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The research on accurate and intelligent segmentation of knee joint MRI images is of great significance to reduce the work
intensity of clinical doctors and nurses. In order to solve the problem that knee joint MRI image segmentation model needs a
large number of high-quality tagged images and excessive labeling workload, a semisupervised learning segmentation network
model based on 3D scSE-UNet is proposed. The model adopts a self-training semisupervised learning framework and adds a
cSE-block+ module on the basis of the 3D UNet model. This module can enhance the effective features of the feature image
from two aspects of space and channel, while suppressing irrelevant features and preserving image edge information more
completely. In order to solve the problem of rough edge of pseudolabel caused by model segmentation, a fully connected
conditional random field is added to refine the edge of pseudolabel in the process of model training. The effectiveness of the
model is verified by open source MRNet dataset and OAI dataset. The results show that the proposed model can achieve the
segmentation effect of fully supervised learning through a small number of labeled images and effectively reduce the
dependence of knee joint MRI image segmentation on expert labeling data.

1. Introduction

Knee joint is one of the most important composite joints in
human body [1]. Most of the complex human movements
are inseparable from the knee joint, and it is also the most
important load-bearing joint [2]. For athletes who take var-
ious sports as their professions, the health of knee joints and
the early detection and treatment of injuries are particularly
important [3]. After knee joint injury caused by exercise,
timely and accurate professional evaluation of anterior cru-
ciate ligament injury is of great significance for medical staff
to choose the best treatment and to prevent the impact of
injury on athletes’ career [4]. In medicine, the examination
of knee joint injury and lesion usually depends on magnetic
resonance imaging (MRI). The advantage of MRI over
arthroscopy is that it can clearly display articular cartilage
and bone areas [5]. Theoretically, the knee joint history of

patients and the pathological changes occurred during the
occurrence of knee joint abnormalities can play a very
important role in the diagnosis of specific knee joint prob-
lems. However, in the actual operation, there is still a case
of low diagnostic sensitivity. The doctor will inevitably touch
the pain point of the patient’s knee joint in the clinical exam-
ination, which will increase the pain of the patient. This
problem hinders clinical examination [6].

Knee arthroscopy is one of the commonly used methods
in the diagnosis of knee joint diseases. However, since the
introduction of MRI technology, this relatively noninvasive
diagnostic tool has gradually replaced invasive arthroscopy
[7]. It visualizes the abnormal problems of the knee joint
by presenting a high-resolution image of the interior of the
knee joint. The application of MRI provides reference and
guidance for orthopedic experts in the preliminary diagno-
sis, treatment, and prognosis of meniscus, ligament, and
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tendon-related problems. At the same time, the cost of MRI
of the knee joint is also slowly falling. Coupled with its non-
invasive advantages, the current medical diagnosis and treat-
ment is not only in the preoperative MRI examination of
patients but also began to be used as an auxiliary diagnosis
in the preliminary diagnosis of knee joint diseases.

In recent years, deep learning methods have made great
progress in the field of computer vision, such as object detec-
tion [8], human posture estimation [9], or semantic segmen-
tation [10]. Similarly, in the field of medical images, deep
learning has achieved excellent results in disease classifica-
tion [11, 12], cancer detection [13, 14], organ segmentation
[15], and image reconstruction [16]. The application of deep
learning in knee joint MRI image analysis is becoming a hot
research content. Li et al. [17] used the multimode feature
fusion model in deep learning to diagnose the injury of knee
joint MRI images. The results show that the prediction accu-
racy of the model in knee joint tear is 96.28%, and it is
proved that the MRI image classification model based on
depth learning can accurately classify the type of anterior
cruciate ligament injury. Chaudhari et al. [18] compared
deep learning super resolution (DLSR) with conventional
knee MRI and found that conventional MRI was 92% accu-
rate in evaluating knee cartilage, meniscus, bones, ligaments,
extensors, and synovium, while DLSR was consistent with its
accuracy. This shows that DLSR can simplify the diagnosis
of knee joint MRI. Yang et al. [19] applied the conditioned
adversarial network to 30 groups of clinical MRI images
and successfully carried out automatic cartilage segmenta-
tion through model training. The results show that transfer
learning can achieve the same segmentation accuracy as

human when the number of samples is small. Iqbal et al.
[20] aimed at automatically monitoring the health degree
of human knee synovial fluid and adopted the transfer learn-
ing model to solve the problem that it is difficult to label data
sets on a large scale in medical images. At the same time, it is
also proved that the model has a good recognition of human
knee joint synovial fluid.

The above research has made some progress in knee
joint MRI image segmentation, but still does not solve a
common problem. On the one hand, for MRI images, it is
difficult for a medical institution or imaging center to have
enough tagged and untagged data. However, the MRI images
from different image centers will be affected by imaging
equipment, imaging protocols, and operating technicians,
which makes it difficult for the model to train well. The main
reason for this effect is that the resolution of MRI image is
different due to the difference of imaging equipment and
imaging protocol. Different levels of operators easily lead
to differences in the degree of presentation of lesions on
MRI images. On the other hand, well-trained models should
be more robust to adapt to different sources of data.

Based on the above problems, we use two open knee
joint MRI data sets from different sources, namely, MRNet
and OAI datasets for semisupervised learning. The main dif-
ference between the two datasets is that each sample is
marked with an exception in the MRNet dataset, while the
OAI dataset is untagged. In this paper, the semisupervised
learning knee joint segmentation method of self-training
3D scSE-UNet segmentation network is used to train part
of the MRI dataset as tagged data and the other part as
untagged data. In the process of self-training, a fully
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Figure 1: Training method of 3D scSE-UNet network model.
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connected conditional random field is added to refine the
predicted pseudolabel edge to improve the accuracy. After
training, the model can achieve the purpose of effectively
training 3DscSE-UNet with a small amount of labeled data
and a large number of unlabeled data, so as to improve the
accuracy of knee joint segmentation (abnormalities, ACL
tears, and meniscus tears) and reduce the dependence of
deep learning image segmentation methods on label data.

2. Methods

2.1. Self-Training Semisupervised Learning Segmentation.
Reasonable and effective use of the effective information in
MRI images is helpful to improve the segmentation accuracy
of the target region. Therefore, the self-training method is
used to segment the image. Self-training is a representative
method in semisupervised learning. It trains the untagged
data through a small amount of tagged data to produce
pseudotags. Combined with true tags to pseudotags, the seg-
mentation model is trained. In the process of segmentation,
a small amount of tagged data is input into the segmented

network while a large amount of untagged data is input to
carry out cyclic iterative training of the network.

In this study, the self-training semisupervised segmenta-
tion method is shown in Figure 1. In the figure, X represents
the MRI image, and Y tags it. In self-training semisupervised
learning, two datasets are used, which are shown in the fol-
lowing formula.

Tagged data : DL = XL, YLf g, ð1Þ

Untagged dataset : DU = XUf g: ð2Þ
Among them, the label in the tagged data set comes from

the expert, hereinafter, referred to as the truth label. The
untagged dataset contains only grayscale images. The goal
of this training is to predict the untagged data set and get
pseudotags by training the 3D scSE-UNet model. Finally,
the pseudotag is extended to the untagged dataset.

The specific training steps can be subdivided into 5 steps:
(1) using tagged DL of partial data in MRNet dataset to train
3D scSE-UNet model. (2) The untagged dataset is randomly
divided into several subdatasets. Input the subdataset into
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Figure 2: Outline of the structure of 3D scSE-UNet network model.
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the 3DscSE-UNet model for prediction, and the prediction
result of the response can be obtained. It is important to note
that the subdataset contains tagged data from MRNet and
untagged dataset from OAI. (3) Inputing the segmentation
result into dense CRF for edge refinement to make it closer
to the true value label. Finally, the refined pseudotags are
added to equation (3) to build a new dataset, namely, equa-
tion (4). (4) Adding equation (5) to Di+1

trian to build equa-
tion (6). Use X for the next round of training. (5) Inputing
the updated training set into 3DscSE-UNet model for train-
ing again. After the training is completed, enter the next
batch of untagged data and repeat the above steps until all
untagged data produces false tags. In the process of training,
because the pseudotag is extended to the training set, the
model can continuously obtain new features and enhance
the robustness of the model.

Di
U = Xi

U

� �
, ð3Þ

Di
U = Xi

U , Yi
U

� �
, ð4Þ

Di
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U , Yi
U

� �
, ð5Þ

Di+1
trian =Di

trian +Di
U : ð6Þ

In the formula, i represents the i iteration, i + 1 repre-
sents the i + 1 iteration, U represents unlabeled data, D rep-
resents the data set, and trian represents the training set.

2.1.1. DscSE-UNet Segmentation Network. In the self-
training learning segmentation method involved in this
study, scSE-block+ is combined with 3D UNet. ScSE is an

attention module which integrates channel dimension and
spatial dimension. Its main function is to enhance the mean-
ingful features and suppress the useless features, so as to
improve the accuracy. The two constitutes the 3DscSE-
UNET segmentation network model. The schematic dia-
gram of its structure is shown in Figure 2. The structure
design of the network model is similar to that of 3DUNet,
which adopts U-shaped structure. In the figure, the arrows
represent the connection mode of different processing layers
and the input direction of the feature map. The text above
the arrow represents the number of channels of the feature
map.

The difference between the new model and the 3D UNet
model structure is that a scSE-block+ is added at the end of
each hop connection layer in the 3D UNet decoding part,
that is, the red square in the figure. The processing layer
resets the weight of the feature channel of the input image
to strengthen the effective features while weakening the use-
less features, so as to improve the ability of self-training
semi-supervised learning network to learn effective features
and improve the accuracy.

The decoding layer of the model performs the operations
of generating feature maps and extracting features from MRI
images of the input model by up/downsampling techniques,
respectively. Among them, four lower sampling layers are
designed in the coding layer, and each lower sampling layer
is composed of two convolution layers. The convolution
layer is responsible for extracting different levels of image
features and activating them through the ReLU function.
After two convolution layers, a maximum pool layer with a
step size of 2 is connected to compress the features and
reduce the dimension. In the decoding layer, each layer
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consists of an upper sampling layer with a step size of 2 and
2 convolution layers with a step size of 3 × 3 × 3. After each
convolutional layer, a ReLU function is set to activate it.
Through the way of jump connection, the model combines
the feature images obtained by the coding layer and the fea-
ture images obtained by the decoding layer with the same
resolution. The combination of shallow and deep features
to refine the image allows more texture information of the
original image to spread in the high-resolution layer. Finally,
the fused features are input into the scSE-block+ module to
suppress the unimportant features and improve the accuracy
of the segmentation results.

2.2. scSE-Block+ Module. In the proposed self-training semi-
supervised learning model, a total of 4 scSE-block+ modules
are used, and their structure is shown in Figure 3. The main
reason for setting up four scSE-block+ modules is that the
module can perform its function better in front of the upper
sampling layer. This module can calculate the feature space
domain and feature channel domain at the same time. By
learning the importance of each feature, the feature graph
is recalibrated. ScSE-block+ is the weight of channel SE
module and spatial SE module.

As can be seen in Figure 3, we have improved the cSE-
block, that is, the part of the figure marked as a dotted line.
On the basis of the original cSE-block module, the model

adds a global maximum pool layer, which is marked as a
red square in the figure. The newly added pooling layer is
parallel to the original global average pooling layer of cSE-
block. In the process of compressing spatial information,
the selection of spatial feature tensor is different between
the maximum pool layer (MPL) and the average pool layer
(APL), which makes up for the problem that the original
cSE-block module is not comprehensive.

The essence of MPL is to calculate the maximum value
of the whole feature graph. Because the edge of the feature
graph may produce the largest eigenvalue, MPL can retain
the texture and edge features of the image to the maximum
extent. The essence of APL is to calculate the average value
of the whole feature graph and pay more attention to the
downsampling of the whole feature. Therefore, APL can bet-
ter retain the background of the feature map. MPL and APL
are visible. In the task of extracting image edge information,
MPL is more effective than APL. If the two are processed in
parallel, the dual characteristics of edge and background can
be retained. It plays a significant role in improving the per-
formance of the model. Specifically, cSE-block evaluates
the importance of channels by compressing spatial informa-
tion. The module inputs the feature graph of H ×W × S × C
into a MPL and an APL in parallel. Among them, H ×W
× S × C represents the length, width, depth, and number of
channels of the feature graph, respectively. MPL and APL
compress the global spatial information in the lattice chan-
nel to a tensor value, respectively. The eigenvalue produced
by this process is 1 × C. Then, these eigenvalues are convo-
luted in three dimensions. The convolution kernel size is 1
× 1 × 1 and the number of channels is C. Finally, the
features obtained by convolution operation are activated by
ReLU function, respectively. After the above convolution
operation, two tensors of 1 × 1 × 1 × C with different values
but with the same dimension are obtained. After the two
tensors are added, the input sigmoid layer is normalized. By
multiplying the normalized value with the original eigenma-
trix, the unimportant information in the channel can be sup-
pressed obviously, and the information in the important
channel can be preserved losslessly. The important informa-
tion mentioned here, in this study, refers to the information
related to the purpose ofmodel training.

In image segmentation, the spatial information of each
pixel will provide more information. Therefore, the parallel
sSE-block module is introduced into the research. This mod-
ule can evaluate the importance of spatial location by com-
pressing channel information. For the feature map of an
input module, the module realizes space extrusion through
convolution operation. Then, it is normalized by sigmoid.
Finally, it is multiplied by the original characteristic tensor.

2.3. Fully Connected Conditional Random Field. In the self-
training model, the unlabeled samples segmented by the
algorithm are prone to missegmentation. After the misseg-
mented samples are generated, they will still be extended
to the training set to participate in the new round of training
as the mark of the next round of samples. This causes the
model to learn the wrong labels and make the errors accu-
mulate, even magnify the errors.
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In order to solve the above problems, it is necessary to
improve the accuracy of pseudotags to the maximum extent.
The fully connected conditional random field can optimize
the rough and uncertain tags in the pseudotags, correct the
missegmented regions, improve the positioning characteris-
tics of the network, and then get more accurate and detailed
pseudotags. In this study, we introduce fully connected con-
ditional random field (dense CRF) in the self-training pro-
cess to refine the pseudotags obtained in each iteration of
the self-training process.

The core of dense CRF algorithm is to calculate the rela-
tionship between pixels and pixels. The two pixels with high
degree of similarity are assigned the same label, and the

probability of being segmented is low. However, when differ-
ent labels are assigned between the two pixels with lower
similarity, the probability of being segmented increases.
The energy function of dense CRF algorithm is shown in
the following formula:

E xð Þ =〠
i

ψu f ið Þ +〠
i<j
ψp f i, f j
� �

, ð7Þ

ψu f ið Þ = − log P f ið Þ: ð8Þ
ψuð f iÞ represents the unary potential energy, and it is

mainly used to calculate the classification probability of pixel
points, as shown in equation (8), and f i represents the pre-
diction result of pixel i by the segmentation model. Pð f iÞ
represents the probability that the predicted result of pixel
i is f . ψpð f i, f jÞ represents the binary potential energy
between pixel i and the predicted result f i, f j on pixel j,
which can describe the relationship between the two pixels

ψp f i, f j
� �

= μ f i, f j
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In the formula, ω1 and ω2 are linear combination
weights; μ is the label compatibility function, and μð f i, f jÞ
is the label compatibility item, which restricts the condition
of conduction between pixels, when f i ≠ f ; it has the value 0;
the proximity and similarity between pixels are controlled by
coefficients σq and σg; σγ = 1, which can remove small inde-
pendent regions. Xi andXj are the position information of
pixel i and pixel j, respectively, and yi and yj are the intensity
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values of pixel i and pixel j, respectively. The binary poten-
tial energy function will pay more attention to the pixels
with similar position x and similar intensity y but with dif-
ferent marks f . The smaller the energy EðxÞ is, the more
accurate the predicted category label x is.

In the process of segmenting MRI image by dense CRF
module, the unary potential can represent the probability dis-
tributionmap. Specifically, it is the result obtained by the input
softmax function of the characteristic graph output of the
model. The position information and gray information
extracted from the original image are assigned to the binary
potential energy. With the combination of unitary potential

energy and binary potential energy, the relationship between
pixels can be comprehensively evaluated, and the results can
be optimized. In this study, the model uses the iterative energy
function EðxÞ to find the minimum solution of each image
through five iterations to identify the most likely category of
each pixel in the MRI image. Finally, each optimized predic-
tion result is added to the self-training learning as a pseudotag.

3. Model Training and Evaluation Method

3.1. Model Training Parameter Setting. In the aspect of
model parameter setting, the unlabeled data set is divided
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into 5 subdata sets. Each data set is input into the model in
turn for prediction, and the corresponding prediction results
(segmentation results) are produced. In the process of train-
ing, the gradient descent algorithm built into Adam opti-
mizer is used to find the minimum value of network
parameter error function. Set the network learning rate of
the model to 0.0001 epoch; set the training number (epoch)
to 150; set the batchsize to 1; and stop training after reaching

the maximum number of cycles. The setting of training
cycle, training times, and batch size is mainly based on the
experience of previous studies. All data set processing, model
training, verification, and evaluation are done on the same
computer.

3.2. Evaluation Index. The quantitative indexes for evaluat-
ing the semisupervised 3DscSE-UNet model are average
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symmetrical surface distance (ASSD), 95 percentile Haus-
dorff distance (HD95), and disc coefficient (DC), respec-
tively. ASSD is used to calculate the average surface
difference between segments. Hausdorff distance calculates
the maximum point distance between segments. DC focuses
on evaluating the degree of overlap between the two groups
of segmentation results. Therefore, these three indicators are
complementary and trinity.

ASSD calculates the overall average of the distance from
∂G to the point on ∂S and the distance from the boundary of
Sð∂SÞ to the point on Gð∂GÞ boundary, as shown in the fol-
lowing formulas:

ASSD G, Sð Þ =
∑g∈∂Gmin

s∈∂S
s − gk k +∑s∈∂Smin

g∈∂G
g − sk k

∂Gj j + ∂Sj j , ð10Þ

a!
��� ��� =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i

aið Þ2
s

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a1ð Þ2 + a2ð Þ2+⋯+ anð Þ2

q
: ð11Þ

In the formulas, G is the segment of basic facts, and S is
the segment to be predicted. j⋅j represents the cardinality of
the set. The smaller the calculation result of ASSD is, the bet-
ter the split boundaries are consistent with each other.

The Hausdorff distance is calculated by the following
formula:

HD G, Sð Þ =max h G, Sð Þ, h S,Gð Þð Þ: ð12Þ

Among them, the calculation method of hðG, SÞ is

h G, Sð Þ =max
g∈G

min
s∈S

g − sk k: ð13Þ

HD is the module for calculating the maximum segmen-
tation error. Because HD is highly sensitive to outliers, and
outliers in HD are replaced with 95% of the maximum in
HD95.

The calculation model of DC is

DC =
2 G ∩ Sj j
Gj j + Sj j : ð14Þ

DC is a widely recognized index in the research of knee
joint MRI image segmentation. Its scope is [0,1], where 0
means undivided, and 1 indicates that the segmentation is
completely consistent.

4. Results and Analysis

4.1. Results. In order to avoid the chance of the training
results of the model, five experiments were carried out based
on the model proposed in the study, and the average value of
the five experiments was taken as the result. The model
involved in this study is trained on NVIDIA RTX3090
GPU, and the training time of one model is about 26 hours.
Once the model is trained, the average segmentation time of
each test image is less than 2 s.

In each experiment, 20 images from the tagged MRNet
dataset and 26 images from the OAI dataset were ran-
domly selected as the test set. The number of randomly
selected images from both datasets is 1/5 of the labeled
images in the dataset. 100 images were selected from
MRNet data set, and 50, 40, 30, 20, and 10 MRI images
and their truth tags were randomly selected as tagged data.
The remaining 50, 60, 70, 80, and 90 MRI images were
used as untagged data to form five training sets with dif-
ferent proportion of tagged data. The model obtained
under five kinds of training conditions was used to predict
the test set, and the segmentation results were compared
with those obtained by 3D UNet fully supervised learning.
Full-supervised and semisupervised methods show differ-
ent performance in knee joint MRI image segmentation,
as shown in Figure 4.

As can be seen from Figure 4, when the proportion of
label data in knee joint segmentation reaches 30%, ASSD =
2:431, HD95 = 1:596mm, and DC = 0:941. The prediction
result of full supervision method is ASSD = 1:974, HD95 =
2:697mm, and DC = 0:950. It can be seen that when the
labeled data accounts for 30% of the training set, the evalu-
ation index of semisupervised learning segmentation result
is better than that of fully supervised learning method.

In order to compare the segmentation performance of
the model under different percentages of labeled data in
the training set, based on the study of the proposed model,
the DC values under different conditions are obtained
through training, and the DC changes under different ratios
are drawn, as shown in Figure 5. As can be seen in the figure,
the DC value increases with the increase of the proportion,
and the growth rate decreases gradually. When the propor-
tion is less than 40%, the DC value increases with the
increase of the proportion, and the rising speed increases
from 0.902 to 0.946. When the proportion is more than
40%, the growth rate slows down. Until the proportion
reaches 100%, the fully supervised model DC = 0:950.

4.2. Performance Comparison between Semisupervised
Learning and Fully Supervised Learning. Comparing the per-
formance of the self-training semisupervised model with the
full-supervised model, we can better verify the effectiveness
of the self-trained semisupervised model. For this reason,
the 3D scSE-UNet segmentation network model is used to
train the semisupervised model and the full-supervised
model, respectively, and the performance of the semisuper-
vised model and the full-supervised model is compared.
The comparison results are shown in Figure 6.

As can be seen in the figure, when the network model is
segmented by 3DscSE-UNet at the same time, and the label
data are the same, the performance of the semisupervised
learning model is better than the fully supervised learning
model. The main reason is that the semisupervised learning
model can improve the segmentation performance through
the effective use of unlabeled data, especially in the case of
less tagged data. In the case of more tagged data, the seg-
mentation accuracy of semisupervised learning model is
not significantly higher than that of fully supervised learn-
ing, especially when the proportion of tagged data is 50%.
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The main reason for this phenomenon is that when there are
a lot of labeled data, the fully supervised learning model can
segment the image more accurately through training, and
there is little room for semisupervised learning to improve.

4.3. Comparison of Segmented Networks with scSE-Block+.
In order to understand the improvement effect of the
scSE-block+ module added in this study on the self-
training semisupervised learning network model, the
model is used to compare the segmentation ability of the
model before and after adding. The training adds 30% of
the training set with tagged data, and the result is shown
in Figure 7. As can be seen in the figure, the ASSD value,
HD95 value, and DC value of the model are significantly
improved after the addition of scSE-block+ module. It
can be seen that the scSE-block+ module can make more
full use of the channel and spatial information in the fea-
ture graph.

Because the global maximum pool layer is added to the
scSE-block module in the study, it is necessary to verify
and compare the performance of the module before and
after the addition and evaluate the impact of the improved
module on the segmentation results. This verification uses
a training set with a 30% proportion of labeled data, and
the verification result is shown in Figure 8. As can be seen
in the figure, the effect of image segmentation is better after
adding the global maximum pool layer. In the process of fea-
ture extraction, using the global maximum pool layer can
retain more abundant edge information and optimize the
segmentation effect of the segmentation model on the target
region.

4.4. Dense CRF Performance Comparison. In order to
refine the segmentation results of pseudo tags, a dense
CRF module is added to the research model. In order to
analyze the thinning effect of pseudotags, the segmentation
effects of pseudotags before and after thinning are com-
pared, as shown in Figure 9. The training set used in the
comparative study is 30% of the labeled data.

As can be seen in the figure, the performance index of
the segmentation result optimized by dense CRF module
has been improved compared with that before optimiza-
tion. From the point of view of the segmentation results,
the optimized segmentation results are closer to the truth
label at the edge and even overlap with the truth label.
For the part of the segmentation result with poor edge,
the dense CRF module can modify it to make it closer
to the truth label.

By calculating the relationship between a single pixel and
all other pixels, the dense CRF module establishes a depen-
dency on all pixel pairs in the image and then finely pro-
cesses the probability map of the segmentation network
prediction. Although the overall segmentation accuracy is
not greatly improved by adding dense CRF module to the
self-training semisupervised learning model, the edge thin-
ning effect of the segmentation result is better.

4.5. Comparison of Time Performance of Models. In this
study, the average image processing time of the four models

involved in the study was compared. The four models are
fully supervised 3DUNet model, semisupervised 3DUNet
model, fully supervised 3DscSE-UNet model, and semisu-
pervised 3DscSE-UNet model. One hundred untagged MRI
images were randomly selected from OAI datasets to test
the average processing time of the four models, and the
results are shown in Figure 10. As can be seen from the fig-
ure, due to the addition of the scSE-block+ module, the aver-
age processing time of the 3DscSE-UNet segmentation
model is longer than that of the 3DUNet model, but there
is little difference between the two models, which is only
150ms. Under the same segmentation model, the effect of
semisupervised learning or fully supervised learning on the
average image processing time can be ignored.

The improved training model can segment MRI images
more accurately and can basically achieve automatic
segmentation of MRI images. This study has some signifi-
cance to reduce the workload of medical workers and reduce
the misdiagnosis of knee lesions.

5. Conclusion

In order to solve the problem that MRI image segmenta-
tion needs large labeling data and time-consuming experts
in the field of knee joint depth learning, this study pro-
poses a semisupervised learning segmentation model of
3DscSE-UNet knee joint MRI image based on scSE-block
+, which reduces the dependence on labeled data in knee
joint depth learning research and draws the following
conclusions.

The fully connected conditional random field improves
the detail processing ability of the semisupervised 3DscSE-
UNet model and improves the accuracy of generating pseu-
dotags in the segmented network. The addition of pseudo-
tags to the semisupervised learning model significantly
improves the segmentation performance of the model and
achieves the purpose of making a large number of predic-
tions from a small amount of label data. Through the verifi-
cation of the model, it is found that the segmentation effect
of the model is similar to that of the fully supervised learning
model in the case of learning a small amount of labeled data

By learning the relationship between different features,
the semisupervised 3DscSE-UNet model can enhance the
useful features while suppressing the irrelevant features
and improve the accuracy of knee joint MRI image segmen-
tation. The addition of scSE-block+ module in the semisu-
pervised 3D scSE-UNet model increases the average image
processing time of the model. No matter which supervision
method is adopted, the image processing time of the 3D
scSE-UNet model is 17.94% higher than that of the 3DUNet
model, with a difference of 150ms. However, under the same
supervision mode, the segmentation performance of 3D
scSE-UNet model is significantly better than that of 3D
UNet model

The main disadvantage of the self-training semisuper-
vised learning model is that if the unlabeled data is mistak-
enly segmented in the initial segmentation, the problem
will be magnified in the subsequent model training process.
The main reason for the amplification is that the initial error
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marker has the potential to act as a trusted label, allowing
subsequent errors to accumulate. In this study, the dense
CRF module is used to alleviate the problem. In the follow-
up study, we will work to improve this problem.
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