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ABSTRACT

The accurate construction and interpretation of
gene association networks (GANs) is challenging,
but crucial, to the understanding of gene function,
interaction and cellular behavior at the genome
level. Most current state-of-the-art computational
methods for genome-wide GAN reconstruction
require high-performance computational resources.
However, even high-performance computing cannot
fully address the complexity involved with con-
structing GANs from very large-scale expression
profile datasets, especially for the organisms
with medium to large size of genomes, such as
those of most plant species. Here, we present a
new approach, GPLEXUS (http://plantgrn.noble.
org/GPLEXUS/), which integrates a series of novel
algorithms in a parallel-computing environment to
construct and analyze genome-wide GANs.
GPLEXUS adopts an ultra-fast estimation for
pairwise mutual information computing that is
similar in accuracy and sensitivity to the Algorithm
for the Reconstruction of Accurate Cellular
Networks (ARACNE) method and runs ~1000 times
faster. GPLEXUS integrates Markov Clustering
Algorithm to effectively identify functional subnet-
works. Furthermore, GPLEXUS includes a novel
‘condition-removing’ method to identify the major
experimental conditions in which each subnetwork
operates from very large-scale gene expression
datasets across several experimental conditions,
which allows users to annotate the various
subnetworks with experiment-specific conditions.
We demonstrate GPLEXUS’s capabilities by
construing global GANs and analyzing subnetworks
related to defense against biotic and abiotic stress,

cell cycle growth and division in Arabidopsis
thaliana.

INTRODUCTION

The availability of terabyte- and petabyte-sized gene ex-
pression datasets in public repositories (1,2) has inspired
scientists to use genome-wide reverse genetic approaches
to reconstruct gene networks and decipher the interaction
between genes. Compared with forward genetics, which
usually focuses on individual genes, the reverse-engineer-
ing that focuses on genome-wide transcriptome profiles
can provide a holistic and comprehensive view of the inter-
actions of an entire network, which may lead to the dis-
covery of novel regulatory relationships that underpin
each biological process or trait (3-5). Although the
genome-wide reverse-engineering approach has many ad-
vantages, several computational challenges exist, particu-
larly for organisms with large genome datasets such as
those of plants. The computational complexity grows ex-
ponentially as the number of genes increases, and an
increase in the number of genes, in turn, demands an ac-
cordingly increased sample size to achieve the desired
accuracy for network reconstruction.

Among the available gene association network (GAN)
algorithms for the reverse engineering of large-scale gene
networks (6-9), the gene co-expression network method
(6) is a commonly used method to infer potential genetic
interactions from gene expression datasets. One problem
that is inherent in this co-expression network method is its
high false-positive prediction rate, which is due to its in-
ability to distinguish direct gene interactions from large
number of indirect interactions. Other methods, such as
the Bayesian Network (7) and Gaussian Graphics Model
(GGM) (9), can infer the local network structure with high
precision (10), but cannot handle genome-wide network
construction due to the increased computational complex-
ity that arises from the large number of gene variables (10)
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and the large sample requirement (11). To date, construct-
ing GANs from very large-scale expression profile
datasets, especially for the organisms with medium to
large size of genomes, such as those of most plant
species, is still a challenging task, which necessitates the
development of more effective computational solutions.

Several methods have been developed to infer GANSs
using mutual information (MI)-based approaches
(12,13), including the Algorithm for the Reconstruction
of Accurate Cellular Networks (ARACNE) method (12),
which can identify both linear and non-linear dependence
relationships from large samples. Furthermore, a large
number of potential indirect gene—gene interactions can
be climinated using the ARACNE method through the
application of data processing inequality (DPI), which is
based on information theory (14). The ARACNE method
(4), which is now widely used in GAN reconstruction
(15,16), achieves better performance than the Bayesian
Network method (7). However, this method remains com-
putationally demanding due to the high computational
complexity of both the MI estimation, which uses
Gaussian kernel-based methods, and the DPI processing,
which is applied to a large number of edges. Most GANs
that are deciphered by this method have therefore adopted
compromise strategies that either reduce the number of
genes included in the networks or use a relatively small
number of gene expression profiles (4,17). Even with these
compromises, ARACNE requires >100h to calculate the
MI of all gene pairs for the human B-cell expression
dataset (18), which only contains ~10000 genes across
336 samples, on a typical modern server with 32 CPU
cores and 128-GB RAM. For this reason, fast MI estima-
tion methods (18,19) have been developed. However, these
methods usually shorten the computational time at the
cost of memory consumption, which often reduces the
ability to process massive datasets. Meanwhile, the appli-
cation of a DPI filter to remove potentially false inter-
active edges is also a time-consuming process that
cannot be easily reduced. Therefore, the development of
ultra-fast methods to enable the construction of genome-
wide association networks, particularly for plant species
with large genomes, is imperative for the field of genomics.

Another open question in genome-wide GAN analysis
in plants is how to effectively identify functional subnet-
works that control specific cellular processes, such as de-
velopment or response to environmental cues. Sessile
plants are subjected to constant biotic and abiotic stres-
sors, and the study of the interaction of plants with the
environment can lead to adaptation-ameliorated plant
varieties. For example, well-adapted plants have been
selected during crop domestication to meet the increased
needs of human beings. Evidence has shown that the
major evolutionary changes in plant adaptation (20,21)
can be linked to the modification of higher hierarchical
regulatory relationships (22,23). Therefore, the link
between gene—gene associated pairs within a subnetwork
and the experimental condition under which the pair was
observed is an important subject in modern plant
genomics and systems biology.

Here, we present a new integrated approach for
high-performance GAN construction and analysis from
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large-scale data using an ultra-fast MI estimation that
uses a Spearman correlation-based transformation for
pairwise MI computing and removes potentially false
interaction edges on the basis of DPI. We further reduce
the computational time by implementing integrated GAN
construction and network analysis algorithms on a
custom-built parallel-computing Linux cluster platform,
BioGrid, which accelerates the total computational
process in almost linear proportion to the number of
CPU cores that are used. We demonstrate GPLEXUS’s
capability by analyzing large-scale Arabidopsis thaliana
gene expression datasets that have been pooled from
multiple experimental conditions to first build a genome-
wide GAN and then decompose this GAN into subnet-
works. Moreover, we have developed a novel function to
identify major experimental conditions that contribute to
the MI of gene-gene interactions in the constructed
networks, which allows users to link each gene—gene asso-
ciation or subnetwork to a specific experimental condition
to learn under which condition these gene—gene associ-
ations may operate.

To promote and facilitate the use of this platform to
perform GAN analyses for organisms with large genomes
and a large number of genes, we have provided a user-
friendly online platform (http://plantgrn.noble.org/
GPLEXUS) that allows users to upload their expression
datasets and perform GAN and gene set enrichment
analysis. To the best of our knowledge, this is the first
web-based platform that is able to construct and analyze
genome-scale GANs from massive genomic datasets.

MATERIALS AND METHODS
Datasets used for method evaluation

Four compendium datasets were downloaded from public
domains and compiled to evaluate the performance of
GPLEXUS and other methods (Table 1). The first three
datasets were downloaded from ArrayExpress (1). Dataset
I comprises gene expression profiles of 313 microarray
hybridizations for Escherichia coli. Dataset 11 comprises
gene expression profiles of 1848 microarray hybridizations
for A. thaliana. Dataset III comprises 768 microarray hy-
bridizations from multiple tissues for Glycine max.
Dataset IV comprises human glioblastoma gene expres-
sion profiles, which were downloaded from the TCGA
Data Portal (Level 1, Affymetrix HT Human Genome
U133 Array) (24). All of these datasets were normalized
using the Robust Multiarray Averaging (RMA) method
(25) and were used to evaluate and compare the perfor-
mance of GPLEXUS with other methods. All four datasets
are available for download on the GPLEXUS Web site
(http./|plantgrn.noble.org/GPLEXUS/dataset.jsp).

Fast MI estimation

The ARACNE method had successfully applied the
properties of MI and DPI, which are based on informa-
tion theory (14), to GAN reconstruction (4). Mounting
evidence has also demonstrated the effectiveness of
ARACNE to build valid and explainable gene networks
(26-28). The network construction from microarrays of
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Table 1. Comparison of the performance of several integrated methods on four compendium datasets

Species/cell line Number of arrays

Number of probe sets

Runtime (minutes)

Ml M2 M3 M4 M5
Escherichia coli 313 (Dataset I) 15552 12640 1034 40 12 7
Arabidopsis thaliana 1848 (Dataset II) 22810 @ a 5800 51 34
Glycine max 738 (Dataset III) 66190 é a 12000 88 42
Human glioblastoma 547 (Dataset IV) 22277 30640 12260 180 18 12

MI1: Original ARACNE method; M2: Spearman-based MI estimation with integrated DPI analysis; M3: Parallel implementation of the original
ARACNE method deployed on our BioGrid system; M4: Parallel implementation of the B-Spline-based MI estimation with integrated DPI analysis
deployed on our BioGrid system; M5: Parallel implementation of the Spearman-based MI estimation with integrated DPI analysis deployed on our

BioGrid system.
#Computationally infeasible.

plant species, which usually contain a very large number
of genes, is often time-consuming and sometimes compu-
tationally infeasible. To reduce the computational com-
plexity of the MI estimation, we have developed a fast
MI estimation method that is based on the Spearman cor-
relation-based transformation formula for MI computing.
One report (29) has proven that the Pearson’s correlation
and MI are related when the sample data follow a normal
distribution. For this case, the value of the MI can be
calculated as:

1) = 3loe <G|CO|”> = —3log(1 —+") (1)

where C is the determinant of the covariance matrix, o is
the standard deviation of the gene expression dataset and
p is the Pearson’s correlation. The Spearman correlation
coefficient is a special case of the Pearson’s correlation in
which the data are converted to ranks before estimating
the coefficient. The MI computed by Spearman correl-
ation-based transformation can capture both linear and
non-linear relationships. Furthermore, the use of the
Spearman correlation-based transformation also enables
the application of DPI to remove potential indirect
genetic relationships from the constructed network. Both
the Spearman correlation-based transformation-based MI
estimation method and the Gaussian kernel-based MI
estimation method wused by the original ARACEN
algorithm have been integrated into GPLEXUS. The
Spearman correlation-based transformation method is
much faster than the ARACNE method; the MI compu-
tational complexity of GPLEXUS is O(n” % m), whereas
the MI computational complexity of ARACNE is
O(n*> * m?), where n is the number of microarray probe-
sets/genes and m is the number of microarray
hybridizations/samples.

Ultrafast MI computing and DPI processing via
parallel computing

We implemented the integrated algorithms with parallel
programming techniques in an efficient C++ and Java
computing languages and deployed the GPLEXUS
analysis pipelines on an in-house Linux cluster called
BioGrid, which currently consists of >700 CPU cores to
achieve a high-performance computing capacity.

When a user submits an analysis job through the
GPLEXUS online web server, the master node of the
BioGrid system first transfers the datasets to slave
computing nodes in the Linux cluster. Next, the master
node remotely calls to execute the analysis pipelines and
monitors the analysis progress in these computing nodes.
The master node collects the analysis outputs when all of
the distributed jobs have been completed. This procedure
is iterated twice to first complete the MI estimation and
then to remove indirect edges by DPI analysis. The initial
network construction can be further refined by iteratively
re-running the analysis pipelines with more stringent par-
ameters. By default, GPLEXUS estimates and chooses the
MI of the 10th percentile of N-ordered values (arranged
from the largest to the smallest) as the default MI thresh-
old, and a P-value is assigned to this MI threshold by
random shuffling of the expression of these gene—gene
pairs across the various microarray profiles. The compu-
tational complexity of the Spearman correlation-based
transformation and the DPI processing is further
reduced through the parallel-computing implementation
to O(n* xm/k) and O(n®/k), respectively, where n is the
number of microarray probe-sets/genes, m is the number
of microarray hybridizations/samples and k is the number
of CPU cores in the BioGrid system.

A ‘condition-removing’ approach to identify experiment-
specific conditions for gene-gene associations

To infer the potential experimental conditions under
which gene—gene interactions/regulations may occur, we
have developed a ‘condition-removing’ approach to infer
the experimental conditions of the microarray. The prin-
ciple of the approach supposes that if a regulated relation-
ship occurs under a specific experimental condition, then
the MI value for the gene pair would be reduced if this
experimental condition was removed from all of the
microarrays. A larger decrease in the MI value indicates
a higher likelihood that the gene—gene pair is regulated or
interacts under this condition. Therefore, a series of MI
values can be estimated for every gene-gene pair by
removing experimental conditions one-by-one. Because
all of the MI values for one gene pair would follow a
normal distribution (in general, the MI values could be
estimated accurately from >100 microarray chips), a
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one-side z-test could be applied to identify the experimen-
tal conditions that lead to significant reductions in the
MI value (default P-value <10~*). All of these identified
conditions would cover the range of biological conditions
in which each possible gene—gene interaction exists. The
computational complexity of this method is O(n % m). This
analysis cannot be performed easily using a single server
on a dataset that contains 10000 identified gene—gene
links and >1000 chips. However, the ultra-fast
Spearman correlation-based MI estimation on the
GPLEXUS high-performance computing platform can
perform this analysis in less than a few minutes.

Subnetwork discovery by Markov clustering analysis

In general, biological networks are ‘scale-free’ (30).
Therefore, a network clustering method that simulates a
random walk, such as the Markov Clustering Algorithm
(MCL) (31), can identify actual or potential functional
subnetworks with a high degree of accuracy. We
integrated this method into our GPLEXUS platform to
partition the networks into functional subnetworks.

GPLEXUS online

We provide a user-friendly version of GPLEXUS,
called GPLEXUS Online (http://plantgrn.noble.org/
GPLEXUS), as a public and freely available web server
that allows users to upload their expression datasets,
perform GAN analysis and download the analysis
results. The analysis flow of GPLEXUS Online is
illustrated in Supplementary Figure S1.

Uploading expression data

The input data should consist of normalized expression
data in a tab-delimited text format. The first column of
the data is the gene identifier, such as the GeneChip
Probe-set ID or gene name, and the other columns are
the expression values. The first row refers to the chip
name so that GPLEXUS can identify chip names during
the experimental condition identification analysis.

MI estimation algorithm selection

Two methods are provided in GPLEXUS to estimate the
MI: the Spearman correlation-based transformation MI
estimation method (this is the default method) and the
Gaussian-kernel-based MI estimation method that was
used in the original ARACNE method.

Iterative GAN construction and refinement

When the data are submitted for analysis, GPLEXUS
automatically performs a parameter estimation and con-
structs ‘coarse’ networks with less stringent parameters.
The MI threshold is set as a value that includes the top
10% of gene—gene pairs and a DPI tolerance of 1.0. The
coarse networks can be viewed as original relevance
networks (13) that have no indirect edges removed. The
user may further adjust and filter the initial constructed
networks by applying more stringent parameter settings,
i.e. by adjusting both the MI threshold and DPI tolerance
values. A high-precision network can be reached via a
‘coarse-to-fine’ refining process as described.
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Functional subnetwork discovery

GPLEXUS automatically performs an MCL clustering
analysis for functional subnetwork discovery after each
GAN network is constructed.

Output

GPLEXUS summarizes the features of the constructed
GANSs, such as the subnetwork structures, the number
of hub genes and functional subnetworks and the hyper-
links to constructed networks and subnetworks, which can
be downloaded as delimited text files on the results page.
The downloaded networks/subnetworks can be imported
into the open-source Cytoscape (32) software for visual-
ization and downstream analysis, such as Gene Ontology
Set Enrichment Analysis. The user can also perform the
experiment-specific condition identification analysis from
the results page.

Auxiliary tools

Auxiliary tools, such as the Gene Ontology Set
Enrichment Analysis tool and the RMA-based microarray
data normalization tool, have also been integrated into
GPLEXUS to facilitate the use and annotation of con-
structed networks and subnetworks.

RESULTS
Comparisons between GPLEXUS and ARACNE

We compared the runtimes between the Spearman correl-
ation-based transformation methods and ARACNE as
well as the B-spline-based MI estimation method (8)
using the four datasets outlined in Table 1. Our results
show that the Spearman correlation-based transformation
method that is implemented in GPLEXUS has a signifi-
cantly reduced runtime compared with the original
ARACNE method and B-spline-based MI estimation
method. It was computationally infeasible to construct
global GANs using large-scale genomic datasets from
plant species with small genomes, such as A. thaliana
and G. max, with the original ARACNE method on a
typical server (DELL PowerEdge R815 Server equipped
with four 8-core CPUs and 128-GB RAM) without any
optimization. However, the Spearman correlation-based
transformation method could compute a GAN analysis
on these datasets >1000 times faster, as shown in Table 1.

Our next step was to evaluate the prediction accuracy for
our methods against other methods. There were no avail-
able experimental expression datasets with known inter-
actions in the constructed network that could be applied
to test the methods. Therefore, we generated a series of
synthetic gene expression datasets using the gene network
modeling software, SynTReN (33). The generated expres-
sion datasets were based on experimentally validated gene
interactions through the SynTRen software. The validated
gene interactions for the yeast dataset have already been
integrated into the SynTRen software. A. thaliana inter-
action data were downloaded from the Arabidopsis Gene
Regulatory Information Server (34) and added to the
SynTRen database. Different synthetic gene expression
datasets with 200, 400, 600, 800 and 1000 samples for 400
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yeast genes and 600 A. thaliana genes, respectively, were
generated. We evaluated the prediction accuracy of five
methods, including the original ARACNE, Spearman cor-
relation-based transformation MI/DPI, B-Spline MI/DPI,
co-expression network based on the Spearman correlation
and GeneNet (35), on these benchmark datasets. The pre-
diction accuracy was measured by the area under the
receiver operating characteristic (ROC) curve (AUROC).
We calculated the true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) for
each method for each dataset. The ROC curve was
plotted as the sensitivity [TP/(TP+FN)] versus the 1-
specificity [TN/(TN+FP)]. A high AUC score indicates
better performance. Our results suggest that the average
AUROC score is similar across methods for the two
model species (Table 2). The Spearman-based MI/DPI
achieved the highest score among all of the methods that
were tested. We also applied an average F-score
[2 * Precision * Recall/(Pr ecision+Recall)]  across  all
samples to measure the accuracy among different
methods by plotting the (Precision versus Recall) PR
curve as Precision TP/(TP+FP) versus Recall
[TP/(TP+FN)]. The average F-score of the Spearman-
based MI/DPI method is higher than the average F-
scores of the original ARACNE method, the B-Spline
MI/DPI method and GeneNet (Table 2). The average F-
score of the Spearman MI/DPI was also significantly higher
than the average F-score of the co-expression network. The
ROC curves and PR curves for the predictions of each
method for the 1000-sample expression dataset are shown
in Supplementary Figures S2 and S3, respectively. The
ROC and PR curves both indicate that the method used
in GPLEXUS achieves an accuracy at least as high as the
MI approximation methods that use a Gaussian-kernel-
based method (ARACNE) or B-spline-based method, and
all three methods achieve a better accuracy than the co-
expression network method or GeneNet.

From these results, we concluded that the Spearman-
based MI/DPI method can achieve a similar or better
performance as the original ARACNE method and
significantly accelerate the analysis runtime. Therefore,
GPLEXUS enables and empowers GAN analysis
for very large-scale gene expression datasets from organ-
isms with large genomes, particularly from plants.
Furthermore, this acceleration in runtime without a
penalty on performance enables the powerful downstream
analysis of experiment-specific condition identification.

Construction and analysis of A. thaliana global GANs
with GPLEXUS

We demonstrated the ability of GPLEXUS to decipher
global GANs from 1848 A. thaliana microarray samples
(Dataset II) that were measured by the Affymetrix ATHI1
GeneChip, which consists of probe-sets for 22810 genes.
The network is available for download at http://plantgrn.
noble.org/GPLEXUS/Result.jsp?sessionid = Arabidopsis.

The global gene network includes 10174 nodes and
161712 edges and was constructed in <20min using
GPLEXUS with a DPI tolerance of 0.155 and MI thresh-
old of 0.5281. Each node in the network has an average of
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Table 2. The average performance of several integrated methods on
yeast and A. thaliana benchmark datasets

Method AUROC Average F-score
Yeast  Arabidopsis  Yeast — Arabidopsis
Spearman-based MI/DPI  0.896  0.856 0.512  0.512
ARACNE 0.89 0.831 0.443  0.508
B-Spline-based M1/DPI 0.879  0.834 0.438  0.509
Co-expression 0.872  0.791 0.124  0.10
GeneNet 0.875 0.813 0.388  0.477

16 links. The constructed network could be partitioned
into 154 functional subnetworks.

Many studies have indicated that the node degree dis-
tribution in biological networks follows a power-law dis-
tribution. Such networks are also known as scale-free
networks (36). In a scale-free gene network, a few genes
are highly connected with other genes but the majority of
genes have a low number of connected genes. The network
that was constructed in GPLEXUS was a typical scale-
free network (Figure 1) that follows the properties of
natural biological networks: most of the nodes have a
few links and a few nodes have a large number of links.
The degree distribution of the network followed a power-
law distribution with a degree exponent of r = 1.67.

In a previous report (9), a global 4. thaliana GAN with
6760 nodes and 18625 edges was constructed using the
GGM method. We focused our comparison on our con-
structed network with this reported study (9) to under-
stand the properties of global gene—gene interaction
networks rather than perform an exhaustive comparison
between the networks, because the samples used to con-
struct each network were significantly different. However,
the networks that were derived from the GGM-based
method did not exhibit the typical scale-free network
property (30) [e.g. Figure 3 in (9)].

The identification of functional subnetworks involved
in diverse biotic and abiotic stress and their operating
conditions in GPLEXUS

Sessile plants have evolved highly sophisticated mechan-
isms to survive various harsh environmental conditions,
including life-threatening pathogens and pests. For
example, Botrytis cinerea is considered the most aggressive
plant fungus and causes diseases in many plant species due
to its broad host range and exceptionally strong patho-
genicity (37,38). The WRKY gene family encodes tran-
scription factors that regulate the responses of plants to
pathogen attacks and various abiotic stressors (38,39).
However, little is known about the functionally associated
and coordinated genes that are targets and upstream regu-
lators of these transcription factors.

WRKY33 (AT2G38470) plays a critical role in the
plant’s response to pathogen invasion and abiotic stress,
and is known to regulate the antagonistic relationships
between the defense pathways that mediate the response
to pathogens (40). A total of 41 genes were associated with
the WRKY33 gene in the A4. thaliana global GAN that we
constructed (Figure 2). Of these 41 genes, 9 belong to
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Figure 1. The topological properties of the constructed Arabidopsis thaliana gene networks. (A) A plot of the node degree distribution. (B) A plot of

the node degree distribution after a log-transformation.

functionally unknown genes and the remaining genes can
be classified into five categories: defense pathway, ethylene
(ET) pathway, jasmonate (JA) signaling pathway, abscisic
acid signaling pathway and calcium ion binding. Most of
these genes are involved in the defense of either biotic or
abiotic stress. Plants under a pathogen attack often
produce an increase in ethylene, which plays an important
role in plant immunity (41). ACS6 (AT4G11280), which is
known to control the rate-liming step in ethylene biosyn-
thesis, is involved in B. cinerea-induced ethylene biosyn-
thesis, and WRKY acts on the pathway that induces ACS6
expression (42,43). ERF5 (AT5G47230) plays a positive
role in the JA/ET-mediated defense against B. cinerea in
A. thaliana. MKS1 (AT3G18690), which encodes a nuclear
substrate, is essential for basal immunity and participates
in the regulation of WRKY33 via MAP kinase 4 (M PK4)
(44,45). WRKY33 in turn controls the production of anti-
microbial phytoalexins (46). WRKY33 can bind to
upstream sequences of genes that are involved in defense
pathways that include JA signaling and ET signaling as
well as camalexin biosynthesis (40,47,48). For example,
the direct binding of WRKY33 to a JA signaling gene
(AT3G10930) was  demonstrated in  chromatin
immunoprecipitation (Chip)-polymerase chain reaction
experiments (47).

To identify the environmental condition(s) under which
WRKY33 may interact with the 41 genes that were
identified in the constructed network, we uploaded the
41 interactions to GPLEXUS and performed an experi-
ment-specific condition analysis. The top 10 experimental
conditions that were related to each gene—gene interaction
were identified with P < 107%. We checked the specific ex-
perimental conditions for some of the interactions, and
almost all of the identified experimental conditions were

correlated with the reported gene—gene associations. For
example, WRKY33 may induce the expression of 4CS6
under different chemical treatments. The analysis results
suggest that 4CS6 may interact with WRKY33 under salt
stress (ArrayExpress accession number E-GEOD-5623,
chip names GSMI131321.CEL, GSM131318.CEL,
GSM131322.CEL, GSM131325.CEL, GSM131329.CEL,
GSM131330.CEL and GSM131317.CEL), cadmium treat-
ment (ArrayExpress accession number E-GEOD-22114,
chip names GSM549993.CEL and GSM549996.cel) and
chitin treatment (ArrayExpress accession number E-
GEOD-2169, chip name GSM39204.CEL). Almost all of
the 41 interactions (37 of 41) are related to experiments
that involve salt stress (ArrayExpress accession number E-
GEOD-5623, chip name GSM131321.CEL). Therefore,
these interactions suggest that the WRKY gene family
plays an important role in biotic and abiotic stress. A
review of the literature as well as of a public database
(TAIR) confirms that WRKY33 is involved in salt stress
(49) and the regulation of defense pathways to various
pathogens (50,51). The identified experimental conditions
for all 41 interactions are described in the ‘Supplementary
Materials’. This analysis confirmed that GPLEXUS can
accurately capture the overall gene—gene association infor-
mation and identify experiment-specific conditions from a
large-scale microarray dataset.

The identification of functional subnetworks involved in
cell growth and division and their operating condition in
GPLEXUS

Cell division is one of the most important and conserved
biological processes related to the growth and/or develop-
ment of an organism. By applying the Gene Ontology Set
Enrichment Analysis to each module in the example
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network construction, we identified that the 22nd module/
subnetwork is implicitly associated with cell division. In
particular, this module is associated with the function of
the G2/M transition of the mitotic cell cycle microtubule-
based movement process. This module is shown in
Supplementary Figure S4a and is similar to the pathway
suggested in (52) that is shown in Supplementary Figure
S4b. Most of the genes in this module were annotated with
functions related to mitosis (34 genes) and cell division (56
genes) as well as microtubule cytoskeleton organization,
cytoskeleton organization, organelle organization and
chromosome organization. We identified an enriched
mitosis-specific gene family that contains five mitosis-
specific  kinesin genes (AT3G20150, ATI1G72250,
AT2G28620, AT2G22610 and AT3G44050) and two
microgametogenesis genes, Kinesin-124 and Kinesin-12B
(AT4G14150 and AT3G23670, respectively) based on
the Gene Ontology Set Enrichment Analysis auxiliary
tool in GPLEXUS. Kinesins are a class of microtubule-
associated proteins that possess a motor domain for

binding to microtubules and allow movement along
microtubules (53). In addition, this gene family is
involved in spindle formation and chromosome
movement (54).

The other gene family that was present in this module
contained cyclins, which are assembled with cyclin-de-
pendent kinases (CDKs) in the same complex to trigger
the G2/M transition through phosphorylation (55).
CCS52, a cell-cycle switch protein, works with the
anaphase-promoting complex to initiate the destruction
of cyclin subunits, which leads to a cell exit from
mitosis. The link between the cyclin-dependent protein
kinase regulators CYCAI;1 (AT1G44110) and CYCBI;1
(AT4G37490) was reported in (56). The link between the
endocycle activator CCS52B (AT5G13840) (57) and the
anaphase-promoting complex (4 PC/C) activating subunit
CDC20 (AT4G33260) gene was reported in (58) and the
interaction between CCS52B and CDKB2;2 (AT1G20930)
was reported in (59). Another cyclin gene that was found
in the 22nd subnetwork, CYCD3;I (AT4G34160), is
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involved in the switch from cell proliferation to the final
stage of differentiation, which is a key regulatory point in
the cell cycle of plants. The overexpression of CYCD3,1
increases the length of the G2-phase and delays the acti-
vation of mitotic genes (60). CDC25 encodes an enzyme
with both arsenate reductase and phosphatase activities
(52). Evidence suggests that CDC25, together with
WEEI, controls the cyclin-dependent kinases that are
the key regulators of cell cycle progression via phosphor-
ylation (61).

We also performed an analysis to identify the experi-
ment-specific conditions for all of the interactions in the
22nd module (781 gene—gene interactions). More than 200
gene—gene interactions in this module were associated with
the developmental series (i.e. shoots and stems) experi-
ments (ArrayExpress accession number E-GEOD-5633)
based on the GPLEXUS analysis results. Among the
781 gene—gene interactions, 346 interactions were related
to the experimental condition with chip name
GSM131653.CEL, which is an experiment that focuses
on the floral transition of the shoot apex before bolting.
These experimental conditions are consistent with the
functional annotations of this module that are related to
the G2/M transition of the mitotic cell cycle.

Performance comparisons between the networks
constructed by GPLEXUS and ARACNE

We have demonstrated that GPLEXUS achieves a similar
or better accuracy than the ARACNE method using the
benchmark datasets that were generated by the SynTRen
software. To further explore the efficiency of GPLEXUS
compared with ARACNE, we constructed a network from
Dataset II that included 10176 genes and 169 186 edges
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using the ARACNE method. The constructed network
can be downloaded from http://plantgrn.noble.org/
GPLEXUS/Result.jsp?sessionid = Arabidopsis_gaussian_
new. Even using our high-performance BioGrid system,
which is used with 700 CPU cores, this network construc-
tion required >5 days with the ARACNE method.

We compared the overlap ratio of the networks that
were constructed from ARACNE and GPLEXUS. The
two networks shared 9764 genes and 117664 edges. The
statistical tests demonstrated that the overlap ratio was
statistically significant with a P-value of 1e-30, which is
far less than 0.05. The P-value was estimated as follows:
we first randomly generated 1 million networks with the
same edges and then a t-test was applied to estimate
the statistical significance of overlap ratio. We further
estimate the overlap ratio between paired networks by
selecting different MI cutoff thresholds. Higher MI
thresholds indicate higher probability networks with
smaller number of nodes and edges. The overlap ratios
of edges between paired networks under different
network size are shown in Figure 3A. The overlap ratio
ranged from 0.73 to 1.0. We then further compare the
distribution of MI for all overlapped edges of the paired
networks inferred by Gaussian kernel-based method
(adopted in ARACNE) and Spearman transformation-
based method (adopted in GPLEXUS),which is shown
in Figure 3B. In this case, these overlapped edges with
higher Gaussian kernel-based MI value in ARACNE
method also have higher Spearman transformation-
based MI value in GPLEXUS method. So these analyses
indicate that most of the gene—gene interactions that were
inferred by the ARACNE method could also be inferred
by GPLEXUS.
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Figure 3. Comparisons of network edges recovered by the GPLEXUS and the ARACNE methods. (A) The overlap ratio of edges of the paired
networks. (B) The distribution of the Gaussian-kernel-based MI values versus the Spearman transformation-based MI values for all overlapped

edges.
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We then compared the subnetworks that were identified
by both the ARACNE method and GPLEXUS. This
analysis revealed that of the top 150 subnetworks, 99
were identified by both the ARACNE method and
GPLEXUS. We further checked the functional subnet-
works that were inferred by GPLEXUS, including the
functional subnetwork related to biotic and abiotic stress
and the functional subnetwork involved in cell growth and
division. The subnetwork involved in the defense against
biotic and abiotic stress was identified by both methods:
GPLEXUS identified 41 genes that interacted with
WRKY33 and ARACNE identified 47 genes that inter-
acted with WRKY33. A total of 39 genes that were
identified by GPLEXUS were also identified by the
ARACNE method; however, an experimentally validated
interaction between WRKY33 and the At3gl10930 gene
(47) was not identified by the ARACNE method. The
subnetwork involved in cell cycle division and growth
that was identified by GPLEXUS was not identified by
the ARACNE method.

From these results, we conclude that the performance of
both GPLEXUS and the ARACNE method is similar.
There exist highly overlapped genes and gene—gene inter-
actions in the networks that were constructed by each of
these methods. However, our analysis suggests that
GPLEXUS is slightly more sensitive than the ARACNE
method.

DISCUSSION

Tools and methods that can be used to process and
analyze large-scale genomic datasets are urgently needed,
as the amount of microarray and RNA-seq data that is
available in public databases accumulates. The
GPLEXUS Online platform is a tool for gene network
construction and analysis that significantly reduces the
computational runtime compared with other methods,
such as ARACNE. We demonstrated the ability of
GPLEXUS to construct and analyze genome-wide
GANSs from both simulated and experimental data with
a focus on the model plant, 4. thaliana. We also integrated
several auxiliary tools in GPLEXUS, such as the Gene
Ontology Set Enrichment Analysis and RMA-based
microarray data normalization tools, to facilitate the use
and annotation of constructed networks and subnetworks.
Our future goals are to integrate more auxiliary tools,
such as network validation based on the Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway,
to further improve the power of the GPLEXUS platform.

CONCLUSION

We have developed a high-performance web-based
platform for GAN construction and analysis. This
system is capable of processing thousands of microarray
or RNA-seq gene expression datasets from organisms with
large genomes and/or a large number of genes, such as
from plants, through a combination of improvements in
the MI estimation method and the high-performance
computing implementation and deployment. The

Nucleic Acids Research, 2014, Vol. 42, No.5 e32

GPLEXUS platform is as accurate and sensitive as the
original ARACNE method, but produces results ~1000
times faster. GPLEXUS also uses a condition-removing
method to identify experiment-specific microarray chips
from large-scale microarray datasets to gain insightful
understanding of gene—gene associations. Furthermore,
GPLEXUS is able to identify new functional subnetworks
through the integration of the MCL. GPLEXUS Online
provides interactive user interfaces to facilitate large scale
gene expression data analysis and network discovery.

AVAILABILITY

GPLEXUS is public and freely available at http://
plantgrn.noble.org/GPLEXUS/. The presented case
analysis input data and results are also freely available
from the Web site.

The source code for the Spearman-based MI/DPI
method is freely available on the GPLEXUS web ser-
ver (http://plantgrn.noble.org/GPLEXUS/dataset.jsp). In
addition, auxiliary tools, including tools for microarray
data normalization and Gene Ontology Set Enrichment
Analysis, are available under the ‘Auxiliary Tools’ menu
of the GPLEXUS web server.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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