Regenerative Therapy 26 (2024) 1138—1149

JSRM

journal homepage: http://www.elsevier.com/locate/reth

Regenerative

Contents lists available at ScienceDirect Therapy=s

Regenerative Therapy

Original Article

HUC-MSCs combined with platelet lysate treat diabetic chronic
cutaneous ulcers in Bama miniature pig

Check for
updates

Yunyi Gao * >, Lihong Chen *", Yan Li *°, Shiyi Sun ", XingWu Ran *"> "~

@ Department of Endocrinology & Metabolism, West China Hospital of Sichuan University, Chengdu, China
b Innovation Research Center for Diabetic Foot, Diabetic Foot Care Center, West China Hospital of Sichuan University, Chengdu, China
€ Department of Medical Affairs, West China Hospital of Sichuan University, Chengdu, China

ARTICLE INFO

Article history:

Received 16 April 2024
Received in revised form

4 July 2024

Accepted 8 November 2024

Keywords:

Diabetic chronic cutaneous ulcers model
Human umbilical cord mesenchymal stem
cells

Platelet lysate

Wound healing

TGFB/Smad signaling pathway

ABSTRACT

Human umbilical cord mesenchymal stem cells (HUC-MSCs) and platelet lysate (PL) shows potential of
wound healing. However, MSCs in combination with PL for wound healing is still lacking. In this study,
we presented high glucose cultured wound related cells to mimic diabetic chronic ulcers (DCU) cells,
wound healing indicators and the TGFf/Smad signaling pathway were detected by PL cultured HUC-MSC
supernatant (MSC-Sp) in vitro. In vivo study, diabetes was induced in pigs feeding a high-energy diet and
multiple injections of streptozotocin (125 mg/kg). Chronic wounds were created on both sides of the
backs of seven pigs by surgical creation and foreign body compression for eight weeks before treatment.
The wounds were treated with saline control (N = 11), PL (N = 11), HUC- MSCs (N = 18, 6 x 10%/mL/cm?),
and PL + HUC-MSCs (N = 18, 6 x 108/mL/cm?) respectively. Tissue samples were collected to observe
new collagen, neovascularization, wound healing factors, and the TGFB/Smad signaling pathway. The
resulting PL-cultured MSC-Sp promoted the proliferation of keratinocytes, fibroblasts, and vascular
endothelial cells and inhibited the TGFB1/TGF3 ratio, upregulated VEGF-o and PDGF-BB production by
keratinocytes and fibroblasts, and downregulated the expression of CD86, IL-6, and TNF-o in
RAW264.7 cells. PL + HUC-MSCs had the best wound healing rate in vivo, and promoted collagen for-
mation, neovascularization, and inflammation, regulated the balance between IL-6/TGFB1 and IL-6/Arg-1
and upregulated the expression of VEGF-o and TGFB1. In summary, PL + HUC-MSCs had a better wound
healing effect than HUC-MSCs or PL treatment alone by regulating the IL-6/Arg-1 and IL-6/TGFB1 balance

and upregulating TGFB1, VEGF-a, Col1, and a-SMA.
© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

mortality as well as a heavy economic burden on society [2].
Therefore, there is an urgent need to develop novel and effective

Diabetic chronic cutaneous ulcers (DCU) are one of the most
common chronic skin ulcers, although there are many measures to
treat chronic wounds, such as surgical debridement, negative
pressure suction, autologous platelet-rich gels, platelet-derived
growth factors, and bioengineered skin [1], their clinical efficacy
remains limited. In addition, DCU imposes a high five years
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treatment strategies.

Mesenchymal stem cells (MSCs) are the most mature and widely
used stem cells, and human umbilical cord stem cells (HUC-MSCs)
were separated from Wharton's Jelly, a colloidal tissue surrounding
the umbilical cord blood canal, which is usually discarded during
childbirth. Thus, the collection is non-invasive and poses few
ethical problems. HUC-MSCs have strong proliferation ability,
immunomodulation, and low immunogenicity [3]. HUC-MSCs have
been demonstrated to have the potential to promote wound heal-
ing by regulating local inflammatory responses [4,5], angiogenesis,
granulation tissue formation, collagen remodeling, and epitheli-
zation [6—8]. However, the problem is the low proliferation rate of
MSCs after transplantation, or massive cell death on the first day
after transplantation [9—11]. This may be one of the reasons for the
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poor wound healing in some studies [12]. Researchers have found
that bio scaffolds improve MSCs survivability and promote wound
healing [13]. Platelet lysate (PL) are platelet derivatives obtained by
enriching platelets in the blood of volunteers or collecting platelets
within 5—7 days without transfusion, through multi-step treat-
ment, and finally fully lysing and activating, releasing platelet
particles and various nutrients in the membrane structure [14]. PL
is widely used not only in the field of wound repair but also in
human cell culture, commercialized PL has been widely used in the
production of MSCs [15—17], with potential for translational clinical
applications. MSCs combined with PL therapy could improve
perfusion of rat hindlimb ischemia [18] and human erectile
dysfunction [19], and PL-cultured HUC-MSCs supernatant (MSC-Sp)
had a better wound healing promoting effect than fetal bovine
serum-supplemented HUC-MSCs supernatant in vitro [20]. These
findings suggest that this combination may enhance wound repair.
However, there is limited research on wound healing using MSCs in
combination with PL therapy.

The wound healing process is divided into hemostasis, inflam-
mation, proliferation, and remodeling phases, and during prolifer-
ation phase, M2 macrophages release growth factors, such as
vascular endothelial growth factor (VEGF), platelet-derived growth
factor (PDGF), and transforming growth factor-beta (TGFf), which
contribute to the shift to the proliferation phase, promote angio-
genesis, re-epithelialization, and collagen production [21]. In
which, the TGFB/Small mothers against decapentaplegic (Smad)
signaling pathway is the most canonical pathway regulating the
formation of collagen in the fibroblasts and myofibroblasts [22].
Researchers have found that HUC-MSCs enhance the local effective
distribution and adhesion of wounds by secreting TGFB1 and
improving the long-term survival rate [23]. HUC-MSCs combined
with biomaterials also upregulated TGFB1 expression in wound
areas to promote healing [24]. However, exosomes of HUC-MSCs
were reported to inhibit dermal fibroblast-myofibroblast conver-
sion by inhibiting the TGFB/Smad signaling pathway, thereby
inhibiting wound fibrosis and scar repair [20]. PL promotes car-
diomyocyte differentiation by upregulating myocardial fibroblast
TGFB1 expression [25]. However, research on the application of
MSCs in combination with PL for wound healing is still lacking.

Therefore, this study was conducted to evaluate the healing
effect of HUC-MSC cultured with PL in stimulating diabetic kerati-
nocyte, vascular endothelial cells and fibroblasts (in vitro study)
and on chronic wound healing in diabetes-induced pigs compared
to control treatment (in vivo study). We hypothesized that HUC-
MSCs combined with PL could promote the cutaneous wound
healing process via regulating the TGF-B/Smad signaling pathway.

2. Materials and methods
2.1. Experimental animals, cells, and main reagents

HUC-MSCs at passage three were purchased from Chengdu
Konjin Biotechnology Co., LTD (Chengdu, China). Human keratino-
cytes (HaCat), human dermal fibroblasts (HDF-n), human umbilical
vein vascular endothelial cells (HUVEC) were purchased from Sci-
enCell Research Laboratories (California, America). Mouse perito-
neal macrophages (RAW264.7) were purchased from Guangzhou
Jennio Biotech Co. Ltd. (Guangzhou, China). Streptozotocin (STZ)
was purchased from Sigma-Aldrich (St. Louis, Missouri, USA).

PL was purchased from Biological Industries (Beit-Haemek,
Israel). Anti-CD14, human leukocyte antigen DR (HLA-DR), anti-
CD34, anti-CD44, anti-CD75, and anti-CD103 antibodies were
purchased from Cyagen (Suzhou, China). TRIzol reagent kits were
purchased from Invitrogen (Thermo Fisher Scientific). VEGF-a,
PDGF-BB, and TGFB1 enzyme-linked immunosorbent assay (ELISA)
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kits were obtained from R&D Systems (Minneapolis, MN, USA).
TGFp1 polyclonal Antibody, SMAD7, and TGFB3 polyclonal antibody
were purchased from Proteintech (Abcam, Cambridge, United
Kingdom). Smad3 (C67H9) rabbit mAb, Phospho-Smad3 Rabbit
mADb, Smad2/3 Rabbit mAb, and Phospho- Smad2/Smad3 Rabbit
mADb were purchased from Cell Signaling Technology (Danvers, MA,
USA). Mouse anti-GAPDH mAb was purchased from BioX (Belgium;
New Hampshire, USA).

2.2. HUC-MSCs identification and supernatant collection

Passages 3 generation HUC-MSCs were cultured in o-MEM basal
medium with 5 % PL in a 37 °C incubator with 5 % CO2 in a 95 %
humidified atmosphere, and replaced every three days. PL-cultured
P5 cells were tested for phenotypes using fluorescence-cultured
cell sorting (FACS) analysis. The antibodies used were anti-CD14,
HLA-DR, anti-CD34, anti-CD44, anti-CD73, and anti-CD105 anti-
bodies. P4 HUC-MSC differentiation into osteogenic and adipogenic
lineages and subsequent detection was performed using estab-
lished methods [7]. Control cells were treated with the standard
culture medium for 14 days. P5 and P6 HUC-MSCs were inoculated
in a 15 cm Petri dish. When the cells reached 80 % confluence,
serum-free o-MEM was added to the dish, and MSC-Sp was
collected after 48 h. The liquid was centrifuged at 4 °C, 12000 g for
15 min after 0.22 pm filter filtration retention supernatant, frozen
at —80 °C for detection and experimentation.

2.3. HUC-MSCs intervention diabetic wound related cell models

HaCat, HDF-n, and HUVEC were passaged in high glucose
(25 mmol/L) [25,26] medium containing 10%FBS to mimic diabetic
ulcer-related cells and then treated with MSC-Sp for subsequent
experiments considering the paracrine effect of HUC-MSCs. In
addition, hyperglycemic pre-cultured RAW264.7 cells were used to
evaluate the effects of MSC-Sp on inflammation.

2.4. CCK8 cell proliferation assays

Hyperglycemic passaged HaCat, HDF-n, and HUVEC were
seeded in 96-well plates (1 x 10° cells/well). After adhering to the
walls, they were treated with MSC-Sp and observed for 24 h, 48 h
and 72 h. The cells were then incubated with 10 uL of CCK-8 reagent
(Dojindo, Kumamoto, Japan) for 4 h after treatment with MSC-Sp
every 24 h group. Control cells were treated with PL-free culture
medium simultaneously. Absorbance was measured data wave-
length of 450 nm. The faster the cell proliferation, the darker the
color and the greater the absorbance values.

2.5. Cell proliferation gene expression with RT-qPCR

Cell proliferative cyclin gene expression (including Cyclin D2,
Cyclin A1 and C-Myc) was detected by RT-qPCR. A TRIzol reagent kit
was used for RNA extraction. The isolated RNA was reverse-
transcribed into complementary DNA using the PrimeScript RT
Kit (TaKaRa, Japan). Primers were synthesized by Tsingke Biotech-
nology Co., Ltd. (Beijing, China), and are listed in Supplemental
Table 1. PCR was performed on a Roche Real-Time System (Roche,
Basel, Switzerland) using a SYBR1 Premix Ex Tagqll kit (TaKaRa,
Japan). Controls cultured in PL-free medium were used to calculate

relative gene expression using AAct and 2 24<,
2.6. In vitro wound healing experiment
Hyperglycemic passaged HaCat, HDF-n, HUVEC cells

(1 x 10° cells per well) were seeded in six-well plates and when
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they reached 90 % confluence, they were scratched using a standard
200 pL pipette tip. Cells within the wound area were washed with
PBS and treated with 2 mL o-MEM culture medium without serum
or PL (control group). Three other wells were treated with 2 mL PL-
free MSC-Sp. All plates were incubated at 37 °Cin 5 % CO; for 48 h
and media wound not change during this period. Three photomi-
crographs of each scratch were obtained at the initial time of
wound creation, and the same location was photographed every
12 h until completion of the study. The Image] Software (National
Institutes of Health, NIH, USA) was used to quantify the remaining
area of the wound. After completion of each scratch assay, 1 mL
MSC- Sp was stored at —80 °C until ready for analysis. The con-
centrations of VEGF-o, PDGF-BB, and TGF31 were measured using
human ELISA kits. The control group contained «-MEM and MSC-
Sp. These wound-healing factors were also detected by RT-qPCR,
and the primers used are listed in Supplemental Table 1.

2.7. In vivo diabetic chronic wound construction

Bama miniature pigs were purchased from Chengdu Dossy
Experimental Animals Co. Ltd (Chengdu, China). Five pigs (named
D1, D2, D3, D4, and D5) were fed a high-energy diet from 19 weeks
of age as the diabetic group, and the other two pigs were fed a
control diet as non-diabetics (C1 and C2). Diabetes was induced by
a high-energy diet combined with an intravenous injection of STZ
(125 mg/kg), and the average fasting blood glucose level of diabetic
pigs was higher than 7 mmol/L, which was considered a successful
model [27]. For wounding, pigs (61.8 + 8.0 kg, average body length
98.9 + 4.2 cm) were anesthetized with atropine sulfate (0.05 mg/kg,
CR Double Crane, China) and Soletil 50 (4 mg/kg, Virbac, France)
after fast for 8 h. Isoflurane (Merck, USA) was used to maintain
anesthesia. To avoid the bone and joint, the average body length
was 50.1 + 3.4 cm, which suitable for wounding. Full-thickness
cutaneous ulcers of 3 cm in diameter and spaced at least 3 cm
apart was surgically created on both sides of the spine, and there
were 5 or 6 wounds per side along the spine. Wounds were then
filled with self-designed foreign material to help inhibiting wound
healing thus building a chronic cutaneous ulcer model
(Supplemental Fig. 1). And there were 20 wounds in non-diabetic
pigs and 58 wounds in diabetic pigs. Dressings were changed
every six days, and wounds were sectioned for histology and
assessment of inflammatory indicators for eight weeks, in which
specimens collected at the time of wounding were used as pre-
wound normal tissue controls. Wounds cannot heal through the
normal healing process [28] and do not heal for at least eight
weeks, indicating a successful chronic cutaneous wound model.

2.8. Treatment and wound healing assessment

Chronic wound models were successfully created and randomly
divided into a non-diabetic normal saline treatment group (NDM-
NS, pigs = 2, n = 10) and a non-diabetic PL treatment group (NDM-
PL, pigs = 2, n = 10). The wounds of the diabetic pigs were assigned
to the normal saline treatment group (DM-NS, pigs =2, n=11), PL
treatment group (DM-PL, pigs = 2, n = 11), HUC-MSCs treatment
group (DM-MSCs, pigs = 2, n = 18), and PL + HUC-MSCs treatment
group (DM-PL + MSCs, pigs = 2, n = 18) (Supplemental Fig. 2). The
HUC- MSCs of the P4—P6 generation were dissolved in normal sa-
line and PL solution at 6 x 108/mL and treated as 6 x 10®/mL/cm? by
multiple injections in the wounds, consistent with other large an-
imal model studies [29—31] and our per-experimental effects. The
NDM-NS and NDM-PL groups were treated with equal wound
volumes. Dressing changes were performed every three days after
treatment. On the third, sixth, ninth, and the twelfth days, wounds
were traced and photographed. Wound area was calculated by
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using the method of "Wound Edge Mapping + Digital
Photography + Image] Software ". Healing rate = [(initial area of
wound-unhealed area)/initial area of wound] x 100 % [32].

2.9. Tissue specimen collection and histology examination

To minimize the impact on wound healing, wound areas within
the range of normal to granulation tissue were collected under local
anesthesia with 2 % lidocaine (approximately 1-2 mm were
collected at five different time points: before treatment (D0), 3 days
(D3), 6 days (D6), 9 days (D9), and 12 days (D12)) alternately every
three days in each treatment group by a biopsy device, and
ensuring a minimum of 6 samples in each group. HE staining was
used to evaluate the inflammation status, wound repair indicators.
Masson's trichrome staining was used to observe new collagen. The
integrated optical density (IOD) and area of all acquired images
were determined using Image-Pro Plus 6.0 image analysis system,
and the percentage of collagen tissue expression area was calcu-
lated. CD31 (Abcam, Cambridge, Britain, ab28364, 1:50) staining
was used to observe the micro vessel density (MVD) following the
general immunohistochemistry protocol.

2.10. Wound healing factors and inflammatory factors evaluation

In vitro experiment, interleukin 6 (IL-6) and tumor necrosis
factor o (TNF-a) were detected by RT-qPCR in hyperglycemic
cultured RAW264.7 cells and after treated by MSC-Sp. VEGF-a. and
PDGF-BB in HaCat, HDF-n, and HUVEC treated with MSC-Sp were
tested by Rt-qPCR and ELISA, and the controls were treated with the
control medium. The mouse-specific primers are listed in
Supplemental Table 2. For the in vivo experiment, wound samples
were collected during the chronic wound modeling period
(including pre-wound (DO0), wound 6 days (wound 6D), wound 24
days (wound 24D), and wound 56 days (wound 56D)) and after
treatment DO, D3, D6, D9, and D12. Rt-qPCR was performed to
assess the expression of IL-6, TNF-a, VEGF-a, PDGF-BB, alpha-
smooth muscle actin (¢-SMA), and collagen types I and Il (Col1 and
Col3). The reverse-transcription primers used are listed in
Supplemental Table 3. Pre-wound and DO samples were used as
controls to calculate relative mRNA expression according to the
manufacturer's protocol.

2.11. TGFB/Smad signaling pathway expression analysis

TGFB/Smad signaling pathway expression was assessed in both
in vivo and in vitro wounds by RT-qPCR and western blotting. For
western blotting, the cells or tissues were homogenized in RIPA
buffer and mixed on ice for 30 min. Lysates were centrifuged at
12,000 x g for 30 min at 4 °C and the supernatant was collected. The
protein concentration in the supernatant was determined using a
bicinchoninic acid assay. Equal amounts of protein (20 pug) were
separated by 10%SDS-PAGE and transferred to a polyvinylidene
difluoride membrane. Membranes were blocked with 3 % BSA in
TBST for 1 h and incubated with primary antibodies overnight at
4 °C, then washed with TBST, and developed using an alkaline
phosphatase color development kit. The bands were visualized
using an enhanced chemiluminescence kit. Images were captured
using ChemiDoc™(BioRad) with Image Lab software, and the
densities of the blots were quantified using the Quantity One
analysis software. Supernatants were analyzed using a bicincho-
ninic acid assay. Equal amounts of protein (20 pg) were separated
by 10 % SDS-PAGE and transferred to a polyvinylidene difluoride
membrane. Membranes were blocked with 3 % BSA in TBST for 1 h
and incubated with primary antibodies overnight at 4 °C, then
washed with TBST, and developed using an alkaline phosphatase
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color development kit. The bands were visualized using an
enhanced chemiluminescence kit. Images were captured using
ChemiDoc™(BioRad) with Image Lab software, and the densities of
the blots were quantified using the Quantity One analysis software.

2.12. Statistical analysis

SPSS 22.0 was used for statistical analysis. If the quantitative
data conformed to the normal distribution, the data were expressed
as mean + standard deviation (SD) (mean + SD). Normality and
homogeneity of variance tests were performed. We used an inde-
pendent samples t-test and one-way analysis of variance (ANOVA)
to compare the means of different groups, and the Scheffe post-hoc
test was used to analyze differences between groups. Two-way
repeated-measures ANOVA was used to analyze the data at multi-
ple time points between the groups. After the data were subjected
to Mauchly's Test of Sphericity, those that did not meet the sphe-
ricity test were corrected using the Greenhouse-Geisser (G-G)
method. If there was a difference between the groups, the Scheffe
post hoc test was used when the sample size of each group was
different, and Tamhane 2 analysis was used when the variance was
uneven. P < 0.05. GraphPad Prism, Adobe Illustrator, and Adobe
Photoshop software were used to complete the charts in this study.

3. Results
3.1. HUC-MSCs identification
P5 HUC-MSCs were positive for MSCs markers, such as CD44,

CD105, and CD73, and negative for hematopoietic markers, such as
CD14, CD34, and HLA-DR (Supplemental Fig. 3), using a Flow
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Cytometer. MSCs subjected to osteogenic and adipogenic culture
conditions differentiate into osteocytes and adipocytes, respec-
tively. Oil Red O staining showed lipid vacuoles stained red,
whereas Alizarin Red S staining showed deposits of calcium crystals
stained orange to brown (Supplemental Fig. 3), confirming their
identity as MSCs according to the accepted criteria [33].

3.2. PL-cultured MSC-Sp promoted diabetic ulcer-related cells
healing

Compared with a-MEM basal medium, PL-cultured MSC-Sp
significantly promoted the proliferation and healing rates of
HaCat, HDF-n, and HUVEC. At time points 24 h, 48 h, and 72 h
post- CCK8 staining, the MSC-Sp group had significantly increased
cell proliferation rates of HaCat, HDF-n, and HUVEC (p < 0.01.)
(Fig. 1A—C). Cyclin D2, Cyclin A1, and C-Myc expression levels in
HaCat cells were significantly elevated (p values were all less than
0.05). Cyclin A1 of HDF-n was elevated significantly (p = 0.012),
and Cyclin D2 and C-Myc gene expression in HUVEC was elevated
significantly (p values were all less than 0.05), after treatment
with MSC-Sp (Fig. 1D—F). At time points 12 h, 24 h for HaCat, 24 h
for HDF-n, 48 h for HUVEC after the scratch assay, the MSC-Sp
group showed a significant increase in wound closure rate
compared to the control group (p values were less than 0.01.)
(Fig. 1G-I).

3.3. MSC-Sp promoted diabetic ulcer-related cells secreting VEGF-q,
PDGF-BB

Except VEGF-a or PDGF-BB, only TGFB1 was detected in MSC-Sp,
with an average concentration of 98.070 + 2.700 pg/ml before
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Fig. 1. MSC-Sp promoted diabetic ulcer-related cells proliferation and migration
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A), B) and C), CCK8 experiment, n = 6,13 and 9 of HaCat , HDF-n and HUVEC respectively , CCK8 results of HUVEC was OD value for the data was not suitable for proliferation rate.
D), E) and F), QPCR results of proliferative cyclin, n = 5,4 and 4 of HaCat, HDF-n and HUVEC respectively. G), H) and I), Scratch test, n = 3,7 and 4 of HaCat, HDF-n and HUVEC

respectively.
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Table 1
Growth factors levels before and after MSC-Sp treatment.

Regenerative Therapy 26 (2024) 1138—1149

Growth factors MSC-Sp VS. Control (n = 3)

MSC-Sp VS. Control, after treatment for 48 h (n = 3)

TGFB1(pg/mL) 98.070 VS. 0
VEGF-o(pg/mL) 0Vvs.0
PDGF-BB(pg/mL) 0Vs.0

HaCat HDF-n HUVEC
0Vs.0 0VS.0 0VS.0
8494.510 VS. 520.520 1296.162 VS. 0 0VS.0
133.990 VS. 20.810 0VS.0 0VS.0

treatment. However, none of them secreted TGFB1 after treatment
of HaCat, HDF-n, or HUVEC with MSC-Sp (Table 1). HaCat secreted
VEGF-o. and PDGF-BB in both control medium and MSC-Sp. How-
ever, MSC-Sp significantly promoted secretion of VEGF-a
(8494.510 pg/ml vs. 520.520 pg/ml) and PDGF-BB (133.990 pg/ml
vs. 20.810 pg/ml) by keratinocytes. MSC-Sp promoted HDF-n
secretion of VEGF-a, but it did not promote HUVEC secrete VEGF-
o, (Table 1). In addition, HDF-n and HUVEC could not secrete PDGF-
BB regardless of treatment with MSC-Sp or not in this study.
Consistent with ELISA results, MSC-Sp inhibited TGFB1 expression
of diabetic ulcer-related cells compared with control groups, in
which the expression of TGFp1 in HaCat and HDF-n decreased
significantly (p < 0.05). MSC-Sp significantly promoted VEGF-a and
PDGF-BB expression in HaCat and HDF-n (p-values were both less
than 0.05), with no upregulation in HUVEC (Fig. 2).

3.4. Successfully construction of diabetic chronic wound

The high-energy diet combined with STZ injection successfully
generated a stable pig diabetes model at 76 weeks of age when the
diabetes models were built for 29 weeks. The fasting blood glucose
(FBG) levels of D1, D2, and D4 were higher than 20 mmol/L and
required insulin treatment to avoid ketoacidosis, consistent with
the other two pigs, whose OGTT results met the diagnostic criteria
compared to non-diabetic pigs (Supplemental Fig. 4).

The wounds did not heal for 56 days (8 weeks) and presented a
persistent inflammatory state (Supplemental Fig. 5). As there was a
significantly higher expression of IL-6 and TNF-o over time
compared with pre-wound tissues, p values were all less than 0.05.
The relative expressions of IL-6 and TNF-a, were 15.627 + 2.834 and
9.220 + 2.089, respectively, at 56 days. In the in vitro experiment,
hyperglycemic medium also increased the expression of CD86, IL-6,
and TNF-a compared to normal glucose medium (p < 0.05, Fig. 3).

3.5. HUC-MSCs and PL promoted wound healing

NDM-PL had significantly higher wound healing rates at all time
points than the DM-PL, NDM- NS, and DM-NS groups (p < 0.05),
suggesting that diabetes delayed wound healing, whereas PL pro-
moted it (Supplemental Tables 4 and 5 and Fig. 4). HUC-MSCs, PL,
and PL + HUC-MSCs treatment significantly promoted wound
healing compared to NS (p values were all less than 0.05), in which
PL + HUC-MSCs treatment had the best wound healing rate.
Typically, on day 12, the average wound healing rates were 67.362 +
6.368 % in DM-NS group, 75.791 + 2.885 % in DM-PL group, 73.509
+ 1.209 % in DM-MSC group, and 83.118 + 2.765 % in DM-PL + MSCs
group, respectively (Supplemental Tables 4 and 5 and Fig. 4). The
PL + HUC-MSCs treatment group also showed the greatest effects
on dermal maturity, collagen formation, and micro vessel density.
Briefly, the PL + HUC-MSCs group had a higher collagen
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Fig. 3. Inflammatory factors change of in vivo and in vitro modeling

A), TNF-a. of DCU modeling period. B), IL-6 of DCU modeling period. C), Expression of CD86, IL-6 and TNF-a. expression in high glucose induced macrophages.

concentration than the PL and NS treatment groups (P < 0.05,
Fig. 5). This was consistent with the higher expression of Col1 and
Col3 in the PL + HUC-MSCs group than in the NS group by further
exanimating gene expression (P < 0.05; Fig. 5). HUC- MSCs tended
to have fewer scarring effects, and the relative expression of a-SMA
in PL + HUC-MSCs and HUC-MSCs treatment alone was signifi-
cantly lower than that in the PL and NS treatment groups (P <
0.001). The MVD of the PL + HUC-MSCs and HUC-MSCs treatment
groups was significantly higher than that of the NS treatment group
(P < 0.05). In PL + HUC-MSCs group, the relative expression of
VEGF-a was also significantly higher than that in NS and HUC-MSCs
groups (P < 0.05). There was no significant upregulation in PDGF-BB
expression among the groups, except for the PL and NS treatments
(Fig. 6).

3.6. HUC-MSCs and PL regulated wound inflammation

In the in vitro experiment, MSC-Sp treatment significantly
reduced the relative expression of IL-6 and TNF-o. compared to the
control treatment (P < 0.001) in macrophages (Fig. 7A). In the
in vivo experiment, during wound healing, the infiltration of in-
flammatory cells in each group was mainly lymphocytes and
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NDM-NS

Healing rate(%)
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Fig. 4. Wound healing rate in the control and DCU groups

plasma cells, and there were no significant pathological differences
among groups, regardless of diabetes status or not. HUC-MSCs
significantly reduced IL-6 expression compared to other groups
(P < 0.05), PL + HUC-MSCs significantly increased Arg-1 and TGFS1
expression compared to HUC-MSCs alone (P < 0.05). Further anal-
ysis of the relative expression ratios of IL-6/Arg-1 and IL- 6/TGF§1
showed no significant difference in IL-6/Arg-1. On the 3rd day after
treatment, IL-6/Arg-1 in the PL + HUC-MSCs group was signifi-
cantly higher than that in the HUC-MSCs group (P = 0.037),
whereas the IL-6/TGFf1 ratio was not statistically different be-
tween the groups (Fig. 7).

3.7. HUC-MSCs and PL regulated wound TGF3/Smad signaling
pathway

We investigated the underlying mechanism of HUC-MSCs and
PL-induced wound healing in affected tissues. The expression level
TGFpB1, TGFB3, Smad2, Smad3, Smad4, and Smad7 were analyzed
using western blotting and RT-qPCR. In vitro experiments, the
relative gene expression of TGFB1, Smad2, Smad3, and Smad4 in
diabetic ulcer-related cells after PL-cultured MSC-Sp intervention
was reduced, while the expression of Smad7 and TGFB3 was
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A), Representative figures of wounds area changes of pigs among groups over time. B) and C), Wound healing rate in Control and experimental treatment groups respectively.
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elevated. MSC-Sp also reduced the TGFB1/TGFp3 ratio in these cells
(P < 0.05) (Fig. 8). The protein expression ratio of TGF1/TGFB3 was
also reduced in these cells. However, only the difference in HaCat
expression was statistically significant (P < 0.001) (Fig. 9). In vivo
experiments, the relative genes expression of TGFf1, Smad2, Smad3
and Smad4 in PL + HUC-MSCs and PL treatment groups were
significantly higher than that in HUC-MSCs group (P < 0.05). Smad7
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and TGFp3 levels were significantly decreased (P < 0.05). Thus, the
relative ratio of TGFB1/TGFB3 in the PL + HUC-MSCs and PL treat-
ment groups was also significantly higher than that in the HUC-
MSCs treatment group (P < 0.05) (Figs. 7 and 10). The changes in
the TGFB/Smad signaling pathway at day nine were generally
consistent among groups, which might be related to the disappear
of topical treatment fluids. Thus, we only tested protein expression
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in wound areas six days after treatment by western blotting. Only
TGFB1, Smad7 and TGFB3 had significant difference among groups
(P < 0.05). Consistent with the Rt-qPCR results, the protein ratio of
TGFB1/TGFB3 in the PL + HUC-MSCs and PL treatment groups was
significantly higher than that in the HUC-MSCs group (P < 0.05)
(Fig. 11). Smad7 expression was significantly higher in the HUC-
MSCs group than in the other treatment groups (P < 0.05). In
summary, PL + HUC- MSCs and PL treatment upregulated the

TGFP1/TGFB3 ratio. HUC-MSCs downregulated TGFf1, Smad2,
Smad3, and Smad4, and upregulated genes expression of Smad7
and TGFpB3.

4. Discussion

This study indicated that HUC-MSCs and PL stimulated DCU
healing both in vitro and in vivo. PL-cultured MSC-Sp effectively
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Fig. 11. Expression of TGFB/Smad signaling pathway of DCU treatment groups

A), representative WB images of TGFf/Smad signaling pathway in DCU treatment groups at day 6. B), C), D) and E), Relative TGFB1, P-Smad3, Smad7 and TGFB3 protein levels of

TGFp/Smad signaling pathway after the intervention by DCU treatment groups, n = 4.

promoted diabetic ulcer-related cell proliferation and migration
in vitro. HUC-MSCs combined with PL had a synergistic effect on
wound healing by regulating the TGFB/Smad signaling pathway
in vivo.

In vitro experiments demonstrated that HUC-MSCs promoted
angiogenesis and collagen formation and inhibited scarring via in-
hibition of the TGFf/Smad signaling pathway, manifested as an
inhibited TGFP1/TGFB3 ratio, and promoted VEGF-o and PDGF-BB.
MSC-Sp inhibited TGFB1 expression in vascular endothelial cells
and promoted angiogenesis [34—36] through exosomes or highly
expressed miR-146a [37] and miR21-3p [38] in HUC-MSCs. MSC-Sp
significantly increases the secretion of VEGF-a and PDGF-BB in ker-
atinocytes and fibroblasts, which is closely related to neo-
vascularization [39]. Smad is well known as the major inducer of
fibroblast differentiation, which is an essential factor for wound
healing and downstream mediators of TGFB1 [40]. In this study, MSC-
Sp downregulated TGFB1, Smad 2/Smad3 expression and upregu-
lated Smad 7 expression of keratinocytes and fibroblasts. MSC-Sp
promoted the proliferation and migration of fibroblasts and inhibi-
ted the TGFP1/TGFB3 ratio and upregulated the TGFB3, which
reduced fibroblast-to-myofibroblast over transformation [41].
Except inhibiting canonical TGFp/Smad signaling pathway, treat-
ment with MSC-Sp in fibroblasts might influence several non-
canonical pathways, including AKT, ERK, RAF, and ROCK to upregu-
lating TGFB3 [42], but there has been rarely reported. Reduced
expression of a-SMA and Col1 in fibroblasts and inhibition of their
excessive transformation to TGFp1-mediated myofibroblasts [43], as
well as in vivo HUC-MSCs treatment of diabetic pigs. MiR-21 abun-
dant in MSCs [4], has also been reported to inhibit myofibroblast
formation mediated by the TGFf/Smad2 pathway [44] and promote
keratinocyte proliferation and migration by downregulating TGFf1,
tissue inhibitor of metalloproteinase-2 expression, and upregulation
of matrix metalloproteinase-9 expression. PL-cultured MSC-Sp pro-
moted keratinocytes expressing VEGF-a, which in turn enhanced the
secretion of fibroblasts through HUC-MSCs, and may also inhibit the
TGFB/Smad signaling pathway [43,45].

1147

In vivo experiments, PL + HUC-MSCs treatment significantly
promoted DCU healing, collagen formation, and microvascular
density in pigs, which was better than HUC-MSCs or PL treatment
alone. Moreover, the relative expression of VEGF-o, PDGF-BB,
TGFB1, and o-SMA was higher than that of HUC-MSCs alone,
which was similar to the results of MSCs combined with platelet-
rich plasma the first-generation platelet product [46—49]. HUC-
MSCs treatment alone significantly reduced the expression of a-
SMA, Coll, and TGFB1/TGFp3 ratio in the process of promoting
wound healing. Similar results were observed in the in vivo ex-
periments conducted in this study. This is consistent with obser-
vation that MSCs downregulate Col1, a-SMA, and TGFB1 expression,
reduce collagen fiber thickness and scarring[50—52], and upregu-
late fibroblast and wound TGFB3 levels to inhibit wound fibrosis
[53]. PL + HUC-MSCs and PL alone promoted VEGF-o,TGFf1, and a-
SMA expression similar to platelet-rich plasma [54—56]. Like other
platelet rich plasma + MSCs studies, we used pure platelet prod-
ucts, which resulted in the amplification of platelet lysate mecha-
nisms and masking of MSCs to promote wound healing. However,
compared to platelet rich plasma, PL is commercially available and
stable, which facilitates the translation of basic experiments into
clinical trials. Consistent with Liu W et al. [57], HUC-MSCs signifi-
cantly inhibited the expression of IL-6 during wound healing.
Although PL combined with HUC-MSCs increased IL-6, Arg-1 and
TGFP1 expression at the same time, there was no significant dif-
ference between the overall IL-6/Arg-1 and IL-6/TGFB1 ratios
among the groups. PL might induce a transient pro-inflammatory
response in MSCs during the inflammatory phase of wound heal-
ing, subsequently inhibiting the expression of inflammatory factors
[58]and resulting in a balance between IL-6/Arg-1 and IL-6/TGFB1
ratios. However, the inflammatory response during wound healing
requires further investigation.

In conclusion, this study found that both HUC-MSCs and PL
could promote wound healing, but PL + HUC-MSCs had the best
effect compared to treatment alone. PL + HUC-MSCs might regulate
wound tissue inflammation by regulating IL-6/Arg-1 and IL-6/
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TGFB1 balance and upregulating wound TGFf1, VEGF-a, Col1, and
a-SMA to promote collagen deposition and wound contraction. This
study provides evidence of the clinical use of HUC-MSCs and PL.
However, it is necessary to establish PL and HUC- MSCs concen-
tration gradients in animal experiments to determine the optimal
concentrations and effects of PL and HUC-MSCs.
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