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Genomic copy number variations are a typical feature of cancer. These variations may influence cancer outcomes as well as
effectiveness of treatment. There are many computational methods developed to detect regions with deletions and amplifications
without estimating actual copy numbers (CN) in these regions. We have developed a computational method capable of detecting
regions with deletions and amplifications as well as estimating actual copy numbers in these regions. The method is based on
determining how signal intensity from different probes is related to CN, taking into account changes in the total genome size, and
incorporating into analysis contamination of the solid tumors with benign tissue. Hidden Markov Model is used to obtain the most
likely CN solution. The method has been implemented for Affymetrix 500K GeneChip arrays and Agilent 244K oligonucleotide
arrays. The results of CN analysis for normal cell lines, cancer cell lines, and tumor samples are presented. The method is capable of
detecting copy number alterations in tumor samples with up to 80% contamination with benign tissue. Analysis of 178 cancer cell
lines reveals multiple regions of common homozygous deletions and strong amplifications encompassing known tumor suppressor
genes and oncogenes as well as novel cancer related genes.

1. Introduction

Genomes of cancer cells are known to harbor multiple
regions of deletions and amplifications. Many of these CN
alterations are probably random but some accelerate cell
growth and suppress apoptosis. For example, homozygous
deletions lead to inactivation of such tumor suppressor genes
as RB1 [1], p16 [2], and PTEN [3], while amplifications lead
to activation of such oncogenes as MYC [4], EGFR [5], and
ERBB2 [6]. Moreover, it has been shown that heterogeneity
of cancer outcomes [7] and sensitivity to chemotherapy can
be at least, in part, explained by CN changes in primary
tumor [8, 9]. Thus it is of great importance to identify CN
variations frequent for a specific tumor type or present in a
specific sample. Array comparative genomic hybridization is
a method designed to detect such genomic region alterations
[10]. The development of high-density arrays as well as

advances in data analysis have greatly improved our ability to
determine CN regions [11, 12]. Different methods of analysis
have been reviewed by Chari et al. [13].

Many of these computational methods detect regions
with deletions and amplifications without estimating the
actual CN in these regions. For example, these methods
do not clearly distinguish between homozygous (CN = 0)
and heterozygous (CN = 1) deletions which may have
significantly different effects on cancer development; losing
just one of two copies of a gene should not have as drastic
of an effect as losing both copies. In fact, heterozygous
deletions are very common and affect large regions including
chromosomal arms and whole chromosomes. In contrast,
homozygous deletions are much less common and usually
affect small regions with only a few genes deleted. Similarly,
it is important to be able to distinguish between low and
high copy amplifications. Due to their overall genomic
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instability, cancer cells might accumulate multiple random
CN changes which do not contribute to cancer development.
Accordingly, one should expect that only regions with very
high amplification, 10 to 100 copies, are regions that are
likely to encompass oncogenes such as MYC, EGFR, and
ERBB2.

In this study we attempted to develop a method to
estimate CN values for normal samples, cell lines, and
solid tumors. To be able to do this we had to determine
how signal intensity from different probes is related to CN,
how to take into account change of the genome size in
cancer cell lines and solid tumors which result from somatic
alterations, and finally how to incorporate into the analysis
contamination of the solid tumors with benign tissue.
The last factor is of particular importance as solid tumor
samples are strongly contaminated with noncancerous cells
carrying DNA without somatic alterations. Existing dissec-
tion techniques can reduce this contamination but cannot
eliminate it entirely. For example, it is practically impossible
to eliminate immune cell infiltration of tumors. In our
experience, even ovarian tumors which are considered less
affected by noncancerous contamination than other tumors
often contain more than 50% normal, noncancerous, DNA.
Such strong contamination presents a significant problem for
estimating CN. For example, if in a tumor sample a particular
region appears to have one copy, the actual CN in cancerous
cells can be either one (CN = 1) if the sample has negligible
contamination or zero (CN = 0) if the contamination is
about 50%.

2. Materials and Methods

2.1. Genomic DNA. Frozen tumors were cut into 10 μm
sections and macrodissected to minimize contamination
with normal tissue. A QIAamp DNA Mini Kit (QIAgen) was
used to isolate the DNA as per the manufacturer’s protocol
with an overnight lysis incubation at 56◦C, including the
optional RNase A treatment. DNA was quantitated using a
Nanodrop spectrophotometer and picogreen.

2.2. Affymetrix 500K GeneChip Arrays. The Affymetrix
GeneChip Mapping NspI or StyI Assay Kit was used in
the generation of biotinylated DNA for Affymetrix Mapping
500K NspI or StyI microarray hybridizations (each assay was
prepared separately). Genomic DNA (250 ng) was digested
with NspI or StyI restriction enzyme and adaptors were
added to restriction fragment ends with T4 DNA ligase.
Adaptor-modified samples were PCR amplified using Clon-
tech Titanium Taq which generated an amplified product
of average size between 200 and 1,100 bp. Amplification
products were purified using a Clontech DNA amplification
cleanup kit. 90 μg of purified DNA was fragmented using
Affymetrix Fragmentation Reagent. Biotin-labeling of the
fragmented sample was accomplished using the GeneChip
DNA Labeling Reagent. Biotin-labeled DNA was hybridized
on NspI or StyI Affymetrix microarrays at 49◦C for 16 to 18
hours in the Affymetrix rotation oven. After hybridization,
probe array wash and stain procedures were carried out on

the automatic Affymetrix Fluidics Stations as per manufac-
turer’s manual and microarrays were scanned and raw data
were collected by Affymetrix GeneChip Scanner 3000.

2.3. Quantitative Real-Time PCR. 12 cell lines were identified
with copy number amplifications detected by microarray
spanning the genes CCND1, EGFR, and/or ERBB2. Custom
qPCR assays (Applied Biosystems) were designed which
would amplify a region of genomic DNA from each of these
genes, and from 2 genomic regions where the cell lines
did not show any copy number changes. These 2 assays
were used as calibrators to calculate dCt in subsequent
analyses. Genomic DNA from each of the cell lines was
diluted to 5 ng/μl. 1 μL genomic DNA, 8 μl H2O, 1 μl qPCR
assay, and 10 μl TaqMan Universal PCR Master Mix (Applied
Biosystems) were combined and cycled in an Applied Biosys-
tems 7900 real-time PCR instrument using the following
conditions: 50◦C for 2 minutes, 95◦C for 10 minutes, 40
cycles of 95◦C for 15 seconds, 60◦C for 1 minute, hold at 4◦C.

2.4. Agilent 244K CGH Arrays. 0.5–3 μg test and reference
(Promega, p/n G152A) genomic DNA samples were simul-
taneously digested with AluI and RsaI restriction enzymes.
Following fragmentation, the DNA samples were labeled
using an Agilent Genomic Enzymatic Labeling Kit. The
labeling kit uses random primers and the exo-Klenow frag-
ment to label DNA through incorporation of fluorescently
labeled nucleotides (Cy3-dUTP or Cy5-dUTP, for test or
reference DNA, resp.). Labeled samples were purified by
Microcon YM-30 columns or AutoScreen-96A Well plates.
The concentration of the purified samples was determined
using a NanoDrop ND-1000 spectrophotometer.

Equal amounts of test and reference fluorescently
labeled samples were pooled and heat denatured after
being combined with cot-1 DNA, Agilent aCGH block-
ing agent, and Agilent Hi-RPM hybridization solution.
Microarray hybridizations were performed using Agilent
SureHyb Hybridization chambers. Hybridization chambers
were loaded onto a rotisserie in an Agilent Hybridization
Oven and were incubated at 65◦C for 40 hours with
a rotational speed of 20 rpm. Following incubation, the
microarray slide was washed for 5 minutes in aCGH/ChIP-
on-chip Agilent Wash Buffer 1 at room temperature and 1
minute in Agilent Wash Buffer 2 at 37◦C. Microarray slides
were scanned on an Agilent scanner and raw data were
collected.

3. Results

3.1. Combining Signals from Multiple Probes on Affymetrix
500K GeneChip Arrays. The Affymetrix 500k GeneChip
array contains 25-mer oligonucleotides distributed over two
subarrays, Nsp1 and Sty1 containing 262,264 and 238,304
SNPs, respectively. Each SNP on the array is represented by
either six or ten oligonucleotide probe quartets consisting of
perfect-match (PM) and mismatch (MM) pairs for both SNP
alleles. These probes reside on Nsp and Sty PCR amplicons,
which range in size from 100 bp to 1143 bp. For CN analysis
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the signal intensities from the multiple probes representing a
SNP should be optimally combined to generate a single value
corresponding to the SNP.

It has been shown [14] that GC content and length of
PCR amplicons affect signal intensities from probes and
this effect varies from sample to sample. It also appears
that the effect of amplicon size is much stronger than the
effect of GC content. Our data (not shown) support this
conclusion. Therefore, we did not take GC content into
account. However, we made an adjustment for amplicon size.
First for each quartet and allele, the intensity IMM from the
MM probe is subtracted from the intensity IPM from the PM
probe: ΔI = IPM − IMM. Then for a given amplicon size s,
an average �Is over all quartets and alleles for SNPs residing
on PCR amplicons of size s within a subarray is calculated.
Finally, a normalized intensity IqX = ΔI/ΔIs is calculated for
each allele X and each quartet q where s is the size of the
corresponding amplicon.

The next step is to combine signals from both alleles A
and B within a quartet q using the following formula:

Sq = kAIqA + kBIqB, (1)

where kA and kB are normalization parameters. These
parameters are introduced to ensure that Sq is close to 2
independent of the genotype (AA, AB, or BB) of a sample.
The ratio of these parameters, kA/kB, represents uneven
allele amplification described previously for SNP arrays [15].
In order to estimate parameters kA and kB, we have used
genotyping data for 48 cell lines provided by Affymetrix.
Because these cell lines were collected from noncancerous
tissue, we assume that for almost all SNPs copy number will
be equal to 2. Therefore, for each SNP we sought to minimize
the following expression:

E(kA, kB) = NAA
(
kAxAA + kB yAA − 2

)2

+ NAB
(
kAxAB + kB yAB − 2

)2

+ NBB
(
kAxBB + kB yBB − 2

)2
.

(2)

Here NXX is the number of samples with genotype XX for
this SNP among 48 samples (NAA + NAB + NBB = 48), while
xXX is the median value of IqA in samples with genotype
XX and yXX is the median value of IqB in these samples.
Minimizing the function E(kA, kB) over parameters kA and
kB results in the following formulae:

kA =
2
(
CxCyy − CyCxy

)

(
CxxCyy − CxyCxy

) ,

kB =
2
(
CyCxx − CxCxy

)

(
CxxCyy − CxyCxy

) .

(3)

where

Cx = NAAxAA + NABxAB + NBBxBB,

Cy = NAAyAA + NAB yAB + NBB yBB,

Cxy = NAAxAAyAA + NABxAB yAB + NBBxBB yBB,

Cxx = NAAxAAxAA + NABxABxAB + NBBxBBxBB,

Cyy = NAAyAAyAA + NAB yAB yAB + NBB yBB yBB.

(4)

Using these formulae we calculated parameters kA and kB
for all SNPs on Affymetrix 500K GeneChip arrays except for
10,841 SNPs for which all 48 cell lines were homozygous.
These SNPs were excluded from the analysis. To evaluate
the strength of the uneven allele amplification effect we
calculated the median of max(kA/kB, kB/kA). The median is
about 1.40, meaning that for a typical SNP on Affymetrix
500K GeneChip arrays, signal intensity for one of the alleles
is about 40% higher than the signal intensity for the other
allele.

The values Sq for all quartets for SNP i are linearly
combined with weights reflecting their performance: Si =∑

q wqSq. The weights are selected to minimize the variance
of Si under the assumption that the deviations of Sq from
2 are independent for different quartets. Thus, the optimal
weights are determined by the following formula:

wq =
(

1/σ2
q

)

∑
p

(
1/σ2

p

) , (5)

where σ2
q is the variance of Sq within 48 cell lines. The

estimated variance of Si is

σ2
i =

1
∑

q

(
1/σ2

q

) . (6)

To evaluate the importance of optimization of weights for
different quartets, we can compare σ2

i with the corresponding
variance resulting from using equal weights for all quartets.
The estimate for the latter variance is s2

i = (1/ni)
∑

q σ
2
q ,

where ni is the number of quartets for SNP i. Median ratio of
the variances, s2

i /σ
2
i , over all SNPs is about 1.97 which means

that for a typical SNP using optimal weights should reduce
variance almost twofold.

For each SNP we have calculated σ2
i defined as (Si − 2)2

averaged over 48 cell lines. The median σ2
i for all SNPs is

0.0376. We have excluded 1,832 SNPs with σ2
i exceeding

an arbitrary cutoff 0.25. The important exception of the
described method concerns SNPs on the X chromosome
(outside the pseudoautosomal region). For these SNPs
parameters were determined using only cell lines from
females.

Some of the PCR amplicons on the Affymetrix 500K
GeneChip array contain more than one SNP. Any CN
changes affecting such an amplicon should equally affect all
SNPs within the amplicon. Therefore, signals Si for all SNPs
within an amplicon are averaged and assigned to one of
the SNPs while the other SNPs are excluded from further
analysis. This reduces the number of SNPs by 82,189 leaving
405,706 SNPs for CN analysis.
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Table 1: Median signal intensities calculated using parameters generated in this paper.

Cell line Median signal Comment

PC3 0.36 Homozygous deletion of PTEN

Data for 28 male cell lines provided by Affymetrix 1.14 Single copy of X chromosome outside of pseudoautosomal regions

NA04626 2.72 47,XXX

NA01416E 3.41 48,XXXX

NA06061 4.1 49,XXXXX

HTB27 5.31 CN estimated by qPCR for CCND1 is 6.5± 1.1

CRL1620 5.79 CN estimated by qPCR for EGFR is 8.6± 1.4

CCL251 6.41 CN estimated by qPCR for CCND1 is 10.6± 4.4

HTB25 8.22 CN estimated by qPCR for CCND1 is 13.8± 1.4

CRL2338 8.82 CN estimated by qPCR for CCND1 is 16.6± 0.7

HTB27 9.42 CN estimated by qPCR for ERBB2 is 18.6± 2.7

CRL1978 7.95 CN estimated by qPCR for CCND1 is 19.6± 6.5

HTB23 11.26 CN estimated by qPCR for CCND1 is 20.6± 2.6

HTB19 10.13 CN estimated by qPCR for EGFR is 20.8± 2.8

HTB127 13.93 CN estimated by qPCR for CCND1 is 26.1± 5.5

CRL2321 14.13 CN estimated by qPCR for CCND1 is 26.6± 5.7

HTB41 13.25 CN estimated by qPCR for CCND1 is 46.9± 7.1

HTB128 17.92 CN estimated by qPCR for CCND1 is 54.4± 14.7

HTB127 21.34 CN estimated by qPCR for ERBB2 is 56.5± 3.9
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Figure 1: Comparison between median signal intensities calculated
using parameters generated in this paper (y-axis) and CN estimates
obtained in a different way (x-axis). For details see Table 1. Blue
line represents correlation between median signal intensities and
CN values used in this study.

3.2. Relationship between SNP Signal Intensity and CN.
While normalized SNP signal intensities Si described in the
previous section are supposed to generate an average signal
of 2.0 for SNPs within regions of genome with CN = 2,
one should not expect that the average signal is equal to the
actual CN in the regions of the genome where CN is different
from two. For example, the slope of the relationship between
signal intensity from an array and the amount of DNA in
the solution differs from the ideal value 1.0 [16]. Moreover,
this relationship might be nonlinear as well. To evaluate this

effect for regions of the genome with CN = 1 we used
SNPs on the X chromosome (outside the pseudoautosomal
regions) for 28 cell lines from males provided by Affymetrix.
In addition, we have analyzed cell lines containing different
numbers of X chromosomes (all karyotypes in the paper
are described accordingly to ISCN 2009 nomenclature [17]):
NA04626 (47,XXX), NA01416E (48,XXXX), and NA06061
(49,XXXXX). This allowed us to estimate the relationship
between CN and signal intensity up to CN = 5. Finally, we
have selected a few cancer cell lines for which it has been
reported that certain genes are strongly amplified. These cell
lines and a reference sample RS were analyzed by qPCR assays
amplifying the corresponding genes as well as a reference
gene RG which has 2 copies in these cell lines. CNs for the
amplified genes were estimated using the formula CN =
2(1−CTgc+CTrc+CTgr−CTrr ), where CTxy is the CT value for gene x
(x = g for an amplified gene and x = r for the reference gene)
in sample y (y = c for a cell line and y = r for the reference
sample). The same cell lines were run on Affymetrix 500K
GeneChip arrays. Comparison of the results allowed us to
estimate the relationship between CN and signal intensity
for high CN values. Results of the experiments are shown
in Table 1 and Figure 1. Signal intensity for SNPs in regions
with CN > 8 increases roughly linearly with CN. Therefore,
for CN c the expected signal intensity S0(c) is given by Table 1
for c < 8 and S0(c) = 0.314c + 3.41 for c > 7.

3.3. Adjustment for Average CN and Contamination with
Normal DNA. As described above, one of the steps in
deriving Si involves normalization by average intensity of
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other SNPs. This normalization allows accurate estimation
of CN for noncancerous samples where most of the genome
has two copies. In cancerous samples the average CN, due to
amplifications and deletions, can be very different from two
and, therefore, additional signal normalization is required.
In addition, tumor samples are often contaminated with
noncancerous cells with most of the genome having two
copies. As a result, the expected signal intensity S(c) for an
SNP within regions with CN c is defined by the following
equation:

S(c) = β(S0(2)α + (1− α)S0(c)) = β(2α + (1− α)S0(c)).
(7)

Here β is a normalization factor to account for change in
average CN within the genome of cancerous cells, and α is the
degree of contamination of tumor samples with normal cells.
This equation is applicable to all types of samples: normal
noncancerous cells, cancer cell lines, and tumors. However,
for cancer cell lines we assume no contamination with
noncancerous cells and, therefore, α = 0. For noncancerous
samples we assume that the average CN is equal to 2.0 and,
therefore, β = 1 and α = 0.

In order to estimate the parameters α and β, we use
the following algorithm. First, for each SNP i we calculate
smoothed signal Ti:

log(Ti) =
(

1
N

)∑

j

log
(
Sj
)

, (8)

where the sum is taken over N = 101 SNPs surrounding SNP
i ( j = i − 50, . . . , i + 50). Then we calculate the histogram
H(T) of the smoothed signals with bin size of 0.1. The
histogram is expected to have local maxima corresponding
to CN values present in a given sample. Let n be the total
number of the local maxima and let Tk be the positions of
the maxima (k = 1, . . . ,n). For a given pair of parameters
α and β, for each maximum k we assign an integer CN
value ck which minimizes the absolute difference | log(Tk)−
log(S(ck))| where S(c) is given by (7). Then we calculate the
following sum:

E1
(
α,β

) =
∑

k

H(Tk)
(
log(Tk)− log(S(ck))

)2
. (9)

This sum measures how well a given pair of parameters α and
β fits the positions of all the maxima Tk. In order to find the
best parameters α0 and β0, we minimize E1(α,β) by direct
enumeration of all pairs of α and β with α within the interval
(0,1) and β within the interval (0.5,2). Unfortunately, this
minimization is not always able to distinguish between
the correct solution and incorrect ones. In order to avoid
incorrect solutions, before optimization over parameters α
and β we assign CN ck to some of the maxima Tk according
to the following rules.

(1) If there is only one maximum (n = 1), then c1 = 2.

(2) If n > 1 and the first maximum has SNP genotyping
call rate below 60%, then c1 = 0.

(3) If n > 1 and the first maximum has SNP heterozygos-
ity below 3%, then c1 = 1.

(4) If n > 2, c1 = 0 and the second maximum has SNP
heterozygosity below 3%, then c1 = 1.

(5) If n > 1 and the highest maximum is at least two
times higher than the second highest maximum, then
the highest maximum is assigned CN = 2.

Rule (2) is based on the assumption that the SNP
genotyping call rate should be low in the regions with CN =
0. Rules (3) and (4) are based on the assumption that SNP
heterozygosity should be low in the regions with CN = 1.
Both assumptions are valid for cell lines and tumors with low
contamination with noncancerous DNA. Rules (1) and (5)
are based on the assumption that the dominating CN equals
2.

3.4. Hidden Markov Model. The likelihood that SNPs have
copy numbers ci can be written as

L{ci} =
∏

i

exp

(

−
(
log(Si)− log(S(ci))

)2

(2σ2)

)

×
∏

i

(
Δ(ci+1, ci) + γ(1− Δ(ci+1, ci))

)
.

(10)

Here the first product is taken over all SNPs, and the
normal distribution is assumed for deviation of the natural
logarithm of the actual SNP signal Si forms the natural
logarithm of the expected signal S(ci). In addition, the
deviations are assumed to be independent and to have the
same standard deviation σ . The second product is taken
over all pairs of adjacent SNPs, Δ(ci+1, ci) = 1 if ci+1 = ci
and Δ(ci+1, ci) = 0 otherwise, and γ is the probability that
the adjacent SNPs have different CNs. The most likely CN
solution is the one that maximizes the likelihood L{ci}. The
most likely solution depends both on σ and γ or, more
precisely, on the value of −σ2 log(γ).

The likelihood defines Hidden Markov Model (HMM)
with the states being CNs of individual SNPs [18, 19].
Therefore one can use forward-backward procedure [19]
to find the maximum likelihood state. In order to make
the model computationally tractable, we limit the largest
possible CN to be 70. Another simplification is related to
the fact that individual chromosomes are independent and,
therefore, the maximization of the likelihood is performed
separately for all chromosomes. First, we find the maximum
likelihood state using values for α and β obtained by
minimization of the expression (9). Then we minimize over
α and β the following sum:

E2
(
α,β

) =
(

1
N

)∑

i

(
log(Si)− log(S(ci))

)2
. (11)
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Figure 2: Results of CN analysis for noncancerous cell lines from nuclear family: NA12056 from the father (a), NA12057 from the mother
(b), and NA10851 from the son (c).

Then we find the maximum likelihood state using values for
α and β obtained by minimization of the expression (11). We
repeat this iteration procedure until it converges as defined
by change in α upon one iteration being less than 3% and
change in β being less than 0.1%. Formula (11) also provides
the estimate of the variance σ2 in expression (10).

3.5. Analysis of 48 Normal Cell Lines. First we have analyzed
the data for 48 normal cell lines provided by Affymetrix.
One of the advantages of this analysis is that the samples
were collected from families (triplets), allowing us to test
our algorithm; germ line deletions and amplifications should
be inherited from parents. In addition, CN changes are
expected to be relatively uncommon. Using this dataset we
have optimized parameter γ in formula (10) to reduce the
number of false positive and false negative CN changes:
log(γ) = 54. We have found multiple amplifications with CN
up to five and heterozygous deletions (CN = 1) as well as a
few very small homozygous deletions. These observations are
consistent with published results [20]. As expected, we have

found CN = 1 for X chromosome for all males. Moreover, for
all males we have observed CN = 2 for the pseudoautosomal
regions.

Results of the analysis of one of the triplets (NA12056
from the father, NA12057 from the mother, and NA10851
from the son) are shown on Figure 2. All deletions and
amplifications in NA10851 are, as expected, inherited from
the parents: heterozygous deletion on chromosome 4 from
the father, heterozygous deletion on chromosome 7 from the
mother, amplification to CN = 3 on chromosome 10 from
the father, heterozygous deletion on chromosome 11 from
the mother (who actually has a homozygous deletion of this
region), and heterozygous deletion on chromosome 13 from
the father.

Similar analysis of the other triplets revealed some
incompatibilities between CN alterations in children and
their parents. Some of these incompatibilities are caused by
true somatic CN alterations in the samples as was reported
previously [20]. Other incompatibilities are caused by the
algorithm either missing some real alterations (false nega-
tives) or reporting some unreal alterations (false positives).



Journal of Biomedicine and Biotechnology 7

0

1

2

3

1 2 4 5 6 73 12 188 9 10 11 13 14151617 20 22

19 21 X

4

5

(a)

0.01

0.1

1

10

0.5 1 1.5 2 2.5 3 3.5 4

(b)

0

1

2

3

1 2 4 5 6 73 12 188 9 10 11 13 14151617 20 22

19 21 X

4

5

6

7

8

9

(c)

Figure 3: (a) Signal intensity of SNPs (y axis) for ovarian cancer cell line OVCAR8 before adjustment on genome size. (b) Fraction of SNPs
(x axis) with a certain signal intensity (y axis) for ovarian cancer cell line OVCAR8 (see (a)). (c) CN solution for ovarian cancer cell line
OVCAR8 after adjustment on genome size (k = 1.167).

Table 2: Heterozygosity and call rate of SNPs within seven maxima
of signal intensity for ovarian cancer cell line OVCAR8 (see
Figure 3(b)).

Position of a
maximum

SNP
heterozygosity (%)

Call rate (%) Height (%)

0.3 9.1 36.7 0.2

1.0 1.2 90.2 5.3

1.7 8 88.1 25.8

2.4 14.2 82 11.2

3.0 19 77.6 2.8

3.6 1 98.4 0.5

4.3 28.9 69.6 0.03

We found that the rate of false alterations is high for
alterations encompassing only a few SNPs. Starting from
seven SNPs the rate of false CN alterations is below 5%.

3.6. Analysis of 178 Cancer Cell Lines. As an example we
present here the analysis of the ovarian cancer cell line
OVCAR8. Smoothed signals Ti are shown in Figure 3(a) with
the corresponding histogram shown in Figure 3(b). There
are seven maxima (n = 7) in the histogram. Table 2 lists call
rates and heterozygosities for SNPs within the seven maxima
as well as heights H(Tk) of the maxima. SNPs within the first
maximum have low call rate and thus are assigned CN = 0.
SNPs within the second peak have low heterogeneity and
thus are likely to correspond to CN = 1. The third peak
has to correspond to CN = 2, which is supported by the
fact that this peak is the highest. Since this is a cell line, we
assume that α = 0. Minimization of E1(α = 0,β) over β gives
β = 1.18. After adjustment it becomes clear that the fourth
peak corresponds to CN = 3, the fifth to CN = 4, the sixth to
CN = 5, and the seventh to CN = 6. Running HMM refines
the estimate for β = 1.17. The final result of CN analysis
for this cell line is presented on Figure 3(c). Homozygous
deletions of several genes are observed including EVI1 and
WWOX.
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Table 3: Frequent homozygous deletions observed in 178 cancer cell lines. Chromosomal positions are based on March 2006 version of the
UCSC Human Genome Browser.

Region Number of observation Likely tumor suppressor gene

chr2:141238933-141834821 7 LRP1B

chr3:59686057-61195849 29 FHIT

chr4:91615328-92272605 6

chr6:162091010-162697695 5 PARK2

chr7:38238069-38371496 6

chr7:141707985-142210594 5

chr9:19866496-28550130 36 CDKN2A (p16), CDKN2B

chr10:88921717-91164155 6 PTEN

chr14:21159134-22067364 7

chr16:6161277-7101949 9

chr16:76814181-77773689 26 WWOX

chr20:14275899-15352425 22

Table 4: Frequent amplifications with CN> 9 observed in 178 cancer cell lines. Chromosomal positions are based on March 2006 version of
the UCSC Human Genome Browser.

Region Number of observations Likely oncogene

chr8:81240524-81974370 5 TPD52

chr8:113091665-114742342 10∗

chr8:128756816-128849113 17 MYC

chr8:142078709-142107781 7∗∗ PTK2

chr11:68619900-69985448 11 CTTN, FGF4, FGF3, FGF19, ORAOV1, CCND1, MYEOV

chr17:34999505-35264341 14 ERBB2

chr17:43477124-44795465 10

chr17:55677511-61149311 6 APPBP2, PPM1D, BCAS3

chr20:45554593-46054338 5 NCOA3

chr20:55503756-56241375 5

chr20:57622421-58603945 6

chr22:19057363-20130955 5 CRKL
∗One of these amplifications also involves MYC.
∗∗Two of these amplifications also involve MYC.

We have analyzed 178 different cancer cell lines (44
breast, 35 colon, 19 brain, 14 ovarian, 14 lung, 13 melanoma,
11 leukemia, seven pancreatic, six bladder, three kidney,
two uterus, two testicular, two prostate, two lymphoma,
one thyroid, one salivary gland, one retina, and one plas-
macytoma). The number of CN variations in these cell
lines varied from two to 369 (the median value being 94).
We have observed 510 homozygous deletions encompassing
seven or more SNPs. Homozygous deletions, which were
observed in at least five different cancer cell lines, are shown
in Table 3. Some of these deletions encompass well-known
tumor suppressor genes such as p16 and PTEN. Others might
encompass unknown tumor suppressor genes, and some of
these deletions might simply happen within fragile parts
of the genome. We have also observed 580 amplifications
with CN of at least 10. Those amplifications, which were
observed in at least five different cancer cell lines, are shown

in Table 4. Some of these amplifications encompass well-
known oncogenes such as MYC and ERBB2. Others might
encompass oncogenes which are not yet known.

3.7. Adjustment on Contamination with Benign Tissue in
Tumor Samples. In order to check how well our method
estimates the degree of contamination α of tumors with
benign tissue, we artificially contaminated DNA samples of
eight cancer cell lines (see Table 5) from different tissues with
DNA extracted from CEPH cell line NA12776. All cancer
cell lines as well as NA12776 were sampled from female
subjects. The DNA samples were quantitated by picogreen
three times for higher precision and then combined to give
degrees of contamination of the different cancer cell lines
with NA12776 DNA between 10% and 80%. After that we
ran these mixed samples on Affymetrix microarrays and



Journal of Biomedicine and Biotechnology 9

Table 5: Comparison of the degree of contamination of cancer cell lines with CEPH cell line NA12776 determined using the picogreen
quantitation (averaged over three measurements) and the algorithm presented in this paper.

Cancer cell line Tissue type Mix ratio from
DNA quantitation

Mix ratio from
CN analysis

Percent of SNPs with concordant
CN values for contaminated versus

pure cancer cell lines

HTB19 Breast 10± 1% 9.6% 97.1%

HTB76 Ovary 20± 4% 18.2% 98.6%

HTB127 Breast 30± 4% 33.6% 98.5%

CCL228∗ Colon 40± 3% 43.4% 95.9%

CCL253∗ Colon 50± 2% 60.7% 88.2%

HTB119 Lung 60± 2% 54.1% 99.8%

HTB9 Urinary bladder 70± 2% 74.3% 97.0%

HTB41 Salivary gland 80± 1% 84.7% 56.9%
∗For these two samples one of the picogreen measurements failed.

estimated degrees of contamination using our algorithm.
Results of this analysis as well as the mix ratio based on
DNA quantitation are presented in Table 5. For the majority
of samples the differences between the estimated α and the
DNA quantitation data were within a few percent. This is
quite remarkable, because the observed difference is close to
the error rate of the picogreen quantitation. As one could
expect, the observed differences tend to be higher for higher
contamination levels.

The cancer cell lines used in the mixing experiment were
also run on Affymetrix microarrays without any mixing.
Comparison between results of CN analysis of mixed versus
nonmixed samples is presented in Table 5. The concordance
between CN results is expressed as percent of SNPs with the
same CN. With one exception the concordance is above 95%
for contamination levels below 80%. While the sensitivity
of CN analysis inevitably decreases as contamination with
benign tissue increases (and small alterations in CN affecting
only a few SNPs become indistinguishable from noise), our
algorithm is able to determine the degree of contamination
as well as major changes in copy number correctly in strongly
contaminated samples.

Figure 4 demonstrates the importance of adjustment on
the contamination with benign tissue for CN analysis of
tumor samples. In Figure 4(a) one can see signal intensities
of SNPs for a colon tumor sample. The contamination of this
sample with benign tissue, determined by our program, is
about 48%. Such strong contamination leads to a dramatic
shift of levels of signal intensities for SNPs within regions
with different CN values. The right CN solution after
adjustment of signal intensity on contamination with benign
tissue is presented on Figure 4(b). Because this sample was
collected from a male subject, there is only one copy of X
chromosome in both tumor and normal cells. As a result,
despite contamination the signal intensity for SNPs within
the X chromosome (outside the pseudoautosomal regions)
is the same as it should be for SNPs within regions with
CN = 1 in the absence of any contamination. However,
one can see that the signal intensity of SNPs within large
heterozygous deletions on chromosomes 1, 6, 10, and 18

is significantly higher than the signal intensity of SNPs
within the X chromosome (see Figure 4(a)). SNPs within
amplified regions on chromosomes 13, 15, 16, and 17
have signal intensity as if their CNs equal 3. However,
after adjustment on contamination it becomes clear that
these are actually amplifications to CN = 4. Moreover,
SNPs within homozygous deletions on chromosomes 10
and 17 because of the contamination appear to have the
same signal intensity as SNPs within the X chromosome.
In Figure 4(c) we presented the CN solution, obtained
by the HMM algorithm, if adjustment on contamination
with benign tissue is not made. All CN variations in this
solution have been determined incorrectly (besides single
copy of the X chromosome): heterozygous deletions on
chromosomes 1 and 15 and amplification on chromosome 16
are lost altogether, positions for the heterozygous deletions
on chromosomes 6, 10, 18, and 21 are wrong, homozygous
deletions on chromosomes 10 (gene PTEN) and 17 are
instead called heterozygous, and, finally, CN = 3 is assigned
for the amplification on chromosome 15 instead of CN = 4.
Generally we have been able to determine CN values in solid
tumors even when the degree of contamination with benign
tissue is significant.

3.8. Using Agilent 244K Oligonucleotide Arrays for Copy
Number Analysis. Agilent 244K oligonucleotide arrays with
complete genome coverage are designed for copy number
analysis [21, 22]. Instead of SNP probes the array has 60-mer
oligonucleotide probes. Our method of analysis of Agilent
array data is very similar to the described method of analysis
of Affymetrix SNP array data with only two differences. First,
we do not need to combine signals from individual probes
into an SNP signal; rather we use signal intensities supplied
by Agilent software. Second, when we estimate α and β in (9),
we cannot use either SNP call rate or SNP heterozygosity.

4. Discussion

In this paper we have presented a new method of CN
analysis of the data from Affymetrix 500K GeneChip arrays
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Figure 4: Results of CN analysis of colon tumor sample (collected from male subject) significantly contaminated with benign tissue (∼48%).
(a) Signal intensity of SNPs (y axis) for this sample after adjustment on genome size but before adjustment on contamination with benign
tissue. (b) Correct CN solution for this sample after adjustment on both genome size and contamination with benign tissue. (c) Incorrect
CN solution for this sample after adjustment on genome size but without adjustment on contamination with benign tissue.

and Agilent 244K oligonucleotide arrays. The method is
designed to determine positions of CN variations as well as
to estimate actual CN. In most of the published algorithms,
authors attempt to determine position of CN variations and
distinguish between deletions and amplifications without
determining the actual value of CN [19]. We reason that
estimating actual CN is extremely important. For example,
it is likely that most CN variations with CN = 1, 3, and 4 are
random in the sense that they are not positively selected for
during cancer development. On the other hand, homozygous
deletions and strong amplifications are most likely to be
detected in the regions with genes related to cancer cell
survival and growth.

In order to be able to estimate actual CN within amplified
and deleted regions, we have determined how signal intensity
from different probes is related to CN, how to take into
account change of the genome size in cancer cell lines and
solid tumors as the result of somatic alterations, and finally
how to incorporate into the analysis contamination of the
solid tumors with the benign tissue. HMM has been used

to determine exact CN values as well as the positions of the
affected regions.

We have tested our method on 48 normal cell lines
derived from nuclear families. We have detected a number
of germ line CN alterations with proper inheritance from
parents to children. We also applied our algorithm to 178
cancer cell lines derived from different tissues. We identified
multiple regions with common homozygous deletions and
high-level amplifications. As expected some of these regions
harbor well-known oncogenes and tumor suppressor genes.
Other regions do not encompass well-known cancer-related
genes. Then we applied our algorithm to artificial mixes
of DNA derived from cancer cell lines with DNA derived
from normal cell lines. These mixes model contamination
of tumor samples with noncancerous cells. The estimates
of the contamination of cancer DNA with normal DNA
produced by our algorithm for these mixes matched closely
the corresponding experimental estimates using DNA quan-
titation by picogreen. Comparison between CN alterations
detected by our algorithm in the mixed samples versus pure
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samples showed very high concordance in particular for
contamination levels below 50%. Finally, using as an example
a colon cancer tumor sample with about 50% contamination
with normal DNA, we have demonstrated how erroneous
results of CN analysis can be without properly taking into
account the effect of the contamination.

There are several limitations to the presented approach.
To start with, both Affymetrix and Agilent arrays require
a minimum input amount of 500 ng genomic DNA. DNA
yields from processed tumor and cell culture samples are
highly variable, but typically a minimum of five 10 micron
slices of tissue or 107 cells is required to guarantee sufficient
DNA yield. While this approach is capable of detecting
CN alterations, it cannot detect other aberrations in cell
karyotypes such as reciprocal translocations and CN neutral
loss-of-heterogeneity regions. This algorithm also cannot
distinguish between germline CN variations and somatic CN
changes in cancer cell lines and tumors. To be able to do
that one has to use normal patient DNA as control. An
important limitation of the presented algorithm is related
to the assumption that all cancer cells within a cell line or
a tumor sample have the same CN profile. This assumption
seems to be correct for most of the cell lines and tumor
samples we have analyzed. However, some samples (∼10%)
are clearly heterogeneous; not all the cells in these samples
share all CN alterations. For such samples our method
produces erroneous results within the regions not shared
by all cancer cells. Fortunately, these regions represent only
a fraction (∼5%) of the genome and, therefore, do not
impact significantly the results for the rest of the genome.
Another limitation of the algorithm is the assumption of
independence of signal noise for closely positioned probes
(see (10)). However, it is reasonable to expect that the
noise for closely positioned probes should be correlated.
We do observe such correlation but the correlation appears
to be negligible for Affymetrix 500K SNP arrays and
Agilent 244K oligonucleotide arrays. On the other hand,
we observed a very strong correlation for adjacent probes
on custom Agilent arrays with extremely dense coverage of
specific regions (data not shown). This correlation strongly
affects the performance of our algorithm and, most likely,
other published algorithms; in particular, multiple false CN
alterations are being observed. It would be advantageous to
modify the presented algorithm to take properly into account
this correlation for arrays with dense coverage.
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