SD. T-test was used for statistical testing to compare the active group vs. sedentary group.

Overall (n = 1309) Sedentary (n = 441) Active (n = 868) p-Value

Energy (kcal/d) 2280.5 ± 975.3 2211.9 ± 926.0 2317.2 ± 996.2 0.056
Carbohydrates (E-%) 45.0 ± 9.4 45.2 ± 7.8 44.7 ± 8.3 0.414

Protein (E-%) 16.4 ± 4.7 16.5 ± 3.1 16.2 ± 3.3 0.917
Fat (E-%) 32.0 ± 8.5 31.3 ± 6.3 31.7 ± 6.5 0.912
SFA (E-%) 11.0 ± 6.4 10.8 ± 2.9 10.8 ± 3.2 0.503

MUFA (E-%) 12.6 ± 4.3 12.6 ± 3.2 12.5 ± 3.3 0.925
PUFA (E-%) 7.8 ± 4.0 7.4 ± 2.3 7.7 ± 2.3 0.343

Alcohol (g/d) 7.1 ± 13.0 5.0 ± 11.1 8.1 ± 13.8 <0.001
Fiber (g/d) 24.7 ± 10.7 23.5 ± 9.6 25.1 ± 10.7 0.006

E-%, energy intake expressed as energy percentage of total energy; g/d, grams per day; kcal/d, kilocalories per day; MUFA, monounsatu-
rated fatty acids; PUFA, polyunsaturated fatty acids; SFA, saturated fatty acids.
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Figure 1. Food groups and beverages consumed by the study population stratified by the adherence to the Dutch physical
activity (PA) guideline (sedentary group, n = 441; active group, n = 868) based on the Short Questionnaire to Assess
Health-enhancing physical activity (SQUASH): (a) Stack bar of the food groups including Meat, poultry, fish and mixtures
(red, organic and processed meat; chicken; fatty and lean fish; molluscs); vegetarian products (vegetarian products; meat
and dairy substitutes); eggs; fats and salad dressings (margarine, butter, olive and other oils; salad dressings; red sauces;
mayonnaise and similar sauces); dairy (low- and high-fat cheese and dairy products); fruit (fruits; avocado; olives); nuts and
seeds; vegetables (vegetables; legumes; potatoes and tubers); grains (miscellaneous foods; low- and high fiber grains, rice
and pasta); sweets and savory (savory snacks; cakes and cookies; sugar, sweets and sweet sauces; chocolate sweets); mixed
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foods (savory bread spreads; fast foods; soups; ethnic-specific foods); (b) Stack bar of the beverages including alcoholic and
non-alcoholic beverages (coffee and tea; fruit juices; sugar sweetened beverages; light beverages) stratified by the activity
groups (sedentary group, n = 441; active group, n = 868). Wilcoxon test was used as statistical test, p-values were corrected
with Benjamini–Hochberg. * p < 0.05, active group vs. sedentary group.

2.3. Physical Activity Associates with Gut Microbiata Composition

To study the interaction between PA, dietary intake and gut microbiota composition,
we analyzed the β-diversity with a permutational analysis of variance (PERMANOVA),
that indicates differences in microbial communities between individuals using both non-
phylogenetic (Bray–Curtis) and phylogenetic (unweighted UniFrac and weighted UniFrac)
dissimilarities. In a model adjusting for age, sex, BMI and ethnicity, the dissimilarity
metrics Bray–Curtis (p = 0.012, R2 = 0.14%) and weighted UniFrac (p = 0.047, R2 = 0.17%)
(which take microbial abundances into account) were significantly different between the
sedentary and active groups, indicating a PA-driven association. The PA groups had differ-
ent phyologenetic dissimilarity metrics (unweighted UniFrac, p = 0.027, R2 = 0.12%) in a
model without any covariates. However, when adding the above mentioned covariates,
this did not remain significant (p = 0.136, R2 = 0.09%) (Figure 2). In a more extensive model,
adjusting for age, sex, BMI, ethnicity and diet covariates (fiber, energy and macronutrient
intake), Bray–Curtis dissimilarity index (p = 0.022, R2 = 0.13%) and weighted UniFrac
(p = 0.039, R2 = 0.16%) remained significant (details in Supplementary Table S1). The Shan-
non index diversity (p = 0.042, W statistic = 178,220, medians: sedentary group (4.227908),
active group (4.298703), Faith’s phylogenetic diversity (p = 0.023, W statistic = 176,686,
medians: sedentary group [30.83036], active group [31.84741]), and richness (number of
species in a sample) (p = 0.032, W statistic = 177,526, medians: sedentary group [567.5],
active group [580.5]) were higher in the active group compared to the sedentary group.
These measures lost significance when adjusting for the following covariates: age, sex,
BMI, and ethnicity (Figure 3A,B). The Simpson index showed the opposite, it was signif-
icant when adjusting for covariates (p = 0.096, W statistic = 180,626, covariate adjusted
p = 0.002, W statistic = 171,050). Detailed analyses revealed that the relative abundance
of 173 gut microbial taxa differed significantly (adjusted with covariates age, sex, BMI,
ethnicity and diet) between the participants stratified by PA, indicating a PA-driven asso-
ciation (Supplementary Table S2). The abundance of members of Firmicutes, including
Lachnospiraceae and Veillonella, were significantly higher in the active group whereas Enter-
obacteriales Enterobacteriaceae, Escherichia/Shigella and Klebsiella belonging to the phylum of
Proteobacteria were more abundant in the sedentary group. Members from the phylum of
Bacteroidetes, such as Prevotella_2, and members from the phylum of Firmicutes, such as
Roseburia hominis, Erysipelatoclostridium and Lachnoclostridium, were also more abundant in
the sedentary group.
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Figure 3. α-diversity of the gut microbiota of the study population categorized by adherence to the Dutch physical activity
(PA) guideline (red dots, sedentary participants, n = 440 (one participant with missing value for BMI was excluded); blue
dots, active participants, n = 868) based on the Short Questionnaire to Assess Health-enhancing physical activity (SQUASH):
(a) Shannon index α-diversity (p = 0.042, covariate adjusted p = 0.3); (b) Richness (p = 0.032, covariate adjusted p = 0.9).
Wilcoxon test was used as a statistical test to compare active group vs. sedentary group. Covariates used: ethnicity, age, sex
and body mass index (BMI).
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2.4. The Gut Microbiome Predicts Subjectively and Objectively Monitored Physical Activity—A
Machine Learning Model

To investigate whether the gut microbiota can predict PA monitored by either subjec-
tive or objective methods, we employed a machine learning model. The model built on gut
microbiota abundance was able to predict the objective monitoring (ActiHeart, n = 162)
and the subjective monitoring (SQUASH, n = 1309), with an area under the curve (AUC)
of 0.81 ± 0.08 and 0.69 ± 0.02, respectively (Figure 4A,B). Accordingly, gut microbiota
abundance was able to predict objective monitoring without participants with antibiotic
use (AUC 0.74 ± 0.08, n = 151) (Supplementary Figure S3). Irrespective of the type of mon-
itoring, the most predictive bacterial taxa belong to phylum of Firmicutes, Bacteroidetes,
Proteobacteria, Actinobacteria and Lentisphaerae. Specifically, Blautia and Lachnospiraceae,
both members from the phylum Firmicutes belonging to the family of Lachnospiraceae, were
predictive by both monitoring methods.
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2.5. Parameters Related to Physical Fitness Associate with Variance of the Gut Microbiome

Since the active and the sedentary participants differed with respect to physical
parameters such as calf circumference, muscle strength and creatinine (see Table 1), we next
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investigated whether these PA-related parameters were associated with gut microbiota
composition (Table 3). As estimated by linear regression, approximately 18% of the variance
in richness (p = 0.038) and the inverse Simpson index (p = 0.030) were explained by muscle
strength in a model adjusted for ethnicity, age, sex, BMI and diet (energy, macronutrients
and fiber). Calf circumference explained approximately 18% of the variance in richness
(p = 0.005), 20% of the variance in Shannon index (p = 0.021) and 25% of the variance in
Faith’s phylogenetic diversity (p = 0.004) in the model with ethnicity, age, BMI, sex and
diet, but also in the model without dietary adjustment, indicating association independent
of diet. Finally, approximately 18% of the variance in richness, 25% of variance in Faith’s
phylogenetic diversity, 11% of variance in the Simpson index and 18% of variance in
the inverse Simpson index were explained by creatinine in the covariate adjusted model
(including covariates ethnicity, age, sex, BMI and diet). Moreover, PA-related parameters
correlated (Spearman) significantly with multiple different taxa (Supplementary Table S3).

Table 3. The associations between parameters related to physical activity (PA) (muscle strength, calf circumference (CC),
thigh circumference (TC), creatinine and creatinine kinase (CK)) and gut microbiota composition (richness, α-diversity
Shannon index, Faith’s phylogenetic diversity, Simpson index and inverse Simpson index) by multivariable linear regression
models. Model 1 adjusted for ethnicity, sex, age, body mass index (BMI), 8 degrees of freedom (df); Model 2 = Model 1 plus
diet (energy, macronutrients, and fiber), 13 df. N = 1308.

Muscle Strength CC TC Creatinine CK

Richness

Model 1 R2 0.251 0.171 0.166 0.171 0.169
R2 adj. 0.244 0.166 0.160 0.166 0.164

β 0.121 5.322 0.282 0.679 0.046
p-value 0.119 0.005 0.525 0.016 0.128

Model 2 R2 0.185 0.186 0.181 0.185 0.183
R2 adj. 0.178 0.179 0.174 0.178 0.176

β 0.154 5.106 0.216 0.682 0.040
p-value 0.038 0.005 0.609 0.012 0.174

Shannon index

Model 1 R2 0.207 0.209 0.207 0.213 0.205
R2 adj. 0.202 0.204 0.202 0.208 0.200

β 0.000 0.016 0.003 0.003 0.000
p-value 0.087 0.010 0.044 0.000 0.504

Model 2 R2 0.227 0.227 0.225 0.002 0.224
R2 adj. 0.220 0.220 0.218 0.001 0.217

β 0.000 0.013 0.002 0.003 0.000
p-value 0.079 0.021 0.071 0.000 0.512

Faith’s
phylogenetic

diversity

Model 1 R2 0.237 0.241 0.237 0.243 0.236
R2 adj. 0.232 0.236 0.232 0.239 0.231

β 0.004 0.249 0.030 0.046 0.000
p-value 0.235 0.004 0.141 0.000 0.727

Model 2 R2 0.253 0.255 0.251 0.257 0.251
R2 adj. 0.246 0.248 0.244 0.250 0.244

β 0.005 0.236 0.025 0.044 0.001
p-value 0.139 0.004 0.197 0.000 0.707

Simpson index

Model 1 R2 0.098 0.098 0.098 0.102 0.097
R2 adj. 0.093 0.092 0.093 0.097 0.091

β 0.000 0.001 0.000 0.000 0.000
p-value 0.660 0.244 0.085 0.006 0.832

Model 2 R2 0.104 0.103 0.103 0.106 0.102
R2 adj. 0.095 0.095 0.095 0.098 0.094

β 0.000 0.000 0.000 0.000 0.000
p-value 0.719 0.322 0.119 0.018 0.835
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Table 3. Cont.

Muscle Strength CC TC Creatinine CK

Inverse
Simpson index

Model 1 R2 0.180 0.180 0.179 0.184 0.177
R2 adj. 0.175 0.175 0.174 0.179 0.172

β 0.017 0.457 0.107 0.106 0.002
p-value 0.039 0.026 0.026 0.000 0.517

Model 2 R2 0.188 0.187 0.186 0.191 0.185
R2 adj. 0.181 0.179 0.179 0.184 0.177

β 0.017 0.364 0.093 0.101 0.002
p-value 0.030 0.062 0.040 0.001 0.561

CC, calf circumference; CK, creatinine kinase; TC, thigh circumference.

2.6. Functionality of the Gut Microbiome in Relation to Physical Activity and Related Parameters

Due to the differences in the gut microbiota composition between the PA levels, and
the PA-related parameters associated with gut microbiota composition (see Table 3, Supple-
mentary Table S3), we analyzed taxonomically-linked metabolic pathways from the gut mi-
crobiome data by using the Phylogenetic Investigation of Communities by Reconstruction
of Unobserved States (PICRUSt2) [33]. Stratified by PA levels based on SQUASH, and after
adjusting for ethnicity, BMI, age and sex and upon correcting for multiple testing, 31 mi-
crobial metabolic pathways differed between the groups; when adding diet as a covariate,
23 were significant (FDR-p < 0.05) (Figure 5, Wilcoxon test of residuals after adjusting for
covariates with linear regression. Details in Supplementary Table S4). The active group was
inferred to have lower abundance of pathways related to microbial arginine metabolism
(L-arginine degradation II [AST pathway], superpathway of L-arginine, putrescine, and
4-aminobutanoate degradation [ARGDEG pathway], superpathway of L-arginine and
L-ornithine degradation [ORNARGDEG pathway], superpathway of L-ornithine degra-
dation [ORNDEG pathway]). Specific taxa, such as Enterobacteriales and Enterobacteriaceae,
correlated significantly with these arginine pathways (r = 0.99, FDR-p < 0.001), as well as
Escherichia/Shigella (r = 0.86, FDR-p < 0.001), Klebsiella (r = 0.50, FDR-p < 0.001), Proteobacte-
ria (r = 0.34, FDR-p < 0.001) and Veillonella (r = 0.18, FDR-p < 0.001). These taxa, apart from
Veillonella, were more abundant in the sedentary group than in the active group (see Sup-
plementary Table S1). Furthermore, the AST pathway (r = −0.10, FDR-p = 0.000), ARGDEG
pathway (r = −0.13, FDR-p = 0.000), ORNARGDEG pathway (r = −0.13, FDR-p = 0.000),
and ORNDEG pathway (r = −0.13, FDR-p = 0.000) correlated negatively with CK, which
in turn correlated negatively with taxa such as Enterobacteriales, Enterobacteriaceae, Es-
cherichia/Shigella and Klebsiella (Supplementary Table S5). Pathways related to carboxylate
degradation (D-galactarate degradation I (GALACTARDEG pathway), and the superpath-
way of D-glucarate and D-galactarate degradation (GLUCARGALACTSUPER pathway))
were lower in the active group compared to the sedentary group. These pathways cor-
related positively with members of the Bacteroides geus (r = 0.51, FDR-p < 0.001). Muscle
strength was another PA-related parameter, which correlated negatively with carboxylate
degradation pathways (r = −0.091, FDR-p = 0.015).
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2.7. Diet and Specific Food Groups Characterize the Composition of the Gut Microbiome

Dietary intake is one of the main drivers of gut microbiome composition [17]. There-
fore, we questioned how much of the differences in gut microbiome composition were
attributable to differences in dietary intake. We first explored the linear regression of
parameters of dietary intake with the microbial α-diversity measured by the Shannon
index. After adjusting for ethnicity, age, sex and BMI, the average intake of fat (E-%),
carbohydrates (E-%) and grains had the strongest association with the Shannon index
(Figure 6A). Specifically, foods including low-fiber (LF) rice and pasta, olive oil, vegetables,
other oils and salad dressings within these major food groups explained a large part of the
variance. Interestingly, when excluding ethnicity itself as a covariate, ethnic-specific foods,
such as roti and wine-leaves explain a large part of the variance, potentially indicating
how ethnic-specific foods come to act as a proxy for the effect of ethnicity on the Shannon
index (Figure 6B). Of note, the largest percentage of explained variance in the Shannon
index by any food, without adjusting for ethnicity, was approximately 10% (df = 4). When
adding ethnicity as a covariate, the explained variance increases to approximately 20%
(df = 8), suggesting that ethnicity had a rather strong effect on the analysis of food groups.
Next, we investigated if specific taxa correlated with the 13 major food groups and found
that different food groups show distinct correlations with different taxa (Supplementary
Table S6). Vegetarian products correlated significantly with 256 taxa including species
such as Akkermansia muciniphila (r = 0.31, FDR-p < 0.001). Grains correlated with 22 dif-
ferent taxa, while vegetables correlated (Spearman) significantly with five bacterial taxa,
including Clostridiales Lachnospiraceae (r = 0.10, FDR-p = 0.01) and Butyricicoccus (r = 0.09,
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FDR-p = 0.03). Food groups that also showed multiple significant correlations were fruits
(29 taxa); eggs (32 taxa); alcoholic beverages (89 taxa); meat, poultry and fish (30 taxa);
mixed foods (28 taxa); nuts and seeds (27 taxa); sweet and savory foods (16 taxa); and salad
dressings (3 taxa). The food group of non-alcoholic beverages correlated with only one
taxa and dairy products did not correlate with any taxa.
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Figure 6. Explained variance of Shannon α-diversity index (n = 1308) by the major 13 foods groups (including macronu-
trients, carbohydrate E-%, protein E-% and fat E-%) and 52 foods in multivariable linear regression: (a) model adjusted
for ethnicity, sex, age, and body mass index (BMI), 8 df; (b) model adjusted for sex, age, and BMI, 4 df. Significance level
colored with blue when FDR-p < 0.05, grey when FDR-p > 0.05. E-%, energy intake expressed as energy percentage of total
energy; HF cheese, high-fat cheese; HF dairy products, high-fat dairy products; HF grains, high-fiber grains; HF rice pasta,
high-fiber rice pasta; LF cheese, low-fat cheese; LF grains, low-fiber grains; LF dairy products, low-fat dairy products; LF
rice and pasta, low-fiber rice and pasta.

3. Discussion

In the present study, we performed a detailed exploration on the association between
fecal microbiota composition and PA, as well as dietary intake in the multi-ethnic HELIUS
cohort. We found that gut microbiota composition differs between participants adhering to
Dutch PA guidelines (active group) compared to the non-adhering (sedentary group). In
addition to this link between PA, PA-related parameters and gut microbiota composition,
the intake of specific dietary components, such as grains, was a strong factor explaining
the variance in the gut microbiota composition.

We have shown that PA is associated with differences in the gut microbial diversity,
and that the gut microbiota composition accurately predicts PA when measured objec-
tively or subjectively. Yet, the direction of the associations and the most important taxa
were similar in both methods. In other studies, it has been found that participants with
objectively monitored high PA level have different gut microbiota diversity compared
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to sedentary participants [34]. The same has been described for college students whose
activity was monitored by questionnaires [35], and several microbial taxa differed between
active and sedentary. In our cohort, Lachnospiraceae was associated with PA, as well as
Blautia belonging to the phylum of Firmicutes, with relative abundances being higher in
active participants [36]. Lachnospiraceae has previously been associated with vigorous PA
in the cohort of college students [35], and it has been associated together with higher
richness to increased cardiorespiratory fitness (oxygen consumption [VO2]), that is likely
to increase upon vigorous physical activity [37]. Lachnospiraceae has also been linked to
the production of short-chain fatty acids (SCFA) upon exercise; the concentrations of fecal
SCFA correlated positively with Lachnospiraceae in lean women upon an aerobic exercise
program [38]. Moreover, our pairwise comparison detected Veillonella to be more abundant
in participants adhering to the PA guideline, which is in line with recent findings that Veil-
lonella is responsible for catalyzing intestinal lactate into propionate (and acetate) thereby
improving the performance of athletes [21], and it also associates with vigorous physical
activity in another cohort [13].

In general, higher α-diversity and richness have been associated with greater metabolic
health and insulin sensitivity, which is in line with the results from our study; calf cir-
cumference associated with α-diversity and richness, and muscle strength associated with
richness [39]. Improved glucose homeostasis or increased muscle endurance induced by
exercise might be mediated via the gut microbiota, as seen in exercised conventional versus
gut microbiota-depleted mice [40]. Muscle strength has been associated with lower risk for
T2DM in the HELIUS cohort [41], and in other cohorts it was a positive predictor of survival
together with calf circumference [42,43], and associated with gut microbiota composition
in the elderly [44]. Beneficial metabolic effects of muscle strength can be partly due to the
gut microbial changes upon exercise, but well-controlled human studies with sufficient
sample size and metabolic outcomes (e.g., insulin sensitivity) are lacking. Some evidence
comes from translational in vivo mice work where a fecal microbial transplant (FMT) with
feces from high-functioning elderly individuals improved murine muscle strength while
feces from low-functioning elderly individuals did not improve body mass and exercise
endurance [45].

Consistent with previous studies, we found a positive association between plasma
creatinine and microbial richness as well as α-diversity [46]. Although CK was previously
associated with increased microbial diversity in rugby players, we did not find an asso-
ciation between gut microbiota and CK [18,22]. Interestingly, we did find an association
between CK and arginine and ornithine microbial pathways. These pathways had a strong
association with specific taxa such as Enterobacteriales Enterobacteriaceae, Eschericia/Shigella
and Klebsiella, which were more abundant in the sedentary participants compared to the
active participants. Hypothetically, PA might shape microbial metabolism to the needs of
the host, e.g., production of energy precursors while exercising [18,21]. Yet, there is a need
for more well-controlled intervention studies in different populations in order the conclude
the independent effect of PA in the modulation of the gut microbiota, and its subsequent
influence on metabolism.

Regarding the diet, we have shown that the intake of macronutrients was similar
between sedentary and active participants, but the consumption of various food groups
differed between the two groups. It has been reported that lifestyle behavior tends to
cluster; health-conscious people tend to eat a healthier diet and exercise more than peo-
ple with poorer lifestyle behavior, which further associates with disease prevalence [47].
Additionally, physically active individuals tend to have different dietary habits based on
the type of sports, i.e., bodybuilders have higher intake of protein and lower intake of
carbohydrate whereas runners show the opposite [48].

In our cohort, approximately 5% of the variance in the α-diversity Shannon index
could be explained by the intake of carbohydrates, especially grains. Often, the modulatory
impact of grains and carbohydrates on the gut microbiota is explained by fiber [49,50].
Fiber may influence the production of SCFA [51,52], which in turn has been associated with
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beneficial effects on a variety of metabolic and cardiovascular parameters, such as insulin
and blood pressure [53,54]. However, in our cohort, the intake of fiber did not explain a
significant part of the variance in Shannon index. Thus, the impact of foods on the Shannon
diversity may not solely be driven by the fiber from grains. In contrast to the effects of
fibers on the Shannon index, the intake of fat, especially oils rich in PUFA and MUFA,
largely explained α-diversity as shown in another cohort [55]. Previous studies already
showed that the total fat intake correlates with the Shannon index and richness where
saturated fatty acids associate negatively with richness, phylogenetic diversity and number
of observed taxa, while MUFA correlate negatively with number of taxa and phylogenetic
diversity, and PUFA associate negatively only with phylogenetic diversity [49]. It is likely
that food groups have the potential to explain the variation of the gut microbiota by
capturing the synergy of different components in foods [17], such as biologically active
compounds, e.g., phytochemicals and flavonoids in cereals [56,57] or chemical structures of
fats [49,58]. Yet, the composition of the food groups cannot be overlooked. It is likely that
some important associations were not identified since some specific foods were classified
to larger groups, e.g., the food group ‘meat, poultry and fish’ combines both processed and
unprocessed proteins of animal origin, though they may have distinct impacts on the gut
microbiota and health [59,60]. However, the categories were kept rather wide because of
the primary aim to identify associations between PA and gut microbiota. All in all, ours as
well as previous studies show that dietary intake greatly explains the variation in the gut
microbiota composition [14]. However, a healthy lifestyle includes both PA and healthy
foods, and both are likely to influence the gut microbiota composition.

The main strength of this study is its unique multi-ethnic population, which includes
participants from five different ethnic backgrounds living in the same geographical location.
Another strength is the sample size of our study, the overall sample being sufficient enough,
potentially one of the largest among studies investigating PA and its relationship to the gut
microbiome. A large sample size is preferable when investigating gut microbiota, diseases
and lifestyle [61]. However, in our cohort, the distribution of ethnicities between two PA
extremes was uneven; nearly 40% of participants meeting the recommended amount of PA
are of Dutch origin, influencing our analysis into the gut microbiome. We have previously
shown that the ethnic background influences the composition of the gut microbiota [30].
This may be derived by distinct eating [29] as well as PA patterns [31]. However, detailed
analyses comparing different ethnicities in relation to physical activity or diet were not
conducted in this study due to small sample size when stratifying per ethnicity. We tried
to overcome ethnic differences in dietary habits by using ethnic-specific FFQs, and by
adjusting the analyses for ethnicity, but the modulatory impact of exercise on the gut
microbiota is likely to be dependent on the population studied, their traditional diet and
the type of exercise they perform [13].

This study has major limitations. Firstly, the cross-sectional analysis precluded deriva-
tion of causality. Secondly, self-reported PA by the SQUASH in this study is susceptible to
reporting bias, and the correlation between objective and subjective PA are not as strong as
previously shown [62]. Furthermore, most of the participants who wore an ActiHeart were
of Dutch origin potentially influencing our analysis on the gut microbiota. Additionally,
cardiorespiratory fitness is not assessed in the HELIUS cohort, and thus, we are not able to
analyze this. Thirdly, 16S rRNA sequencing of the gut microbiome profiles the taxonomic
composition but does not allow for a direct assessment of the functional microbial pro-
files. This type of sequencing is less powerful in detecting biologically relevant taxa when
compared to shotgun metagenomics [63,64]. Moreover, there is no information recorded
whether the stool samples were frozen or fresh when received from the study participants.
This could potentially influence the results because the storage conditions of the stool
samples influence the microbiota profile of the samples [65].

In conclusion, PA was associated with a distinct composition of the gut microbiome
in a multiethnic population. The gut microbiota was also associated with the intake
of specific dietary elements, most notably grains, independent of ethnicity. PA-related
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parameters such as muscle strength, calf circumference and creatinine correlated with the
gut microbiota diversity. Furthermore, specific microbial pathways may be enriched in the
gut microbiota of participants with different levels of PA. Together, this calls for further
investigation of the influence of PA on the gut microbial composition and gut microbial
metabolism, in relation to diet.

4. Materials and Methods
4.1. Study Population

The HELIUS study comprises 24,789 adult individuals (18–70 years of age) randomly
sampled by ethnic origin from Amsterdam area in The Netherlands from 2011 to 2015 [32].
Participants were of Dutch, South-Asian Surinamese, African Surinamese, Ghanaian or
Turkish or Moroccan origin. After a positive response, participants received a confirmation
letter of the appointment for the physical examination, including a digital or paper version
of the questionnaire (depending on the preference of the subject). Participants who were
unable to complete the questionnaire themselves were offered assistance from a trained
ethnically-matched interviewer.

This cross-sectional study was conducted with a subsample of the HELIUS cohort,
namely including those of whom data on physical activity, dietary data and gut microbiota
composition were present. The subsample was divided into two sets: the participants with
subjective monitor data included 1309 participants (sedentary n = 441, active n = 868) who
had completed SQUASH, and who had not used antibiotics in the past three months before
the fecal sample (participants where this information was missing were also excluded from
this set); and the participants with objective monitoring data of 162 participants (sedentary
n = 100, active n = 62) who had worn an accelerometer (participants with antibiotic use
(n = 11, unknown n = 14) were included in this dataset).

4.2. Body Composition, Function, and Biochemistry

Anthropometrics, including weight, height, BMI, waist and hip circumference and
WHR, as well as calf and thigh circumferences were assessed in the study visit. Body com-
position was assessed by arm-to-leg bioelectrical impedance analysis (BIA) that measures
impedance, resistance, and reactance in Ohm at 50 Hz (Bodystat 1500 analyzer, Bodystat
Ltd., Isle of Man, Cronkbourne, Douglas, UK). Plasma creatinine and CK levels were deter-
mined from fasting venous blood samples using standard laboratory techniques. Muscle
strength was measured as handgrip strength with the Citec handheld dynamometer (CIT
Technics, Haren, The Netherlands). The average of the two highest measurements in
Newton (N) from both hands within one minute intervals was used for the final value as
previously described [41].

4.3. Physical Activity
4.3.1. Subjective Physical Activity Monitor

PA was monitored by the SQUASH, which was developed by the Dutch National
Institute of Public Health and the Environment (RIVM) [66]. It assesses self-reported daily
activities, including commuting in leisure, household and occupation time (i.e., walking
and cycling) as well as other exercise habits (i.e., gardening and swimming); it also indicates
whether PA was in accordance with the Dutch PA guideline. Self-reported activities per day
were converted to minutes per week (min/week). If weekly PA was more than 30 min per
session and it was carried out at least five days per week (in total of 150 min/week), it was
considered to meet the Dutch PA guidelines, which is in accordance with the international
PA guideline of the World Health Organization (WHO) for a general population [3,67].

4.3.2. Objective Physical Activity Monitor

Participants in a subsample of the population (n = 162) wore a validated accelerometer
with electrocardiography (ECG) electrodes (ActiHeart, CamNtech Ltd., Papworth, UK) [68]
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to objectively monitor PAL for four consecutive days. In this study, PA is considered
sedentary when PAL is below or equal 1.69 and active when PAL is above or equal 1.70.

4.4. Dietary Intake and Food Groups

Information on dietary intake was derived from FFQs [69] Specifically, the daily
average intake of energy (kilocalories per day (kcal/d)), macronutrients and fatty acids
(energy percentages (E-%)) and dietary fiber (grams per day [g/d]; fiber per energy intake
(g/MJ) was calculated by transforming kcal to MJ and dividing fiber intake with MJ) were
retrieved. Additionally, the FFQ included approximately 200 food items classified into
52 food groups based on similarity in nutrient profile or culinary according to the Dutch
food composition database (NEVO) constructed by the RIVM. These 52 foods were further
classified into 13 different food groups (Supplementary Figure S1).

4.5. Fecal Gut Microbiome Composition and Functionality

Stool samples were received by members of the study staff in the morning of a physical
examination within six hours after the collection, or the next morning after the physical
examination [30]. In the latter case, participants were asked to store the stool sample in their
freezer until bringing it to the research location. There is no information available whether
samples were received fresh or frozen. Stool samples were transported daily to −80 degree
freezers at the Academic Medical Center (AMC) for storage from a temporary storage of
−20 degrees at the Academic Medical Center (AMC) for storage from a temporary storage
of −20 degrees at the research location.

4.5.1. Profiling of Fecal Microbiota Composition

Library preparation and sequencing of the gut microbiota was performed at the
Wallenberg Laboratory (Sahlgrenska Academy, the University of Gothenburg, Sweden).
For this, total genomic DNA was extracted from a 150 mg fecal sample aliquot using
a repeated bead beating method as previously described [30]. In order to profile the
composition of fecal microbiota, the V4 region of the 16S rRNA gene were sequenced
on a MiSeq system (RTA v. 1.17.28, bundled with MCS v. 2.5; Illumina, San Diego, CA,
USA) with 515F and 806R primers (2 × 250 bp paired-end reads). Amplification of 16S
rRNA genes were done in duplicate reactions with a reaction mixture containing 1 × Five
Prime Hot Master Mix (5PRIME GmbH), total of 400 nM of reverse and forward primers,
0.4 mg/mL bovine serum albumin (BSA), 5% dimethylsulfoxide, and 20 ng of genomic
DNA (total volume of 25 µL). PCR steps were run as presented in Table 4. Combined
duplicates were purified (NucleoSpin Gel, PCR Clean-Up kit, Macherey-Nagel, Düren,
Germany), and quantified (Quant-iT PicoGreen dsDNA kit, Invitrogen, Waltham, MA,
USA). Purified PCR products were diluted to 10 ng/µL and pooled in equal amounts,
and to remove short amplicons, those were purified again (Ampure magnetic purification
beads, Agencourt, Beverly, MA, USA). The absence of detectable PCR products in negative
controls was confirmed with gel electrophoresis. The protocol used to analyze the samples
was optimized using mock samples; and thus, there were no positive controls. Libraries
for sequencing were prepared by mixing the pooled amplicons with PhiX control DNA
(Illumina) resulting in a concentration of 3 pM input DNA (15% PhiX). It generated around
700 K clusters/mm2. Quality score was over 30 in 70% of the bases. Analytical procedures
were blinded (non-randomized) for ethnicity.
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Table 4. The PCR cycle steps, durations and temperatures of the runs.

PCR Cycle Step Temperature (◦C) Time (min:sec)

Initial denaturation 94 47:00
Denaturation 94 00:47

Annealing 52 00:60
Elongation 72 01:30

Final elongation 72 10:00
◦C, Celsius. PCR, polymerase chain reaction; min:sec, minutes:seconds.

4.5.2. Processing of 16s rRNA Gene Reads and ASV Generation

USEARCH (v11.0.667_i86linux64) was used to analyze the raw sequencing reads [70].
For the paired-end merging, the following parameters were used: fast_mergepairs and
maxdiffs = 30, fastq_filter and fastq_maxee = 1. After the merging and quality filtering,
contigs were dereplicated and unique sequences were denoised using UNOISE3, to obtain
amplicon sequence variants (ASVs). Then all merged reads were mapped to the resulting
ASVs to generate the ASV table. The ASVs that did not match the expected amplicon
length (ASVs longer than 260 base pair or shorter than 250 base pair) were filtered out. The
‘assign Taxonomy’ function from the dada2 R package (v 1.12.1) and the SILVA (v. 132)
reference database were used to assign taxonomy [71,72]. MAFFT (v. 7.427) with default
settings was used to align ASVs [73,74]. The ‘double precision’ build of FastTree (v. 2.1.11)
was used to build a phylogenetic tree based on the multiple sequence alignment, with
a generalized time-reversible model (‘-gtr’) [75]. These components (phylogenetic tree,
taxonomy and ASV table) were integrated with the ‘phyloseq’ R package (v. 1.28.0) [76]. The
‘vegan’ R package (v 2.5-6) was used to rarefy the ASV table was rarefied to 14,932 counts
per sample. 24 of the 6056 sequenced samples had <5000 counts per sample and were
excluded at the rarefaction stage. The final dataset contained 6032 samples and 22,532 ASVs.
The functional composition data from the 16s sequencing data were generated using
Phylogenetic Investigation of Communities by PICRUSt2 (v. 2.3.0-b) [33], and specific
pathways and their classification were identified using the MetaCyc database.

4.5.3. Characteristics of Gut Microbiota Composition

The dissimilarities in gut microbiota composition between individuals (β-diversity)
were assessed with the Bray–Curtis dissimilarity index, as well as weighted and un-
weighted UniFrac distance calculated at the ASV level (function ‘vegdist’ vegan v. 2.5-6 R
package for Bray–Curtis and function ‘UniFrac’ phyloseq v 1.30.0 R package for weighted
and unweighted UniFrac [77]. Unconstrained Principal Coordinate Analysis was used to
plot the Bray–Curtis dissimilarities (function pcoa ape v. 5.4-1 R package). The α-diversity
of gut microbiota for each individual was assessed with several indices calculated at the
ASV level: richness (number of unique ASVs: function ‘estimate’ vegan R package), the
Shannon index, the Simpson index, Inverse Simpson index, the inverse Simpson index
(function diversity ‘vegan’ R package) and Faith’s phylogenetic diversity (function pd
‘picante’ v. 1.8.2 R package).

4.5.4. Microbial Data Preparation

The microbial data were summarized to phylum, family, genus, species and ASV
level, this was then filtered to only keep taxa with >20 counts in >5% of participants. For
the machine learning analyses, an unfiltered ASV table for either 1309 participants or
162 participants was used as input data.

4.6. Statistical and Bioinformatics Analysis
4.6.1. Statistical Analysis of Clinical Outcomes

Conventional statistical analyses were performed with IBM SPSS Statistics Software
Version 26.0 (IBM Corp., Armonk, NY, USA). Distribution of the parametric variables
was checked with the homogeneity test of variances and by inspecting visually the Q-
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plots and histograms. Normally distributed continuous variables were analyzed using
Fisher T-tests, and categorized variables were analyzed using chi square test. Skewed
distributed variables were tested with a Mann–Whitney test. Pearson correlation was
used for correlation of PA levels from the different PA monitor methods (objective and
subjective), and Pearson chi square was used for correlation between the categories (active
and sedentary). The statistical significance level was set to p < 0.05. An unconstrained
principal component analysis of the food groups of the set of 1309 participants was created,
after removing missing values (using function prcomp ‘stats’ v. 3.6.3 R package, with
scale = TRUE in R).

4.6.2. Statistical Analysis of Gut Microbiota Composition

B-diversity was tested with a PERMANOVA (‘adonis’, permutations = 1000, in R).
Analyses were adjusted for the following covariates: age, sex, BMI, and ethnicity, and if
applicable, where noted for dietary intake (fat (E-%), protein (E-%), carbohydrate (E-%),
fiber (g/d) and total daily energy intake (kcal/d)). For the small set of 162 participants
(where PAL outcomes were used; sedentary PAL < 1.69, active PAL > 1.70), antibiotic use
in the past three months was also included as a covariate. Residuals of taxa, pathway and
gene abundances as well as α-diversity indices were computed using ‘lm’ in R, adjusting
for the above mentioned covariates, which were compared between binary outcomes with
a Wilcoxon test. Spearman correlation tests were performed on the covariate adjusted
residuals between taxa abundances and continuous outcomes. In all analyses, an adjusted
p-value (p.adjust with Benjamini–Hochberg [78] method in R) < 0.05 was considered
significant. The explained variance of the Shannon index α-diversity by the different
outcomes (foods, food groups and macronutrients) was calculated using ‘lm’ in R, adding
covariates for age, sex, BMI and where noted, ethnicity.

4.6.3. Machine Learning

To predict the binary outcomes (objective monitoring method with two PAL levels
(ActiHeart) and subjective monitoring method (SQUASH) with two activity levels stratified
based on adherence to the PA guideline), the input features were the microbial data (see
above section on Microbial Data Preparation). The input variables (ASV abundances) were
preprocessed by an initial filtering on minimum occurrence ratio (the taxa must be present
(>1 count) in >5% of participants), and a univariate feature selection (SelectPercentile
with f_classif). Thereafter the data was split into an 80% training set and 20% testing set,
which was randomly shuffled using Stratified Shuffle Split over 10 iterations to ensure
stable predictions, and the average AUC of all iterations was reported. In each shuffle,
XGBoost XGBregressor (objective = ‘reg:squarederror’) was used to predict binary outcomes
(SQUASH and PAL activity levels) with GridSearch using roc_auc as the scoring function.
A random variable was appended in each shuffle to serve as a threshold for relevant
features selected by the model. Internal five-fold cross validation was performed in the
hyperparameter search. The parameter grid used was: ‘max_depth’: (3–5), ‘learning_rate’:
(0.01, 0.1, 0.2), ‘n_estimators’: (200), ‘min_child_weight’: (1, 2), ‘gamma’: (0, 0.1, 0.2),
‘subsample’: (0.5, 0.8, 1), ‘colsample_bytree’: (0.5, 0.8, 1).

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11120858/s1, Figure S1: Food group taxonomy, Figure S2: Comparisons of food groups
between the sedentary and active participants, Figure S3: The machine learning of the population
without participants with antibiotic use stratified by PA based on the objective method, Table S1:
Beta diversity results, Table S2: Comparisons of microbial taxa between the sedentary and active
participants, Table S3: Correlations of physical activity related parameters with microbial taxa,
Table S4: Comparisons of microbial pathways between the sedentary and active groups, Table S5:
Correlations of microbial metabolic pathway with physical activity related parameters, Table S6:
Correlations of microbial taxa with food groups.

https://www.mdpi.com/article/10.3390/metabo11120858/s1
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