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Abstract: The zeolitic imidazolate framework (ZIF−8)@polyacrylonitrile (PAN) nanofiber membrane
was prepared and carbonized for heavy metal cadmium ion (Cd2+) adsorption in aqueous medium.
Zinc oxide (ZnO) was first sputtered onto the surface of the PAN electrospun nanofiber membrane
to provide a metal ion source. Then, the ZIF−8@PAN nanofiber membrane was prepared via in
situ solvothermal reaction and carbonized in a tube furnace at 900 ◦C under a N2 atmosphere
to enhance adsorption performance. The synthesized ZIF−8 particles with polyhedral structure
were uniformly immobilized on the surface of the PAN electrospun nanofiber membrane. After
being heated at 900 ◦C, the polygonal ZIF−8 shrank, and the carbonized ZIF−8@PAN nanofiber
membrane was obtained. Compared with the nanofiber membrane without being carbonized, the
adsorption capacity of the carbonized ZIF−8@PAN nanofiber membrane reached 102 mg L−1, and
its Cd2+ adsorption efficiency could be more than 90% under the adsorption temperature of 35 ◦C
and solution of pH = 7.5 conditions. According to the adsorption thermodynamics analysis, the Cd2+

adsorption process of the carbonized ZIF−8@PAN nanofiber membrane was spontaneous. The whole
Cd2+ adsorption process was more suitably described by the pseudo second-order adsorption kinetics
model, indicating that there exists a chemical adsorption mechanism besides physical adsorption.

Keywords: electrospun nanofiber membrane; ZIF−8; carbonization; cadmium ion; adsorption

1. Introduction

With the development of the global economy and continuous progress of light industry,
the discharge of industrial waste water has rapidly increased. The pollutants in waste water
containing heavy metal ions have entered and accumulated in drinking water resources
and the soil [1,2], which not only affects the output of agricultural products, but also
ultimately endangers human health through the food chain [3–5]. The existing methods
used to remove heavy metal pollutions mainly include filtration [6], adsorption [7,8],
membrane separation [9], ion exchange [10] and photocatalytic degradation [11]. Among
them, the adsorption separation has been one of the most popular methods on account of
its effectiveness and simplicity.

Nanofiber membranes produced by the electrospinning technique are of high specific
surface area and porosity due to their low diameter of several tens of nanometers to few
hundred nanometers. As a result, they have been widely used in the field of adsorption
and separation, air filtration, drug delivery system, tissue engineering, antimicrobial appli-
cations, catalysis, energy storage devices, and controllable water absorption [12–19]. Poly-
acrylonitrile (PAN) is a kind of polymer material with abundant functional cyano−groups
(–CN) on its macromolecular chain, which results in its excellent thermal and chemical sta-
bility, and resistance to solvent, oxidative degradation, sunlight, and weather. Additionally,
it can be used as precursor for carbon fibers [20]. Electrospinning of PAN into nanofiber
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membrane may expand its applications in adsorption and separation due to the obtained
nano−structural characteristics. However, pure PAN nanofiber membrane do not have
sufficient adsorption ability of heavy metal ions [21,22]. Functional modification is a good
choice to improve the adsorption performance of PAN nanofiber membrane [22,23].

Over the past few decades, metal–organic frameworks (MOFs) have attracted tremen-
dous interest as a new class of porous materials because of their advantages of high porosity,
low density, large specific surface area, regular channel, adjustable pore size, and structural
diversity [24,25]. They are composited by metal ion sources and organic ligands, where
metal ions are connection sites, and organic ligands support the three−dimensional exten-
sion of space. Their controllable structures and designable components could guarantee a
high adsorption ability with their abundant active sites, which allows MOFs to be used as
one of the suitable candidates in effective heavy metal ion adsorption [24–26]. Therefore,
MOFs are ideal materials for functional modification of PAN to obtain efficient heavy
metal adsorption ability. Efome et al. [27] prepared an electrospun nanofiber composite
membrane for the adsorption of Cd2+and Zn2+ in water via the co−electrospinning of
PAN and water−stable Zr−based MOF−808. They found that the maximum adsorption
capacities of PAN/MOF−808 with pore size of 0.5 to 1 µm for Cd2+ and Zn2+ were 225.05
and 287.06 mg g−1, respectively. The high separation performance and reusability of the
PAN/MOF−808 membrane and the outstanding water stability of MOF−808 suggested
that this membrane has potential application prospects for water treatment. Jamshidifard
et al. [28] synthesized UiO−66−NH2 MOF by the microwave heating method and incorpo-
rated this MOF into the PAN/chitosan nanofiber membrane for the removal of Pb2+, Cd2+,
and Cr6+ from aqueous solutions through adsorption and membrane filtration processes. It
was found that the prepared PAN/chitosan/UiO−66−NH2 nanofibrous adsorbent had
an average fiber diameter of 235 nm. The maximum monolayer adsorption quantities of
the adsorbent for Pb2+, Cd2+, and Cr6+ ion sorption were 441.2, 415.6, and 372.6 mg g−1

under the optimal condition, respectively. When the simultaneous adsorption was carried
out, the metal ion sorption was in order of Pb2+ > Cd2+ > Cr6+. Yang et al. [29] fabricated a
zeolitic imidazolate framework−8 (ZIF−8)@ZIF−8/PAN nanofiber membrane with a high
surface area of 871.0 m2 g−1 by the incorporation of ZIF−8 with PAN electrospun nanofiber
membrane, followed by the in situ growth of ZIF−8 onto the surface of the nanofibers for
effective adsorption and reduction to Cr6+ from aqueous media. The results showed that
Cr6+ could be effectively removed with the maximum adsorption capacity of 39.68 mg g−1

and with better recyclability. Moreover, toxic Cr6+ could be further reduced partially to
the relatively harmless Cr3+ on the basis of the proposed feasible adsorption–reduction
mechanism. Peng et al. [30] mixed zinc acetate, dimethylimidazole, and polyethylene to
form the ZIF−8 precursor, and they immobilized this precursor on the surface of a PAN
nanofiber membrane by hot pressing to fabricate ZIF−8@PAN adsorbent for Cu2+ removal.
The average pore size of the ZIF−8@PAN adsorbent was 2.66 nm, and its mass loss was
approximately 40.0% at 280 ◦C. The fabricated adsorbent showed good performances with
fast flux (12,000 L/(m(2)h)) and high filtration efficiency (96.5%) for Cu2+. Zhang et al. [31]
first prepared a UiO−66−(COOH)2/PAN nanofibrous substrate by electrospinning and
then cast a calcium alginate layer onto the nanofibrous substrate surface by using an auto-
mated coating applicator for the removal of Pb2+ in the waste water. They found that with
the increase of MOF doping, the surface roughness of PAN−UiO−66−(COOH)2 nanofiber
was enhanced, and more and more MOF particles were wrapped tightly in nanofibers. The
Pb2+ adsorption capacity of the resulting composite membrane was 195.9 mg g−1.

ZIF−8 is a subclass of MOFs made of metal zinc ions (Zn2+) tetrahedrally coordinated
to 2−methylimidazole organic linker. It is of great promise for removing contaminants from
water in consideration of its excellent water and thermal/chemical stability [32,33]. Espe-
cially after being carbonized at high temperatures, ZIF−8 can partly generate nano−porous
carbon, which further increases specific surface area and adsorption capacity [34,35]. How-
ever, in the traditionally solvothermal synthesis reaction of ZIF−8, the metal ion source
is provided by some explosive or toxic chemicals, for example, zinc nitrate hexahydrate
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(Zn (NO3) 2·6H2O) [27–29] or zinc acetate [30]. Herein, our paper considers an effective
and environmentally friendly way to provide Zn2+ as a metal ion source for the synthesis
of ZIF−8.

In this paper, magnetron sputtering technology was used to sputter a uniform zinc
oxide (ZnO) coating on the PAN electrospun nanofiber membrane as a Zn2+ source re-
quired for the subsequent ZIF−8 synthesis reaction. Then, 2−methylimidazole was used
as a ligand, and ZIF−8 was immobilized on the surface of PAN electrospun nanofiber
membrane through the in situ solvothermal synthesis method. Herein, dangerous chem-
icals were avoided, and the fabrication of ZIF−8@PAN composite nanofiber membrane
became safer and simpler. Finally, the carbonized ZIF−8@PAN nanofiber membrane was
prepared by high−temperature calcination to improve the adsorption performance of Cd2+

in aqueous medium.

2. Materials and Methods
2.1. Materials

N,N−dimethylformamide (DMF) and ethanol were purchased from Hangzhou Gaojing
Fine Chemical Industry Co., Ltd. (Hangzhou, China). ZnO target (purity 99.99%) was ob-
tained from Beijing Yijie Material Technology Co., Ltd. (Beijing, China). 2−methylimidazole
(98%) was purchased from Aladdin Industrial Corporation (Shanghai, China). Cadmium
chloride was bought from Shanghai Macklin Biochemical Co., Ltd. (Shanghai, China). PAN
with a weight−average molecular weight of 150,000 was provided from Hangzhou Acrylon
Co., Ltd. (Hangzhou, China). Deionized water and PAN electrospun nanofiber membrane
with a thickness of about 200 µm were prepared in our laboratory. All chemicals were used
as received without further purification.

2.2. Preparation of ZnO@PAN Nanofiber Membrane

Prior to electrospinning, PAN was dissolved in DMF to obtain a spinning dope with a
concentration of 12%. Then, the prepared spinning dope was put into a 10 mL disposable
syringe and electrospun. The electrospinning flow rate was 0.05 mL/min. The needle
tip–collector distance was 12 cm, and the electrospinning voltage was 12 kV. During the
electrospinning, the solvent was volatilized at room temperature. After that, a uniform
ZnO coating was initially sputtered on the obtained PAN electrospun nanofiber membrane
using magnetron sputtering technology. The PAN electrospun nanofiber membrane with a
diameter of 4 cm was scissored and fixed on the disc, while the ZnO target was fixed on
the target cavity of the instrument. The parameters of the radio frequency (RF) magnetron
sputtering model were set at room temperature. The vacuum degree was 1.0 × 10−4 Pa,
and the pressure was kept at 1.33 Pa. The sputtering power was 100 W, and the sputtering
time was 40 min. Then, the ZnO@PAN nanofiber membrane was obtained for the next step.

2.3. Preparation of ZIF−8@PAN Nanofiber Membrane

The ZIF−8@PAN nanofiber membrane was fabricated via in situ solvothermal reaction
in a high−pressure reactor. A 2 cm × 2 cm ZnO@PAN nanofiber membrane was cut
and immersed in a mixed solution composed of DMF and 2−methylimidazole with a
concentration of 1%. After being completely immersed, ZnO@PAN nanofiber membrane
was placed in the inner cavity of the high−pressure reactor at a temperature of 100 ◦C for
7 h. After that, the nanofiber membrane was dried at 80 ◦C for 2 h under vacuum condition,
and the ZIF@PAN nanofiber membrane was obtained.

2.4. Preparation of the Carbonized ZIF−8@PAN Nanofiber Membrane

The carbonized ZIF−8@PAN nanofiber membrane adsorbent was prepared by the
calcination of the resulting ZIF−8@PAN nanofiber membrane at a certain high temperature
in a tube furnace. After having been dried, the ZIF−8@PAN composite nanofiber membrane
was heated in a tubular calciner at 900 ◦C for 2 h with a heating ramp rate of 5 ◦C min−1

under a N2 flow. The carbonized ZIF−8@PAN nanofiber membrane was finally obtained
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and is marked by 900 ◦C−ZIF−8@PAN in the figures. The above synthetic and preparation
route are described as follows in Figure 1.
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Figure 1. Fabrication route of the carbonized ZIF−8@PAN nanofiber membrane.

2.5. Characterization

X−ray diffraction (XRD, Rigaku D/MAX, Tokyo, Japan) was carried out by using
the Cu Kα (λ = 1.5406 Å) radiation source in the diffraction angle (2θ) range of 5–50◦ by
a step of 5◦ min−1 at 40 kV and 40 mA. Fourier transform infrared spectroscopy (FTIR,
Nicolet 57000, Thermo Scientific, Waltham, MA, USA) of the samples were recorded in
the spectral range of 4000–400 cm−1 using the potassium bromide disk method. Raman
spectrum (LabRam ARAMIS, Oxford, UK) was performed in the spectral range of 500–
2000 cm−1. The excitation wavelength was 514 nm. The morphologies of the samples
were observed by field emission scanning electron microscopy (SEM, JSM−5610LV, Tokyo,
Japan). The samples were cut into small pieces and fixed on the copper sample stage by
use of conductive tape. All of the samples were plated with a thin layer of gold before
inspection. The acceleration voltage used was 3 kV. Moreover, energy dispersive X−ray
spectrometry (EDS) mode was used to identify the samples.

2.6. Adsorption Performance

The Cd2+ adsorption performance of the ZIF−8@PAN nanofiber membrane adsorbent
before and after carbonization were evaluated by atomic absorption spectrograph (AAS,
Varian AA−110, Centennial, CO, USA). Cd2+ mother liquor with a concentration of 20 mg
L−1 was configured and diluted into 10 mg L−1 standard solutions with a pH value of
6.5 by hydrochloric acid. Then this Cd2+ standard solution with a volume of 450 mL was
put into a 500 mL beaker. Moreover, about 40 mg adsorbent was completely immersed
in this beaker. After that, this beaker was sealed and put in a 20 ◦C water bath for about
72 h to ensure that the adsorption had reached equilibrium. Finally, the solution was
separated from the adsorbent by means of the high−speed centrifuge with a speed of
5000 rpm, and the residual Cd2+ concentration in the supernatant was analyzed by AAS.
The intensity (absorbance) of the adsorption peak at 228.8 nm was recorded. The Cd2+

adsorption efficiency was calculated by the following equation:

Adsorption efficiency(%) =
C0 − Ct

C0
× 100% (1)

where C0 is the initial concentration of Cd2+ standard solution; Ct is the Cd2+ concentration
at a certain adsorption time t.

To explore the effect of water bath temperature during the adsorption process on the
Cd2+ adsorption performance of the carbonized ZIF−8@PAN nanofiber membrane, the
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above test steps were repeated at various water bath temperatures (20 ◦C, 25 ◦C, 35 ◦C
and 45 ◦C) under pH = 6.5 condition. The adsorption thermodynamics of the carbonized
ZIF−8@PAN nanofiber membrane for Cd2+ was investigated at three temperatures of 20 ◦C
(293 K), 25 ◦C (298 K), and 35 ◦C (308 K), respectively. The Gibbs free energy formula [36,37]
was used:

InKd =
∆Sθ

R
− ∆Hθ

RT
(2)

∆Gθ = ∆Hθ − T∆Sθ (3)

In Equation (2), T (K) is the Kelvin temperature, and R = 8.314 J mol−1 K−1 and
stands for the universal gas constant. Kd is the thermodynamic equilibrium constant of the
adsorption process, which can be calculated from the ratio of Qe (mg·g−1) to Ce (mol·L−1).
Qe represents the equilibrium adsorption capacity of Cd2+, and Ce is the equilibrium
concentration of the solution. Qe can be calculated by the following formula:

Qe =
(C0 − Ct)V

m
(4)

where m is the mass of the adsorbent, and V is the volume of the Cd2+ solution. In
Equation (3), ∆Hθ and ∆Sθ are the adsorption enthalpy change and adsorption entropy
change, respectively, and can be obtained by the plot of lnKd vs. 1/T.

Additionally, the effect of pH value of the Cd2+ standard solution on the Cd2+ adsorp-
tion performance of the carbonized ZIF−8@PAN nanofiber membrane was also discussed
under certain adsorption temperature. By use of hydrochloric acid and sodium hydroxide,
the pH value of the Cd2+ standard solution with a concentration of 10 mg L−1 were adjusted
to 5.5, 6.5, 7.5, and 8.5 at 20 ◦C, respectively. Then, the Cd2+ adsorption performance of
the carbonized ZIF−8@PAN nanofiber membrane were tested. Furthermore, the adsorp-
tion mechanism was studied with the pseudo first-order [38,39] and second-order [40]
adsorption equations, respectively.

The pseudo first-order adsorption kinetic equation is as follows:

In(Qe − Qt) = In(Qe)− k1t (5)

The pseudo second-order adsorption equation is as follows:

t
Qt

=
1

k2Q2
e
+

t
Qe

(6)

where k1 and k2 are the pseudo first-order and second-order adsorption rate
constants, respectively.

3. Results and Discussion
3.1. Characterization of Adsorbents

Figure 2 shows SEM images of the original PAN, ZIF−8@PAN, and the carbonized
ZIF−8@PAN nanofiber membrane, respectively. As seen in Figure 2a, the surface of the
PAN nanofibers was relatively smooth, and the average fiber diameter was about 163 nm
by use of the Image J software analysis. After the solvothermal reaction, as shown in
Figure 2b, a layer of ZIF−8 polyhedral particles with uniform size was attached onto the
surface of the PAN electrospun nanofiber membrane. The enlarged image in the upper right
corner on Figure 2b clearly shows that the particles had a rhombic dodecahedron structure,
which is consistent with the morphology of ZIF−8 reported in the references [1,2]. This
phenomenon implies that ZIF−8 might be synthesized on the surface of the PAN nanofiber
membrane via in situ growth. After being carbonized at 900 ◦C, ZIF−8 on the surface of
PAN nanofiber membrane still maintained the rhombic dodecahedron structure, as shown
in Figure 2c. However, the profile of the polygonal ZIF−8 particles shrank, which may be
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attributed to the structural damage of ZIF−8 in view of Zn evaporation at high carbonizing
temperature [41]. On the other hand, the morphology of PAN fibers changed very little.
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Figure 2. SEM images of original PAN electrospun nanofiber membrane (a), the ZIF−8@PAN
nanofiber membrane (b), and the carbonized ZIF−8@PAN nanofiber membrane (c).

The element species of the nanofiber membrane before and after functional modifi-
cation was performed by EDS to confirm the carbonization of ZIF−8, and the results are
shown in Figure 3. In Figure 3a, there were just C and N elements for the original PAN
electrospun nanofiber membrane. For the ZIF−8@PAN nanofiber membrane, as seen in
Figure 3b, Zn and O elements were introduced, reflecting that the ZIF−8 particles existed
on the surface of the PAN nanofiber membrane. After high temperature calcination, the Zn
element in ZIF−8 disappeared, as shown in Figure 3c. Hsiao et al. [41] verified that the Zn
or ZnO in the ZIF−8 structure can be removed and porous carbon generated after ZIF−8
is calcinated between 800 and 1000 ◦C. Thus, the result shown in Figure 3c suggests that
ZIF−8 on the surface of the PAN nanofiber membrane was carbonized.

Polymers 2022, 14, x FOR PEER REVIEW 6 of 15 
 

 

structure, which is consistent with the morphology of ZIF−8 reported in the references 

[1,2]. This phenomenon implies that ZIF−8 might be synthesized on the surface of the PAN 

nanofiber membrane via in situ growth. After being carbonized at 900 °C, ZIF−8 on the 

surface of PAN nanofiber membrane still maintained the rhombic dodecahedron struc-

ture, as shown in Figure 2c. However, the profile of the polygonal ZIF−8 particles shrank, 

which may be attributed to the structural damage of ZIF−8 in view of Zn evaporation at 

high carbonizing temperature [41]. On the other hand, the morphology of PAN fibers 

changed very little. 

 

  

Figure 2. SEM images of original PAN electrospun nanofiber membrane (a), the ZIF−8@PAN nano-

fiber membrane (b), and the carbonized ZIF−8@PAN nanofiber membrane (c). 

The element species of the nanofiber membrane before and after functional modifi-

cation was performed by EDS to confirm the carbonization of ZIF−8, and the results are 

shown in Figure 3. In Figure 3a, there were just C and N elements for the original PAN 

electrospun nanofiber membrane. For the ZIF−8@PAN nanofiber membrane, as seen in 

Figure 3b, Zn and O elements were introduced, reflecting that the ZIF−8 particles existed 

on the surface of the PAN nanofiber membrane. After high temperature calcination, the 

Zn element in ZIF−8 disappeared, as shown in Figure 3c. Hsiao et al. [41] verified that the 

Zn or ZnO in the ZIF−8 structure can be removed and porous carbon generated after ZIF−8 

is calcinated between 800 and 1000 °C. Thus, the result shown in Figure 3c suggests that 

ZIF−8 on the surface of the PAN nanofiber membrane was carbonized. 

  

Polymers 2022, 14, x FOR PEER REVIEW 7 of 15 
 

 

 

Figure 3. EDS spectra of the original PAN electrospun nanofiber membrane (a), ZIF−8@PAN nano-

fiber membrane (b), and the carbonized ZIF−8@PAN nanofiber membrane (c). 

To further explore the structure of the carbonized ZIF−8@PAN nanofiber membrane, 

XRD analysis was performed at room temperature and is plotted in Figure 4. In Figure 4, 

for the ZIF−8@PAN nanofiber membrane, there were multiple diffraction peaks at around 

7.4°, 10.5°, 12.8°, 14.8°, 16.5°, and 18.1°, which were identified with the characteristic peaks 

of the simulated XRD pattern of ZIF−8 from the CCDC archive (602538). These diffraction 

peaks were attributed to (011), (002), (112), (022), (013), and (222) crystal planes of ZIF−8, 

respectively [34,35,42]. Moreover, two strong characteristic peaks could be seen at 38.3° 

and 44.5°, which were caused by the existence of aluminum foil as the support material 

for the nanofiber membrane. After the ZIF−8@ PAN nanofiber membrane was carbonized 

at 900 C, the corresponding characteristic diffraction sharp peaks of ZIF−8 disappeared, 

and the diffraction peaks reflecting the amorphous structure appeared. The reason is that 

the Zn element disappeared on account of the evaporation at high temperature, causing 

the crystalline structure of ZIF−8 to be destroyed. In the reported research by Abbsi et al. 

[34], the same phenomenon was also observed. Abbsi et al. found that the characteristic 

peaks of ZIF−8 disappeared, and the diffraction peaks of the amorphous graphitized struc-

ture were produced when ZIF−8 was heated to about 908 °C, meaning that the Zn element 

was evaporated, and ZIF−8 was carbonized. Thus, it may be speculated that our 

ZIF−8@PAN nanofiber membrane was carbonized at 900 °C. The carbonized ZIF−8 has a 

higher surface area, which is helpful to promote absorption performance [34,35,41]. 

 

Figure 4. XRD patterns of the ZIF−8@PAN nanofiber membrane, the simulated ZIF−−8, and the car-

bonized ZIF−8@PAN nanofiber membrane. 

FTIR spectra of the ZIF−8@PAN nanofiber membrane before and after carbonization 

are shown in Figure 5a. The FTIR spectrum of the ZIF−8@PAN nanofiber membrane re-

vealed the characteristic absorption peaks at 1145 cm−1 and 995 cm−1, which is attributed 

to C–N bonds. The absorption peak appearing at 1585 cm−1 was due to the stretching vi-

bration of the C=N bond on the benzene ring. Additionally, the two absorption peaks 
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To further explore the structure of the carbonized ZIF−8@PAN nanofiber membrane,
XRD analysis was performed at room temperature and is plotted in Figure 4. In Figure 4,
for the ZIF−8@PAN nanofiber membrane, there were multiple diffraction peaks at around
7.4◦, 10.5◦, 12.8◦, 14.8◦, 16.5◦, and 18.1◦, which were identified with the characteristic peaks
of the simulated XRD pattern of ZIF−8 from the CCDC archive (602538). These diffraction
peaks were attributed to (011), (002), (112), (022), (013), and (222) crystal planes of ZIF−8,
respectively [34,35,42]. Moreover, two strong characteristic peaks could be seen at 38.3◦

and 44.5◦, which were caused by the existence of aluminum foil as the support material for
the nanofiber membrane. After the ZIF−8@ PAN nanofiber membrane was carbonized at
900 ◦C, the corresponding characteristic diffraction sharp peaks of ZIF−8 disappeared, and
the diffraction peaks reflecting the amorphous structure appeared. The reason is that the
Zn element disappeared on account of the evaporation at high temperature, causing the
crystalline structure of ZIF−8 to be destroyed. In the reported research by Abbsi et al. [34],
the same phenomenon was also observed. Abbsi et al. found that the characteristic peaks
of ZIF−8 disappeared, and the diffraction peaks of the amorphous graphitized structure
were produced when ZIF−8 was heated to about 908 ◦C, meaning that the Zn element was
evaporated, and ZIF−8 was carbonized. Thus, it may be speculated that our ZIF−8@PAN
nanofiber membrane was carbonized at 900 ◦C. The carbonized ZIF−8 has a higher surface
area, which is helpful to promote absorption performance [34,35,41].
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Figure 4. XRD patterns of the ZIF−8@PAN nanofiber membrane, the simulated ZIF−−8, and the
carbonized ZIF−8@PAN nanofiber membrane.

FTIR spectra of the ZIF−8@PAN nanofiber membrane before and after carbonization
are shown in Figure 5a. The FTIR spectrum of the ZIF−8@PAN nanofiber membrane
revealed the characteristic absorption peaks at 1145 cm−1 and 995 cm−1, which is attributed
to C–N bonds. The absorption peak appearing at 1585 cm−1 was due to the stretching
vibration of the C=N bond on the benzene ring. Additionally, the two absorption peaks
around 665 cm−1 and 743 cm−1 were attributed to the stretching vibrations of =CH and
N–H, respectively. These results further illustrate that the ZIF−8@PAN nanofiber mem-
brane was obtained [43,44]. For the carbonized ZIF−8@PAN nanofiber membrane, the
relevant characteristic peaks of ZIF−8 disappeared. Moreover, two new characteristic
peaks appeared at 1560 cm−1 and 1260 cm−1, which is explained by the formation of a
porous carbon structure after high temperature calcination of the ZIF−8@PAN nanofiber
membrane [45].
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nanofiber membrane, and (b) Raman spectrum of the carbonized ZIF−8@PAN nanofiber membrane.

The Raman spectrum of the carbonized ZIF−8@PAN nanofiber membrane was carried
out and is plotted in Figure 5b. As shown in Figure 5b, both the G peak at 1584 cm−1

and the D peak at 1330 cm−1 can be clearly seen. Generally, the G peak is caused by the
stretching motion of a carbon atom with sp2 hybridization in carbon rings or a carbon
chain. The D peak is induced by the disorder and defect structures of the materials. The
appearance of the G peak and D peak confirmed that the structure of ZIF−8 on the surface
of PAN became unperfect after being carbonized at 900 ◦C, which matches with that of
XRD analysis.

3.2. Cd2+ Adsorption Performance

The Cd2+ adsorption performance of the ZIF−8@PAN nanofiber membrane before
and after carbonization were evaluated and compared with the original PAN electrospun
nanofiber membrane, as shown in Figure 6. It can be seen in Figure 6 a,b that when the
original PAN nanofiber membrane was used as an adsorbent, the Cd2+ concentration in
the solution was hardly changed, and its Qe value was zero, indicating that the original
PAN nanofiber membrane could not adsorb Cd2+. The ZIF−8@PAN nanofiber membrane
exhibited limited Cd2+ adsorption ability, and its Qe value and adsorption efficiency were
about 25 mg L−1 and 20% after adsorption equilibrium was reached, respectively, as shown
in Figure 6b,c. For the carbonized ZIF−8@PAN nanofiber membrane, as the adsorption
time increased, the Cd2+ concentration quickly declined in the initial eight hours. There-
after, the adsorption rate slowed down until about 50 h, as shown in Figure 6a. It can
be observed in Figure 6b that when the Cd2+adsorption equilibrium was obtained, the
Qe value increased to 99 mg L−1, and the adsorption efficiency could reach about 88%.
These phenomena manifest that compared with the ZIF−8@PAN nanofiber membrane,
the carbonized ZIF−8@PAN nanofiber membrane had a higher Cd2+ adsorption ability,
which is attributed to the increased contact area between the adsorbent and Cd2+ after the
ZIF−8@PAN nanofiber membrane was carbonized.

3.3. Effect of Temperature

Temperature plays an important role in the whole adsorption process. Thus, the
effect of adsorption temperature on the Cd2+ adsorption performance of the carbonized
ZIF−8@PAN nanofiber membrane was discussed and is plotted in Figure 7. Under the
condition of pH = 6.5, when the Cd2+adsorption system was put into a water bath with dif-
ferent temperatures, both the Qe value and the adsorption efficiency of Cd2+ first increased
with the increasing of the water bath temperature from 20 ◦C to 35 ◦C. At the adsorption
temperature of 35 ◦C, the Qe value and the adsorption efficiency were about 89 mg g−1 and
79%, respectively. However, when the adsorption temperature was more than 35 ◦C, the
Qe value and adsorption efficiency reduced. In fact, during the adsorption process, there
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existed a competing relationship between adsorption and desorption. In the near room
temperature range, with the increasing of the adsorption temperature, the intensity of Cd2+

Brownian movement increased while the Cd2+ solution viscosity decreased, meaning the
more contact opportunity between Cd2+ and the surface of the carbonized ZIF−8@PAN
nanofiber membrane. At this time, the Cd2+ adsorption rate was faster than its desorption
rate. However, the Cd2+ desorption effect was dominant at the adsorption temperature
above 35 ◦C. The reason is that the higher temperature may have led to the more violent
movement of Cd2+ and provided enough energy to the Cd2+ desorption from the adsorbent.
Thus, it is believed that the Cd2+ adsorption effect is best when the adsorption temperature
is 35 ◦C.
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3.4. Adsorption Thermodynamics Analysis

The adsorption thermodynamics of the carbonized ZIF−8@PAN nanofiber membrane
for Cd2+ was analyzed by the Gibbs free energy formula at three temperatures of 20 ◦C
(293 K), 25 ◦C (298 K), and 35 ◦C (308 K), respectively. The obtained thermodynamic data
is plotted and fitted in Figure 8. Some adsorption thermodynamic parameters are listed
in Table 1.
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membrane at different temperatures.

Table 1. The Cd2+ adsorption thermodynamic parameters of the carbonized ZIF−8@PAN nanofiber
membrane at different temperatures.

∆Hθ/(kJ·mol−1) ∆Sθ/(J·mol−1·K−1)
∆Gθ/(kJ·mol−1)

293 K 298 K 308 K

41.6 167.1 −7.6 −9.2 −10.5

It can be seen in Table 1 that all of the calculated ∆Gθ values at various temperatures
were negative, indicating that the Cd2+ adsorption process of the carbonized ZIF−8@PAN
nanofiber membrane was spontaneous and feasible, which theoretically proves the ad-
sorption ability of the carbonized ZIF−8@PAN nanofiber membrane for Cd2+ in aqueous
solution. ∆Hθ was positive, as seen in Table 1, indicating that the adsorption of the car-
bonized ZIF−8@PAN nanofiber membrane for Cd2+ is an endothermic process and the
increasing temperature is conducive to Cd2+ adsorption. It is suggested that the mass
transfer resistance is produced when Cd2+ displaces from the aqueous solution to the
surface of the carbonized ZIF−8@PAN nanofiber membrane. Therefore, the higher energy
is required to overcome the mass transfer resistance besides for the energy released by
the combination of Cd2+ and the adsorbent surface. Additionally, ∆Sθ was also positive,
indicating that the disorder degree at the solid–liquid two phase interface increases during
the adsorption process [46].

3.5. Effect of pH

The effect of pH on the Cd2+ adsorption performance of the carbonized ZIF−8@PAN
nanofiber membrane is shown in Figure 9. Under acidic condition (pH = 5.5) at the
adsorption temperature of 35 ◦C, the Cd2+ concentration changed very little, as seen in
Figure 9a. At this time, the Qe value and adsorption efficiency were zero, respectively, as
shown in Figure 9b and c. The reason is that both free H+ in acidic solution and Cd2+ are
cationic, and thus both of them could be absorbed by the carbonized ZIF−8@PAN nanofiber
membrane and compete with each other during the adsorption process. Compared with
Cd2+, H+ was easier to be adsorbed by our adsorbent because it has a smaller radius than
that of Cd2+, which gives it faster transfer speed from the standard solution to the surface
of our adsorbent. In Figure 9b,c, with increasing pH, the Qe value was about 102 mg L−1,
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and the Cd2+ adsorption efficiency also increased and could reach about 90% at pH = 7.5.
However, as the pH continued to increase to 8.5, both the Qe value and the adsorption
efficiency decreased, while the Cd2+ adsorption equilibrium time was also shortened to no
more than 10 h. The reason is that in an alkaline solution, compared with our adsorbent,
Cd2+ was easier to interact with free OH– and generated white precipitation of Cd(OH)2,
which leads to a remarkable decrease in the initial Cd2+ concentration.
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Figure 9. The Cd2+ adsorption concentration (a), adsorption capacity Qe (b), and adsorption efficiency
(c) of the carbonized ZIF−8@PAN nanofiber membrane at different pH values and the adsorption
temperature of 35 ◦C.

3.6. Adsorption Mechanism

In order to probe the adsorption mechanism of the carbonized ZIF−8@PAN nanofiber
membrane for Cd2+, a Cd2+ adsorption experiment was carried out under the optimal
condition of pH value of 7.5 and the adsorption temperature of 35 ◦C. Figure 10 shows
the change of Cd2+ adsorption concentration, Qe, and the adsorption efficiency of the
carbonized ZIF−8@PAN nanofiber membrane with the increasing of adsorption time under
this optimal condition. As shown in Figure 10a, in the first 7 h, the Cd2+ concentration
rapidly declined, while the Cd2+ adsorption rate slowed down after 7 h. This may be
because the initial Cd2+ concentration was relatively high and could fully contact the
adsorbent surface. With the increasing of adsorption time, a lot of Cd2+ entered into the
internal pores of the adsorbent and occupied more adsorption active points, which causes
adsorption to slow. In Figure 10b,c, it can be observed that the Qe value was 102 mg L−1,
and the absorption efficiency was more than 90% when the adsorption equilibrium is
reached under the optimal adsorption condition.
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According to the data from Figure 10, the Cd2+ adsorption process was fitted with the
pseudo first-order and second-order adsorption equations, respectively.

Figure 11 shows the linear fitting curves of the pseudo first-order and second-order ad-
sorption kinetic models of the carbonized ZIF−8@PAN nanofiber membrane. In Figure 11,
R2 is the relatively linear coefficient, indicating the deviation degree of the experimental
data from the fitting curve of the adsorption kinetic equation. Compared with the R2 value
(0.99566) in Figure 11a, the R2 value (0.99956) in Figure 11b is closer to 1, meaning that
the pseudo second-order adsorption is more suitable for describing the Cd2+ adsorption
process of the carbonized ZIF−8@PAN nanofiber membrane. This suggests that the Cd2+

adsorption process of our adsorbent was accompanied by chemical adsorption in addition
to physical adsorption [40].
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4. Conclusions

In this paper, a ZIF−8@PAN nanofiber membrane was fabricated via in situ solvother-
mal reaction. During the fabrication process, the metal ion source of ZIF−8 was introduced
on the surface of the PAN nanofiber membrane by means of the environmentally friendly
magnetron sputtering technology. Then, the ZIF−8@PAN nanofiber membrane was calci-
nated in a tube furnace at 900 ◦C to achieve excellent Cd2+ adsorption performance. The
results showed that polyhedral ZIF−8 could uniformly be fixed onto the surface of the
PAN electrospun nanofiber membrane. After carbonization, the profile of ZIF−8 on the
nanofiber membrane surface shrank. Compared with the nanofiber membrane without
being carbonized, the carbonized ZIF−8@PAN nanofiber membrane had higher Cd2+ ad-
sorption ability. Under the optimal adsorption condition of the adsorption temperature
of 35 ◦C and pH of 7.5, the Qe value was about 102 mg L−1, and the Cd2+ adsorption
efficiency was more than 90% after the adsorption equilibrium was reached. On the basis
of the adsorption thermodynamics analysis, the Cd2+ adsorption process of the carbonized
ZIF−8@PAN nanofiber membrane was spontaneous and feasible. The Cd2+ adsorption
process of our carbonized adsorbent was more in line with the second-order adsorption
kinetic model, which indicates that there exists chemical adsorption besides for physical
adsorption during the Cd2+ adsorption. It is hoped that this novel carbonized nanofiber
membrane may be potentially developed into a new type of material for the adsorption of
heavy metal Cd2+ pollutants from wastewater.
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