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Abstract

The application of magnetic resonance imaging (MRI) to non-invasively assess disease biomarkers has been hampered by
the lack of desired contrast agents with high relaxivity, targeting capability, and optimized pharmacokinetics. We have
developed a novel MR imaging probe targeting to HER2, a biomarker for various cancer types and a drug target for anti-
cancer therapies. This multimodal HER20targeted MR imaging probe integrates a de novo designed protein contrast agent
with a high affinity HER2 affibody and a near IR fluorescent dye. Our probe can differentially monitor tumors with different
expression levels of HER2 in both human cell lines and xenograft mice models. In addition to its 100-fold higher dose
efficiency compared to clinically approved non-targeting contrast agent DTPA, our developed agent also exhibits
advantages in crossing the endothelial boundary, tissue distribution, and tumor tissue retention over reported contrast
agents as demonstrated by even distribution of the imaging probe across the entire tumor mass. This contrast agent will
provide a powerful tool for quantitative assessment of molecular markers, and improved resolution for diagnosis, prognosis
and drug discovery.
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Introduction

Molecular imaging specifically probes the molecular abnormal-

ities of diseases to allow earlier detection, monitoring of disease

progression, and molecular assessment of treatments [1]. Molec-

ular imaging using the modality of magnetic resonance imaging

(MRI) has significant advantages in pre-clinical research and

clinical diagnosis and prognosis as MRI offers superior spatial

resolution without depth limitation, exquisite soft tissue contrast,

clinical availability, while avoiding ionizing radiation [2]. Howev-

er, many applications of MRI rely on the administration of

contrast agents to amplify the contrast of the interested regions to

obtain both sensitivity and specificity [3]. Developing contrast

agents that can be specifically targeted to various biomarkers

allowing real-time imaging of biological events at the molecular

level will have great clinical importance [4,5,6]. To achieve

molecular imaging by MRI, especially to quantitatively monitor

the expression level of the disease biomarkers, it is essential to

develop contrast agents with high relaxivity, target capability,

optimized pharmacokinetics, tissue penetration and low or no

toxicity [7].

Human epidermal growth factor receptor (EGFR) type 2

(HER2/neu) is a cell surface receptor of the EGF family that is

overexpressed in breast, ovarian, urinary bladder and many other

carcinomas. In the case of breast cancer, HER2 overexpression is

typically associated with younger patients and generally poor

prognoses with substantially higher probabilities of relapse after

treatment [8,9]. In addition, the HER2 mediated recognition

system has been widely employed as a drug target for anti-cancer

therapies. Unfortunately, current diagnosis of HER-2 positive

tumor relies mostly on the use of fine needle biopsies with

subsequent immunohistochemistry (IHC) analysis and/or fluores-

cent in situ hybridization (FISH). These methods suffer from

several drawbacks including sampling errors, misinterpretation

due to lack of quantization, and discordance between primary

tumors and metastases. Thus, assessment of HER2/neu levels by

non-invasive MR imaging will provide a tremendous tool for

cancer diagnosis/prognosis, design of treatment strategies, and

monitoring the effectiveness of the treatment.

Results

Metal binding affinity and relaxivity
We have developed a novel multimodal molecular imaging

probe to target cancer marker HER2/neu using magnetic

resonance and near infrared imaging (Fig. 1). We employed a

protein-based MRI contrast moiety (ProCA1) that was developed

by de novo designing the Gd3+ binding site(s) into a stable host

protein, the domain 1 of rat CD2 (10 KDa). Due to the unique

features of the designed metal binding properties, the protein

contrast agent exhibited a significant improved T1 relaxivity for

MRI contrast enhancement compared to that of commonly used
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Gd-DTPA (Diethylenetriamine Pentaacetic Acid) at 1.4–4.7T field

strength [10]. A high affinity HER2 affibody [11,12] was

engineered into the C terminal of the designed Gd3+-binding

protein by a flexible linker. The small molecular size (16 KDa)

provides good tissue penetration. We also introduced an optical

imaging capability by conjugating a near-IR dye Cy5.5 to a Cys

residue at C-terminal of the protein to facilitate imaging analyses

(Fig. 1A). To increase protein solubility, blood circulation time,

and reduction of immunogenicity, the designed HER2 targeting

protein contrast agent was PEGylated using PEG-40, a molecule

with tri-branches of 12 units PEG (denoted as ProCA1-affi-m,

Fig. 1A).

The designed MRI contrast agent was expressed in E. coli and

subsequently purified (Supporting File S1). Similar to the parental

protein ProCA1.CD2, the designed protein (ProCA1-affi) had a

strong metal binding affinity with Kd for Gd3+ at 1.87610–12 M

[10] (Fig. 1B). ProCA1-affi also exhibited r1 and r2 relaxivities of

21 and 30 mM21s21 at 1.41 T, respectively (Fig. 1B). The

developed protein with conjugated NIR dye exhibited fluorescence

excitation and emission maxima at 640 and 695 nm, respectively,

and excitation coefficient constant of 0.21 mM21cm21 (Supporting

File S1). Far UV CD and fluorescent spectra analyses indicated

that the developed contrast agent is well folded (Supporting File

S1). The toxicity of the designed protein was analyzed with CD-1

mice. No acute toxicity was observed following tail vein injections

of 4-fold greater dosages than that currently used in MRI,

evaluated over a 2-day test period. Characterization of serum

samples from the test mice receiving the agent detected no

apparent damage to kidney, liver, or heart (Supporting File S1).

Cancer cell targeting capability
We next examined whether the designed ProCA1-affi can target

to cancer cells by cell binding analyses. We used three human

cancer cell lines, AU565, SKOV-3 and MDA-MB-231. AU565 is

a human breast cancer cell line, with HER2 expression level

16106 HER2/cell. SKOV-3 is an ovarian cancer cell line with

estimated 36106 HER2/cell [13]. MBD-MDA-231 is a breast

cancer cell line with modest HER2 levels (,36104 HER2/cell)

Figure 1. Design and properties of multimodality HER2-targeted protein contrast agent ProCA1-affi for in vivo cancer targeting and
imaging by MRI and NIR. (A) The model structure of multimodal HER2 targeted MR imaging probe created by connecting a high affinity HER2
affibody ZHER2-342 at the C-terminal of a de novo designed protein contrast agent ProCA1.CD2 with a designed Gd3+ binding site. A near IR
fluorescence dye Cy5.5 was then conjugated to the added Cys at the C-terminal of the fusion protein. The designed probe was further modified by a
tri-branched polyethylene glycol (PEG) with 40 PEG subunits (ProCA1-affi-m). (B) The metal binding affinity for Gd3+ with Kd of 1.86610212 M was
measured by competitive method using Fluo5N [10] (C) The relaxivity of ProCA1-affi with (gray) and without PEGylation (ProCA1-affi-m, black) and
clinically used Gd-DTPA (white) were measured under the magnetic field of 1.41 T at 37uC (*P,0.05). The developed contrast agent exhibited 5–6 fold
greater relaxivity in both r1 and r2. *P is the value from Student’s t-test.
doi:10.1371/journal.pone.0018103.g001
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[14]. EMT-6 is a HER2 negative mouse breast cancer cell line.

Binding of the Gd-ProCA1-affi to the selected cells was first

analyzed by immuno-fluorescence staining using the polyclonal

antibody against PEGylated parental protein ProCA1

(PAbPGCA1) (Fig. 2). A substantial staining intensity of

ProCA1-affi bound to AU565 cells was observed and increased

as incubation times increased. In contrast, the EMT-6 cells

demonstrated very weak staining (Fig. 2A). It was evident that the

Gd3+ ProCA1-affi bound to the cell surface HER2 with a clear

membrane staining pattern in AU565 cells at 4uC (Fig. 2A).

However, binding of the Gd3+ proteins to the cells triggered

receptor mediated internalization at 37uC as demonstrated by the

staining of the intracellular ProCA1-affi. The majority of the

contrast agents entered the cells after 120 minutes incubation

(Fig. 2B). The Gd3+ ProCA1-affi was stable after internalization at

120 minutes, indicating that the designed Gd3+ ProCA1-affi

withstood protein degradation during and after endocytosis. The

immunostaining results were consistent with NIR fluorescence

imaging results (Supporting File S1). Binding of the Gd3+ ProCA1-

affi to the two testing cell lines were further analyzed by

quantification of cell bound Gd3+ by c-counting the trace of

isotope 153Gd3+- in the Gd3+ ProCA1-affi complexes (Fig. 2C).

The results supported our immuno-analyses that Gd3+ ProCA1-

affi was retained 3-4 folds greater in HER2 positive AU565 cells

than HER2 negative EMT-6 cells (Fig. 2). Measuring the amount

of bound Gd3+ from c-counting revealed that the Gd3+ ions were

bound to cells at ,0.1 fmole Gd/cell (P,0.01). Under assumption

that 16107 cells make a volume of 50–100 ml, this binding

capacity led to the accumulation of Gd3+ at 10–20 mM in the cell

pellets. This local concentration is sufficient to produce strong

MRI contrast, especially with the high relaxivity protein contrast

agent reported here.

In vivo imaging on xenograft mice
We then tested whether our designed contrast agent would

result in MRI contrast enhancement in xenograft models of these

two human cancer cell lines. Due to less efficiency in formation of

xenograft tumors in nude mice using the AU565 cell line, and

extremely fast growth rate of the mouse breast cancer cell line

EMT-6 in xenograft, we switched to a very commonly used

ovarian cancer cell line SKOV-3 with a high HER2 expression

and a breast cancer cell line MDA-MB-231 with low expression

level of HER2. Xenograft models of these two cell lines had very

similar growth rates in nude mice. The SKOV-3 tumor cells were

subcutaneously implanted in the right flank, while the MBD-

MDA-231 with a low HER2 expression was implanted in the left

flank of the same mouse for direct comparison (Fig. 3A). The

contrast agent Gd3+ ProCA1-affi-m at concentration of 3 mM

(100 fold lower than clinically-approved contrast agent DTPA) was

administrated via the tail vein (80 ml of each mouse, n = 6). Pre-

and post-contrast MRI were collected at different time points

using T1 and T2 weighted fast spin echo or T1 weighted gradient

echo sequences. At 3 hour time point, HER2 positive tumor

exhibited significant contrast enhancement. Strong contrast

enhancement was observed in the SKOV-3 tumor 24 hours after

injection, while there were much less changes in contrast in the

MBD-MDA-231 tumor (Fig. 3B, C). Such MRI contrast

enhancement was decreased after 24 hrs post injection. In parallel,

the mice were imaged using an optical animal imaging system

(Fig. 3A). Consistent with MR imaging, we observed a strong NIR

light emission from the SKOV-3 tumor at 24-hour post-

administration of the contrast agent, however, the NIR intensities

at the MBD-MDA-231 tumor site were much less than that of the

SKOV-3 tumor (Fig. 3B).

Histology analysis of distribution and permeability
To further analyze the HER2 targeting properties of the protein

contrast agent, tumors and organs from the imaged mice were

collected 48 hours after administration of the agent (Fig. 3D). The

organs and tumors were imaged using optical animal imaging. It

was clear that there were very high levels of accumulation of Cy5.5

in the liver, kidneys, and the SKOV-3 tumor. There were medium

levels of the NIR dye at lung. In comparison, the level of Cy5.5 at

the MBD-MDA-231 tumor was quite low (Fig. 3D). The results

strongly suggested that our protein contrast agent led to the HER2

specific MR image enhancement.

To further verify the contrast agent targeted to the HER2

positive tumor, we carried out immunohistochemistry (IHC)

staining using the antibody PAbPGCA1 with tissue slides made

from the tumor samples collected from the imaged mice as well as

selected organs. The strongest staining was observed with liver and

the SKOV-3 tumor tissue slides (Fig. 4A). Close examination of

the staining patterns of the tumor slides revealed distribution of the

designed protein both inside and outside the cancer cells with

substantial stronger staining inside the cancer cells, indicating

internalization of the protein contrast agent. This staining pattern

provided a strong support for the cancer cell targeting by the

contrast agent. The kidney slides also gave strong immunostaining

consistent with the NIR imaging finding. Interestingly, the areas

near proximal tubes showed the strongest staining (Fig. 4A),

suggesting that the protein contrast agent may be secreted through

the kidney. This is consistent with observations that there were

good levels of both Gd3+ (by c-counting of 153Gd3+) and the

protein (by NIR fluorescence) in the urine of mice that were

injected with the contrast agent (data not shown). Immunostaining

of tissue sections from MBD-MDA-231 tumor revealed very weak

staining (Fig. 4A).

To further verify the HER2 specific MRI contrast enhance-

ment, we carried out a competition assay based on the assumption

that if our protein contrast agent targeted HER2 and led to HER2

specific MRI contrast enhancement, affibody alone would be a

strong competitor for the binding to the cell surface HER2 and

consequently block the binding by our designed protein. Nude

mice that carried SKOV-3 tumors were pre-injected with buffer

saline or 3 mM of HER2 affibody ZHER2-342 labeled with Cy5.5

twice at 12 hr and 2 hr. Gd3+ ProCA1-affi-m (80 ml) at a

concentration of 3 mM was subsequently administrated to the

mice by intravenous injection. The mice were then scanned at a

4.7 T MRI scanner via the same procedures. Our results

demonstrated that the MRI contrast enhancements were not

observed at the SKOV-3 tumor site in the mice that received

HER2 affibody labeled with Cy5.5, while the contrast enhance-

ments in the liver and kidney in the same mouse were not affected

by the administration of HER2 affibody (Supporting File S1). NIR

imaging did exhibit high intensity in the tumor, which indicates

that the affibody binds to the positive tumor and blocks the

binding of MRI contrast agents. Conversely, the administration of

the saline prior to injection of the designed protein contrast agent

did not block the MRI contrast enhancement (Supporting File S1).

The results with HER2 affibody blocking strongly support our

conclusion that the MRI contrast enhancement from administra-

tion of Gd3+ ProCA1-affi-m is HER2 specific.

A very crucial requirement for application of an agent for

delivery of both drugs and imaging probes to target a disease

marker is the capability of the agent to cross the endothelial barrier

and to allow for proper tissue penetration and distribution. In

particular, even distribution of an imaging probe throughout the

entire cancer site is vitally important for quantitative or semi-

quantitative assessment of a particular cancer marker. HER2 is

Molecular HER2 Targeted MRI Agent
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Figure 2. Examination of targeting capability in cultured cancer cells. (A) At 4uC, the HER2 positive (AU565) and negative (EMT-6) cancer
cells were treated with ProCA1- affi and ProCA1 -affi-m respectively for 2 hours. The HER2 expressed on the cell membrane of AU565 was revealed by
the green color from the goat-anti-rabbit secondary antibody (Invitrogen) for self-generated rabbit antibody against ProCA1-affi-m. The blue color
shows the nuclear staining. (B). At 37uC, the cancer cells with HER2 positive (AU565) and negative (EMT-6) were treated with ProCA1 -affi and ProCA1
-affi-m respectively for 5 min and 2 hours. The immunefluorescence staining studies revealed that ProCA1- affi and ProCA1- affi-m bind to HER2
positive cell extensively and were largely relocated into the cytosol via endocytosis after 2 hours (green color). The blue color shows the nuclear
staining. At both 4 and 37uC, negative staining was obtained in EMT-6 cells that lack HER2 expression. (C) (top) 153GdCl3, and153Gd loaded ProCA1 -
affi and ProCA1-affi-m were incubated with cultured cancer cells for 2 hours. After careful washing, the radioactive signaling in the cell pellets was
measured using c-counter. The retention of ProCA1-CD2-affi or ProCA1-CD2-affi-m with Gd3+ in HER2 positive cells (AU565) was ,3–4 folds greater
than that in the HER2 negative cells (EMT-6) and non-specific uptake in 153GdCl3 treated cells. (bottom) ELISA assay revealed that the specific binding
of HER2 positive cells by the developed contrast agents enhanced upon increasing the contrast agent concentrations.
doi:10.1371/journal.pone.0018103.g002
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Figure 3. In vivo cancer imaging of contrast agent uptake, retention and distribution in multiple different normal host organs and
in both SKOV-3 (HER2 positive, right) and MDA-MB-231 (HER2 negative, left) xenografts in balb/c nude mice (Charles River
laboratory). (A) NIR fluorescence imaging (Kodak 8000) revealed that ProCA1-Affi is able to target to the HER2 positive tumor (SKOV-3, right) 24 hr
after injection from tail vein. No significant near IR signal was detected in the HER2 negative tumor (MDA-MB-231, left) (n = 6, P,0.05). (B) Fast spin
echo and (C) gradient echo transversal MR images collected prior to injection and at various time points post injection of 3.0 mM of ProCA1-affi-m in
HEPES saline via tail vein. The MRI signal on the positive tumor (SKOV-3, right) exhibits significant enhancement at 3 hr post injection and reaches
maximum enhancement at 24 hours post injection (n = 6, P,0.05). The slight differences in MRI signals result from the use of different pulse
sequences for imaging (Methods). (D). NIR images of the dissected mouse organs. General bio-distribution was obtained based on the NIR signal and
western blot assay. The ProCA1-affi-m mainly distributed in the positive tumor, liver and kidney.
doi:10.1371/journal.pone.0018103.g003
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evenly expressed across the entire SKOV-3 tumor as revealed by

immunostaining using a commercially available antibody (Sigma).

Co-staining using an antibody against the endothelial marker

CD31 revealed that the distribution of HER2 is not dependent on

the distance to the vessels (Supporting File S1). Presumably, the

proper size of ProCA1-affi-m provides a great advantage to target

Figure 4. Histological examination of contrast agent uptake, retention and distribution in multiple different normal host organs
and in both SKOV-3 (HER2 positive, right) and MDA-MB-231 (HER2 negative, left) xenografts in balb/c nude mice (Charles River
laboratory) (n = 6, P,0.05). (A) Immune histology fluorescent (IHF) staining was applied to various tissue slides stained by antibody against
ProCA1-affi-m (red), Blood vessels biomarker CD31 (green), and nucleus DAPI (blue). The slides stained without primary antibody were used as blank
control. (B, C) The tissue penetration properties of ProCA1 –affi-m were compared with antibody by IHF staining. The tumor slides are from the mice
which were dissected 24 hr and 4 hr after injection with ProCA1-affi-m or antibody. After 4 hr, ProCA1 –affi-m began to distribute around the blood
vessel. The antibody had not been detected in the tumor tissue. After 24 hr, ProCA1-CD2-affi was evenly distributed in the tumor tissue and the
antibody mainly concentrated around the blood vessel. The scale bar value is 100 mm.
doi:10.1371/journal.pone.0018103.g004
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the molecular markers. To evaluate the tissue distribution and

endothelial penetration of our designed protein contrast agent, we

conducted immunofluorescence staining of the designed protein in

the tissue sections prepared from various organs after systematic

administration of the protein using the antibody PAbPGCA1. The

tissue sections were also co-stained with the antibody against

CD31. It was clear that high levels of ProCA1-affi-m were targeted

to the SKOV-3 tumor at 24 hours post injection, and the protein

was distributed in the entire tumor evenly since its intensity is not

changed significantly upon increasing the distance from vessel

staining CD31 to 40 mm (Fig. 4B). The results from the

immunofluorescence staining suggested that the designed protein

contrast agent had excellent endothelial and tumor tissue

penetration, and was not simply trapped in the blood in the

micro-vasculature of the tumor tissue.

Since antibodies have been widely used in drug and imaging

probe deliveries in molecular marker targeted applications [4,6]

we further compared the immunofluorescence staining patterns of

our designed protein agent and a commercially available HER2

antibody. To this end, ProCA1-affi-m (10 mg/kg) or the HER2

antibody (10 mg/kg) was administrated in the SKOV-3 tumor

bearing nude mice via tail vein. 24 hours post injection, tissue

sections were prepared from the tumor tissue, and the sections

were analyzed either by immunofluorescence staining using the

antibody PAbPGCA1 (for analyses of ProCA1-affi) or direct

application of the second antibody against rabbit IgG to detect the

bound anti-HER2 antibody. The tissue sections from both cases

were also co-stained with the antibody against CD31. At 24 hours

post injection, the anti-HER2 antibody was mainly concentrated

around endothelial cells as revealed by co-localization with anti-

CD31 staining. This is in sharp contrast to the even distribution of

ProCA1-affi-m in the entire tumor (Fig. 4B, C). The distributions

of the anti-HER2 antibody to the area distant from endothelial

cells were clearly quite reduced as demonstrated by weak

immunostaining in the areas where there was no CD31 staining

(Fig. 4B, C). We further examined the distribution of our protein

agent and the anti-HER2 antibody at an early time point. Tissue

sections from the SKOV-3 tumors were prepared 4 hours after

administration of ProCA1-affi-m or the anti-HER2 antibody.

Interestingly, while the ProCA1-affi-m was largely concentrated

with the CD31 staining in the tumor, the anti-HER2 antibody was

not detectable by the immunofluorescence staining analyses.

(Fig. 4C). The results strongly suggested that our designed protein

agent was able to cross the endothelial and distribute to the deep

tumor tissue a few hours after administration while the large size of

antibody (,160 kDa) significantly hindered endothelial and tissue

penetration. Consistent with the 50% reduction of MRI intensity

at the tumor site by affibody blocking shown in Supporting File S1,

the fluorescence immunostaining at the same tumor site also

exhibited about 60–90620% decrease in intensity (n = 6, P,0.05)

(Fig. 4C). Taken together, our developed MRI contrast agent

exhibits a potential capability for future quantitative analysis of the

biomarker in vivo.

HER2 has been validated as a very important prognosis and

treatment marker for cancer patients expressing HER2, especially

in the case of breast cancer. Development of Herceptin

(trastuzumab) and other HER2 targeting drugs has resulted in

significant improvement in patient survival. Unfortunately, current

methods for determination of HER2 status rely on invasive biopsy

coupled with IHC using a qualitative scoring system [15]. These

methods suffer from both high false positive and false negative

results, and large discordance in detection of HER2 expression in

primary tumors and metastases due to heterogeneity in tissue

sampling. These methods also cannot detect HER2 expression

levels and patterns in the entire cancer site. According to a recent

study by Philips et al., one in five HER2 clinical tests provided

incorrect results [16]. Therefore, there is a great need to develop

MRI contrast agents with specificity and sensitivity for HER2

imaging [17].

Discussion

In this present study, we demonstrate the success in molecular

imaging of HER2 by developing a novel class of multiple modality

contrast agent. To our knowledge, there is no previous report of

effective imaging of HER2 expression cancer in vivo by noninvasive

MRI with desirable tissue penetration and using only a single

injection. Our approach in designing protein-based molecular

imaging contrast agent differs greatly from previous reported studies

in several aspects and represents a significant advance in molecular

imaging by MRI. First, high relaxivity value in both T1 and T2

achieved by designing a Gd3+ binding site into a stable scaffold

protein [18] allows for increased sensitivity in the detection of disease

markers by MRI. Our achievement of MR imaging in animal with

100-fold lower dose usage than clinically used non-targeting agent

DTPA is also likely due to improved pharmokinetic properties such

as retention time and biodistribution. Such significant improvements

in in vivo dosage efficiency will potentially reduce potential Gd3+

toxicity risks, such as NSF (Nephrogenic Systemic Fibrosis). Second,

the relatively small molecular size of the designed agent provides a

unique opportunity to target the imaging probe to the molecular

marker in the entire tumor mass. This property is of vital

importance, especially for quantitative assessment of the molecular

marker based on the imaging results. Several approaches have been

employed to develop targeted MRI contrast agents [5,6,19,20,

21,22,23,24,25]. To increase contrast effects, high pay load contrast

molecules were created by either encapsulating a large number of

Gd-DTPA, conjugating multiple contrast agents such as polylysine-

Gd-DTPA (PAMAM) [26], or using supermagnetic iron oxide

nanoparticles [27,28]. The antibody approach was widely utilized as

the targeting moiety either directly conjugated with high payload

contrast agent or elegantly applied in multiple steps to pre-label the

tumor as a biotin-labeled antibody [29]. These pioneering studies

demonstrated the feasibility of the targeting approach; however, the

large size of the antibody-conjugated imaging probes is likely to

severely limit the endothelial penetration and even-distribution of

the probes in the whole tumor (Fig. 4B and C). On the other hand,

our contrast agent exhibits endothelial penetration capabilities and

an excellent distribution in the entire cancer mass as revealed by its

adequate distribution near the blood vessel four hour after

administration, and the nearly-uniform distribution observed

24 hours post injection. One potential application of our developed

MRI contrast agent is for quantitatively or semi-quantitatively

assessing the HER2 levels in the entire tumor site using MR imaging,

which is impossible with any current methods. Since HER2 is

overexpressed in a large percentage of breast, ovarian, gastric,

urinary bladder and a number of other carcinomas, the developed

contrast agents may be beneficial for imaging of HER2 in several

types of cancer. In vivo real time monitoring of the changes in HER2

expression levels and patterns will provide vital information for

evaluation of the efficacy of drug treatments and for designing

further strategies for cancer treatments.

Materials and Methods

Ethics Statement
All the mice in this research were inoculated with human cancer

cell lines (SKOV-3 and MDA-MB-231) subcutaneously. All the

Molecular HER2 Targeted MRI Agent
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contrast agents were injected from tail vein. The animal research

has been proved by IACUC (Institutional Animal Care and Use

Committee) of Georgia State University. The permit number of

our protocol is A06007. All the cancer cell lines used are

commercial available from ATCC.

Relaxivity and metal binding affinity measurement
Relaxation times, T1 and T2, were determined on the 1.41T

Minispec Relaxometer (mq60 NMR Analyzer, Bruker) at 37uC.

The ProCA1-affi and ProCA1-affi-m (modified by PEG) were

diluted with 10 mM Tris buffer, pH 7.0. Proteins prepared with a

series of concentrations: 40–120 mM, were applied for the

relaxation time measurement. The relaxivities, r1 and r2, were

obtained by fitting the relaxation times as a function of the Gd3+

concentrations (Fig. 1b). The Gd3+ -binding affinities with ProCA1-

affi and ProCA1-affi-m were investigated by the competitive assay

with the dye Fluo5N (a metal ion indicator, Invitrogen Molecular

Probes). The fluorescence spectra were collected on a fluorescence

spectrophotometer (Photon TechnologyInternational, Inc.) with a

10 mm path length quartz cell at room temperature [10].

Tumor cell targeting
The AU565 (ATCC), originally from human breast cancer, has

an expression level of HER2 at about 106 per cell. The EMT6

(ATCC) is a HER2 negative cell line from mouse breast cancer.

The ProCA1-affi and ProCA1-affi-m were incubated with the two

kinds of cells at 4 and 37uC, respectively, for 1 hr. Then the cells

were washed 3 times, 5 min each with Tris buffer. The primary

antibody was generated on rabbit by using ProCA1-affi-m as

antigen. The secondary antibody was FITC conjugated (Invitro-

gen). Finally, the cells were mounted with Prolong antifade reagent

(Invitrogen). In the ELISA assay, the secondary antibody was

HRP conjugated and reacted with OPD for 5 min, and optical

density was measured at 490 nm. In the radioactive assay, the

ProCA1-affi binding with 153Gd3+ was used to treat the cancer

cells; the radioactivity of the cell pellets was measured by c counter

after washing 5 times.

Animal Model
The Balb/c nude mice were injected with ,26106 SKOV-3

(ATCC) and MDA-MB-231 (ATCC) cells (in 100 ml matrix gel

and saline mixture) subcutaneously on the right and left back

respectively. The xenografts were established during 4–6 weeks

until the tumor diameter reached approximately 5 to 10 mm.

In vivo imaging
The ProCA1-affi-m injected into the xenografts was concen-

trated in ,5 mM in HEPES buffer, pH 7.0. The 100 mL of

ProCA1-affi-m was injected to each xenograft by i.v. injection.

The MR images were taken at various time points: 30 min, 4 hr,

24 hr and 48 hr using a 4.7 T scanner. The NIR images were

taken at 4 hr, 24 hr and 48 hr.

The mice were imaged using two pulse sequences: the T1 and

T2 weighted fast spin echo sequence (TR = 2 s, TE = 0.022 or

0.066 s) and the T1 weighted gradient echo sequence

(TR = 0.088 s, TE = 2 s and P = 0.009 s). The fields of view are

3 cm63 cm with matrix of 2566256 and slice of 1 mm in

thickness. Image J was used to quantitatively analyze the MRI

images obtained. The regions of interest (ROI) were selected by

circling the tumor sites. Then the signal intensities of the ROIs

were calculated and compared. Six adjacent slides were selected to

measure signal changes which were averaged to obtain statistical

significant results.

Histology analysis
The mice were sacrificed after taking final images. Primary

organs, such as livers, kidneys, lungs, spleens, muscle and tumors

were dissected out for histology analysis. The tissues were frozen in

liquid nitrogen immediately following dissection. Then the frozen

tissues were sliced into mm thin sections. The sections were triple

stained with antibody against ProCA1-affi-m (red), CD31 antibody

(green) and DAPI (blue). Quantitative analysis on the tissue slides

was measured by the software Image J. Statistical results were

obtained from 2 tumor slides, and 3 view regions were taken from

each slide. Detection of the antibody decreased with increasing

distance from the blood vessel. The ProCA1Affi-m was found to

be well distributed throughout the whole tumor.

Supporting Information

File S1 (A) Magnetic resonance images and image intensities of

the mouse tumor pre-blocked by affibody ZHER2:342 (B)
Purification of PEGylated ProCA1-affi-m (C) Far-UV CD and

Tryptophan fluorescent spectra (D) Optical spectrum of ProCA1-

affi-m conjugated with NIR dye Cy5.5 (E) NIR images of cultured

cancer cells (AU565 and SKOV-3) with high expression of HER2.

The scale bar value is 25 mm. (F) Immunofluorescent histology of

tumor tissue (Xenograft SKOV-3 model) stained by HER2

antibody and ProCA1-affi-m. The scale bar value is 100 mm.

(G) Blood circulation of GdCl3, ProCA1-affi and ProCA1-affi-m

in Xenograft nude mice (H) Toxicity analysis by clinical chemistry

assay.
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