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Abstract
Background: Microvascular invasion (MVI) is an independent prognostic fac-
tor that is associated with early recurrence and poor survival after resection of 
hepatocellular carcinoma (HCC). However, the traditional pathology approach 
is relatively subjective, time-consuming, and heterogeneous in the diagnosis of 
MVI. The aim of this study was to develop a deep-learning model that could sig-
nificantly improve the efficiency and accuracy of MVI diagnosis.
Materials and Methods: We collected H&E-stained slides from 753 patients 
with HCC at the First Affiliated Hospital of Zhejiang University. An external vali-
dation set with 358 patients was selected from The Cancer Genome Atlas data-
base. The deep-learning model was trained by simulating the method used by 
pathologists to diagnose MVI. Model performance was evaluated with accuracy, 
precision, recall, F1 score, and the area under the receiver operating characteris-
tic curve.
Results: We successfully developed a MVI artificial intelligence diagnostic model 
(MVI-AIDM) which achieved an accuracy of 94.25% in the independent external 
validation set. The MVI positive detection rate of MVI-AIDM was significantly 
higher than the results of pathologists. Visualization results demonstrated the 
recognition of micro MVIs that were difficult to differentiate by the traditional 
pathology. Additionally, the model provided automatic quantification of the 
number of cancer cells and spatial information regarding MVI.
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1   |   INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most 
common malignancy and the third leading cause of 
cancer-related death worldwide.1 The prognosis for 
most patients with HCC is poor, with only an 18% 5-
year survival rate.2 Up to 80% of patients experience re-
currence within 5 years after surgical resection,2 which 
is associated with microscopic foci of dissemination 
already present preoperatively. Microvascular invasion 
(MVI) refers to the presence of cancer cell nests micro-
scopically seen in the portal vein, hepatic vein, or tumor 
envelope vessels within the paracancerous liver tissue.3 
MVI is an independent prognostic factor that is associ-
ated with intrahepatic metastasis and early recurrence 
following the resection of HCC.4 HCC patients with 
MVI not only have a higher postoperative recurrence 
rate5 but also experience shorter recurrence time.6,7 
Effective postoperative adjuvant transarterial chemo-
embolization or sorafenib treatment for HCC patients 
with MVI significantly reduces tumor recurrence and 
improves survival.8,9 Therefore, an accurate diagnosis of 
MVI is critical to the individualized treatment and fol-
low-up strategies for HCC.

Postoperative pathological assessment is generally 
considered as the “gold diagnostic standard” for MVI. 
However, the traditional pathology is relatively sub-
jective, time-consuming, and heterogeneous in the di-
agnosis of MVI. When multiple masses are present at 
once, counting MVI at each sampling site may become 
a time-consuming and repetitive task. Furthermore, 
visual discrimination of micro MVI (i.e., less than 10 
tumor cells) is challenging and even highly experienced 
pathologists may overlook or misdiagnose it. Detection 
rates of MVI vary widely between 7.8% and 74.4% in 
different pathologists.10 In addition, traditional pathol-
ogy cannot provide precise information like the num-
ber of MVIs, tumor cell count or area of MVI, spatial 
information of MVI, and so on. The requirement for 
precise pathological diagnosis has challenged the tra-
ditional pathology.

The development of artificial intelligence (AI) in medi-
cine has led to significant advancements in the diagnosis of 
tumors, assessment of drug efficacy, and prognosis predic-
tion.11–15 In HCC, deep-learning models based on histolog-
ical whole-slide images (WSIs) have been widely applied in 
diagnosis,16 pathological grading,17 molecular characteriza-
tion16,17 and prognostic assessment.15,18 However, AI stud-
ies of MVI in HCC have mainly focused on preoperative 
prediction using radiomics,19,20 which results in underesti-
mation of the detection rate of MVI.21 As of now, there is no 
deep learning model that can rapidly and accurately assess 
postoperative histological MVI of HCC.

This study proposes the MVI artificial intelligence 
diagnostic model (MVI-AIDM), which can significantly 
improve the efficiency and accuracy of MVI diagnosis 
leveraging our previously constructed framework for 
classifying blocks of HCC pathological images22 and mi-
crovascular segmentation.23 The proposed model sim-
ulates the MVI diagnosis method used by pathologists, 
involving three consecutive processes: detecting tumor 
regions, segmenting microvessels outside the tumor, and 
classifying cells in the microvascular. Exhaustive exper-
iments have demonstrated the excellent performance of 
MVI-AIDM in MVI diagnosis. Compared with patholo-
gists, the proposed model not only improves the accuracy 
and efficiency of MVI diagnosis, but also provides quanti-
tative and spatial information of MVI.

2   |   MATERIALS AND METHODS

2.1  |  Patient cohorts and ethics approval

Ethics approval for this study was obtained from the 
Ethics Committee of the First Affiliated Hospital, College 
of Medicine, Zhejiang University (FAHZJU). Written in-
formed consent was obtained from all patients before sur-
gery, and all personal information related to the patients 
was anonymized.

The study's patient selection involved a retro-
spective review of patients who underwent curative 

Conclusions: We developed a deep learning diagnostic model, which performed 
well and improved the efficiency and accuracy of MVI diagnosis. The model pro-
vided spatial information of MVI that was essential to accurately predict HCC 
recurrence after surgery.
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hepatectomy of primary HCC in FAHZJU from January 
2018 to December 2021. We collected a total of 753 
HCC patients from FAHZJU and 358 patients from The 
Cancer Genome Atlas (TCGA) database following the 
inclusion and exclusion criteria. All images and data 
from the TCGA are publicly available at https://​portal.​
gdc.​cancer.​gov. The inclusion criteria consisted of pa-
tients who were (I) diagnosed with HCC after postoper-
ative histopathology, (II) had a postoperative sampling 
in the First Affiliated Hospital, College of Medicine, 
Zhejiang University (FAHZJU) strictly following the 7-
point sampling protocol (SPSP),24 (III) did not undergo 
liver transplantation and (IV) had complete clinical and 
pathological data. Patients were excluded if they (I) had 
undergone any preoperative adjuvant treatment, (II) 
had a history of other malignancies, (III) were diag-
nosed with intrahepatic cholangiocarcinoma (ICC) or 
combined HCC–ICC postoperative histopathologically, 
(IV) had indistinct pathological images or obvious ne-
crotic areas, and (V) had incomplete clinical and patho-
logical data.

2.1.1  |  Sampling protocol

Due to the high incidence of MVI located within 1 cm of 
the tumor margins,25 we performed postoperative sam-
pling following the 7-point sampling protocol (SPSP)24 
as illustrated in Figure 1A. Tissue was harvested in a 1:1 
ratio between the area of the tumor and that of the adja-
cent liver tissue at 4-point positions (i.e., 12-o'clock (A), 
3-o'clock (B), 6-o'clock (C), and 9-o'clock (D)) between the 
tumor and adjacent liver tissue. Additionally, tissue was 
harvested separately at the tumor center (E) and its pe-
riphery (≤1 cm away from the main tumor (F) and >1 cm 
away from the main tumor (G)). For multiple tumors, at 
least one block was obtained from each daughter nodule 
between the tumor and adjacent liver tissue, depending 
on the nodule size.

2.1.2  |  Pathological diagnosis standard

Diagnosis of HCC was made using the Guidelines for the 
Diagnosis and Treatment of Hepatocellular Carcinoma 
(2019 Edition),26 while the diagnosis of MVI followed the 
practice guidelines for the pathological diagnosis of pri-
mary liver cancer.24 Two senior subspecialty pathologists 
identified HCC and MVI in all cases. In cases of disagree-
ment, a third pathologist was involved in the identification 
process and provided the final result. The final diagnosis 
was defined as “pathologists' labels”.

2.2  |  Dataset preparation

A total of 5517 WSIs from 753 patients with HCC at 
FAHZJU were included in our study. The WSIs were ran-
domly divided into a training set and a test set at a 7:3 
ratio. All images were hematoxylin and eosin (H&E)-
stained and produced at 40× magnification using the 
3DHISTECH P250 FLASH digital scanner (3DHISTEech, 
Budapest, Hungary). For validation purposes, we down-
loaded 358 slides of HCC from TCGA database as an ex-
ternal testing set. Since these slides only had case-level 
labels, we manually annotated the presence of MVI on 
these slides for testing purposes.

2.3  |  Development of the deep 
learning model

We proposed a deep learning model for MVI diagnosis. 
As illustrated in Figure 1B, the model contains three pro-
cesses, tumor region detection, microvascular segmen-
tation, and MVI cell classification. The details of each 
process are provided in Data S1.

2.3.1  |  Tumor region detection

The initial process of our proposed model involves detect-
ing tumor regions. This process is trained using cancerous 
and noncancerous patches with rough annotations. To 
handle the issue of noisy labels, we propose a pathological 
classification framework that utilizes a noise-rectifying 
(NR) loss function. Predictions are made on individual 
patches, and these predictions are combined to create 
the prediction maps of WSIs. These maps are then post-
processed using erosion and dilation operations in order 
to obtain the main tumor region.

2.3.2  |  Microvascular segmentation

Once the main region of the tumor has been detected, 
the next step of our model is to locate and segment the 
microvessels outside of the tumor. To accomplish this, 
we employ the ResNet18 classification model, which is 
trained to detect patches containing microvessels. ResNet 
uses skip connections to address the vanishing gradient 
problem, which helps achieving successful training for 
deep classification networks. This model is trained on 
both microvascular-containing and microvascular-free 
patches. Additionally, we use the DeepLabv3 model for 
semantic segmentation in pathological patches with 

https://portal.gdc.cancer.gov
https://portal.gdc.cancer.gov
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microvessels. DeepLabV3 is a state-of-the-art deep 
learning model for semantic image segmentation. It has 
precise object recognition and boundary detection abil-
ity and can achieve great performance in microvascular 
segmentation.

2.3.3  |  Microvascular invasion cell 
classification

After obtaining patches from the microvessels outside the 
tumor region, the critical step is to classify the cells and 
diagnose MVI. To train models without cell annotations, 
we propose a weakly supervised method for cell classifi-
cation using only patch-level labels. Our proposed model 
consists of a cell localization branch and a cell classifica-
tion branch with the encoder that shares parameters. By 

incorporating mutual feedback between two branches, 
the encoder is able to achieve better performance in both 
locating and diagnosing the cells within the microvessels.

2.4  |  Microvascular invasion reviews by 6 
pathologists for comparsion

To validate the performance of the MVI-AIDM model at 
the WSI level, we invited six subspecialty experienced 
pathologists (three senior pathologists and three interme-
diate pathologists) to independently assess WSIs in the 
FAHZJU test set by traditional pathology. As described 
above, the final diagnosis by three senior pathologists was 
defined as “pathologists' labels”. We compared the detec-
tion rate and time cost of diagnosing MVI between pa-
thologists and MVI-AIDM.

F I G U R E  1   (A) Criteria of the seven-point sampling protocol. (B) Illustration of the MVI diagnostic model. The proposed model consists 
of three processes including tumor detection, microvascular segmentation, and MVI cell classification. These processes are conducted in 
order, achieving the diagnosis of tumor region, cells and MVI. (C) The detail of dataset composition used in this paper. Our dataset includes 
5517 WSIs from 753 patients, which is divided into training set and test set. In addition, TCGA cohort is applied for external validation. The 
amount of data with and without MVI is shown below.
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2.5  |  Spatial information evaluation

In this study, we evaluated the performance of our 
model in capturing spatial information using several 
metrics, including the distance from the MVI to the 
tumor, the area ratio of the MVI, and cancer cells count-
ing. By analyzing the results from the three processes, 
we were able to calculate the distance between the MVI 
and the tumor. Additionally, the area ratio of MVI and 
cancer cells amount can be calculated by using the seg-
mentation and correlation filtering results. Overall, 
these metrics offer valuable information regarding the 
spatial relationship between the MVI and tumor region, 
providing important insights for diagnostic and treat-
ment decision-making.

2.6  |  Statistical analysis

We evaluated the performance of our proposed model 
using several metrics, including accuracy, precision, re-
call, F1 score, the receiver operating characteristic (ROC) 
curve, and the area under the curve (AUC) for classifica-
tion. In the segmentation task of microvessels, we used 
MPA, MIoU, FWIoU, and DICE as widely applied met-
rics for evaluation. These metrics were used to assess the 
accuracy and effectiveness of the model in segmenting 
microvessels.

In order to validate the performance of the MVI-AIDM 
model at the WSI level, we compared the positive rate of 
MVI between our proposed model and six subspecialty 
experienced pathologists. We utilized the Mc-Nemar 
test to compare the positive rates of MVI. The p < 0.05 is 
considered statistically significant. By using this method, 
we were able to validate the accuracy of our model on 
detecting MVI and compare its performance to that of 
pathologists.

3   |   RESULTS

3.1  |  Baseline features of dataset

Our study included a total of 5517 slides from 753 pa-
tients diagnosed with HCC at FAHZJU. Of these pa-
tients, 471 (62.55%) were confirmed to be positive for 
MVI. To develop and validate our proposed model, pa-
tients from the FAHZJU cohort were randomly divided 
into a training set and a test set at a 7:3 ratio, consisting 
of 3866 slides from 530 patients in the training set and 
1651 slides from 223 patients in the test set. The posi-
tive rate of MVI for these sets was 61.89% and 64.13%, 
respectively. For validation purposes, we also utilized 

an external test set from the TCGA database, which 
included 358 slides from 358 HCC patients (as shown 
in Figure  1C). Baseline clinicopathological and demo-
graphic characteristics were generally well-balanced be-
tween the FAHZJU and TCGA cohorts, as indicated in 
Table 1. Additionally, we analyzed the size distribution 
of the WSIs and found them to have varying widths and 
heights, as illustrated in Figure S1.

3.2  |  Tumor classification and region 
visualization

During the evaluation stage, the WSIs are cropped into 
small patches that serve as inputs to the well-trained 
classification model, resulting in the production of pre-
diction maps. To isolate the target tumor region, the 
post-processing based on erosion and dilation operations 
is performed. Figure  2A illustrates annotated tumor re-
gions, the prediction maps, and the post-processing re-
sults. From the comparison of annotations and prediction 
maps, the latter contain scattered regions. Initially, dila-
tion and erosion operations are conducted successively 
on original prediction maps to fill the negative spaces in-
side the predicted tumor region. Then erosion and dila-
tion operations are conducted to filter the positive areas 
outside the tumor. The visualization results show that 
the predicted tumor regions are more complete after the 
post-processing compared to the original ones. Our model 
achieves an AUC value of 0.88 and 0.82 in the FAHZJU 
test set and TCGA cohort, respectively (Figure  2B). The 
accuracy of tumor region detection exceeds 0.92 in the 
FAHZJU test set (Table S1). And the post-processing strat-
egies lead to accurate tumor region detection for the fol-
lowing processes.

3.3  |  Microvascular segmentation results

After detecting the tumor in each WSI, we isolate the 
corresponding region and proceed to perform microvas-
cular detection and segmentation on the remaining parts 
of the WSI. Next, we screen potential regions for suspi-
cious areas, including annular regions with ample space 
and filled with cancer cells. Subsequently, pathologists 
perform sample screening on the candidates, which may 
include little false positive MVIs, and we conduct micro-
vascular segmentation. In microvascular detection, the 
detected patches are combined through post-processing 
for segmentation (Figure S2). During the segmentation 
model's evaluation, representative microvascular sam-
ples are shown in Figure  2C, including the first four 
with significant blank space, followed by two patches 
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with relatively small sizes, and finally, one with a nar-
row shape. These samples are accurately annotated by 
pathologists, indicated as “GT.” From a comparison of 
these annotations and the segmentation outcomes, it 
can be observed that the predicted segmentation results 
closely match the annotated ones. Even for samples with 
small targets, our model can accurately segment the 
microvessels.

Additionally, we present quantitative results in 
Table S2 using various metrics for segmentation, includ-
ing MPA, MIoU, FWIoU, and DICE. The model's perfor-
mance is evaluated on normal patches and MVI patches 
separately. The performance on normal patches is supe-
rior, due to the more complex nature of the MVI samples 
than the normal ones. But the visualization results show 
that our model can achieve superior segmentation results 
for both normal and MVI microvessels.

3.4  |  Microvascular invasion cell 
classification results

The cell classification results in MVI are shown in Figure 2D. 
Patches with negative predictions are visualized in red, and 
patches with positive predictions are visualized in green. 
The nucleus of cancer cells are annotated with green 
points. From the overall effect of visualization, our model 
effectively detects all the cells in each patch (red and green 
predictions). In addition, almost all the green points are 
covered with green patches, which demonstrates that our 
model has the good performance on detecting cancer cells 
in MVI, with an AUC value of 0.95 and 0.88 in FAHZJU test 
set and TCGA cohort, respectively (Figure 2E).

Besides, quantitative experiments of MVI cell classifica-
tion are conducted and the results are shown in Table S3. The 
evaluation is conducted based on pathologist's annotations 

T A B L E  1   Baseline clinicopathological and demographic characteristics of HCC patients.

Variable Value

Training set Internal test set External test set

N % N % N %

Total patients 530 223 358

Age (years) <60 275 51.89 112 50.22 164 45.81

≥60 255 48.11 111 49.78 193 53.91

Unknown 0 0 0 0 1 0.28

Gender Female 89 16.79 32 14.35 116 32.40

Male 441 83.21 191 85.65 242 67.60

AFP level Normal 197 37.17 75 33.63 141 39.39

Abnormal 330 62.26 146 65.47 129 36.03

Unknown 3 0.57 2 0.90 88 24.58

Tumor number Single 449 84.72 189 84.75 330 92.18

Multiple 81 15.28 34 15.25 26 7.26

Unknown 0 0.00 0 0.00 2 0.56

Tumor diameter (cm) ≤3 238 44.91 118 52.91 74 20.67

>3 292 55.09 105 47.09 282 78.77

Unknown 0 0.00 0 0.00 2 0.56

Tumor differentiation I 17 3.21 14 6.28 52 14.53

II 277 52.26 115 51.57 170 47.49

III 207 39.06 87 39.01 121 33.79

IV 29 5.47 7 3.14 11 3.07

Unknown 0 0.00 0 0.00 4 1.12

AJCC stage I 303 57.17 129 57.85 166 46.37

II 184 34.72 73 32.73 82 22.90

III 38 7.17 19 8.52 84 23.46

IV 5 0.94 2 0.90 4 1.12

Unknown 0 0.00 0 0.00 22 6.15

MVI Yes 328 61.89 143 64.13 105 29.33

No 202 38.11 80 35.87 253 70.67

Abbreviations: AFP, alpha-fetoprotein; AJCC, American Joint Committee on Cancer; HCC, hepatocellular carcinoma; MVI, microvascular invasion.
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with metrics including precision, recall, and F1 score. It can 
be seen that the recall is higher than precision in cell locat-
ing, which represents our model tends to detect cancer cells. 
In clinical diagnosis of MVI, it is crucial to detect as many 
cancer cells as we can. The high recall of our model will miss 
very few cancer cells, which effectively assists pathologists 
to assess the severity of the spread.

3.5  |  Performance of MVI-AIDM model

For the final MVI diagnosis, our model classifies the entire 
microvessels as normal or MVI based on the predictions of 
the three processes discussed above. As shown in Table 2, 
our model achieves high accuracy at the patch level in both 
the internal and external test sets, with accuracy values 

F I G U R E  2   Experimental results of three processes of our model. (A) Results of the tumor region detection. GT denotes the ground 
truth annotated by pathologists. The third column shows the predicted maps. The last two columns show the results of conducting closing 
operation and opening operation, which generating the final tumor region. (B) The ROC of tumor classification of our dataset (left) and 
TCGA dataset (right), achieving the AUC of 0.88 and 0.82. (C) Results of the microvascular segmentation on HCC pathological images. The 
first line is the cropped microvascular patches. The second line of GT is the ground truth annotated by pathologists. The third line is the 
segmentation results. (D) Visualization of the MVI diagnosis results. The microvascular samples are cropped into patches and classified. 
From the visualized results, the red patches denote the regions with normal cells, and the green patches denote the regions with cancer cells. 
Cells with green points are cancer cells annotated by pathologists. (E) The ROC of MVI cell classification of our dataset (left) and TCGA 
dataset (right), achieving the AUC of 0.95 and 0.88.
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of 97.49% and 94.25%, respectively. This excellent perfor-
mance indicates that our model can effectively diagnose 
MVIs. Additionally, we calculate the precision and recall 
to evaluate the model's performance on normal and MVI 
vessels, respectively. The results show that normal vessels 
are better identified than MVI, likely because of the sim-
ple and uniform features of normal patches. Nevertheless, 
with a precision of 92.44% and a recall of 92.98% in the 
FAHZJU test set, our model still has a powerful ability to 
classify most MVIs from all the microvessels in each WSI.

3.6  |  Comparison of MVI-AIDM model to 
pathologists

As illustrated in Figure 3A,B, the MVI positivity rates di-
agnosed by the six subspecialty pathologists ranged from 
52.91% to 61.88%. By comparison, the MVI-AIDM model 
diagnosed a total of 158 positive cases of MVI from 223 
cases in the test set. Consequently, the positive rate of MVI 
was significantly increased to 70.85% (p < 0.001), even be-
yond that of the “pathologists labels” (64.13%, p < 0.001).

We noticed that 15 cases were diagnosed as MVI 
negative by the “pathologists labels” but positive by the 
model. Immunohistochemistry (IHC, i.e., CD31, CD34, 
Hepatocyte, and GPC-3) was performed to aid the inter-
pretation of difficult diagnostic cases of MVI. We provided 
the corresponding patches of these 15 cases' WSIs to 6 sub-
specialty pathologists for analysis in a human-machine in-
teractive manner. Assisted by the model and IHC, 13 of 
these cases were re-diagnosed as MVI positive. The rea-
sons for these false negatives are presented in Table S4. 
Further, visual analysis revealed the causes of false nega-
tives, including micro MVI (<10 tumor cells), interference 
from inflammatory cells and erythrocytes, and challenges 
in identifying micro satellite nodules (Figure 3C). In two 
cases, contamination at the time of sampling might have 
caused the errors.

In conclusion, the adoption of the MVI-AIDM model 
significantly improves the detection rate of MVI as an 
auxiliary diagnostic tool. Additionally, this model greatly 
shortens the manual diagnosis procedure of MVI. In the 
test set, it took a senior pathologist 28.7 ± 11.9 min to 

accurately assess MVI in a case. In contrast, MVI-AIDM 
took only 9.1 ± 4.9 min from slide scanning to result out-
put, significantly enhancing the efficiency of MVI diagno-
sis (p < 0.01).

3.7  |  Evaluation of the spatial 
information presented in 
microvascular invasion

MVI-AIDM has the potential to quantify subvisual infor-
mation accurately compared to manual diagnosis. For in-
stance, our model can calculate the spatial information of 
MVI by using its novel 3-step process, which includes de-
termining the distance between MVI and tumor, the num-
ber of cancer cells in MVI, and the area ratio. Figure 4A 
provides an example illustrating the calculation of the 
spatial information based on the results of the three pro-
cesses. Initially, the tumor prediction results are used to 
determine the extent of the tumor region. Next, the model 
detects and recognizes all the MVIs in the predicted mi-
crovascular locations. Finally, the distance between each 
MVI and the tumor is measured.

In addition, Figure 4B presents examples of MVIs and 
their varying relationships with tumor cells and micro-
vascular walls. The four scenarios include: (I) free MVI 
(nonadherent to the endothelium), (II) adhesion MVI (ad-
hered to the endothelium), (III) invasion MVI (adhered 
and invading the endothelium), and (IV) breakthrough 
MVI (penetrated the microvascular wall). Based on the re-
sults of microvascular segmentation and MVI cell classifi-
cation, our model can directly calculate the microvascular 
area and cancer cells area. Additionally, the area ratio of 
cancer cells to the microvascular area can be obtained, 
which reflects the degree of invasion. Moreover, MVI cell 
counting is a crucial metric in the MVI diagnosis, and it 
is achieved through applying correlation filtering results.

4   |   DISCUSSION

Several retrospective studies have demonstrated the criti-
cal role of MVI as a determinant of early recurrence in 
HCC patients after surgical resection and liver trans-
plantation.27–29 In a study conducted by Lim et al.,27 the 
prognosis of 454 patients who underwent radical surgical 
resection was evaluated, and it was observed that MVI 
was a more accurate predictor of recurrence and survival 
outcomes than Milan criteria. The precise pathological 
identification of MVI is essential for treatment decisions 
in HCC patients. However, histopathology, the “gold 
standard” for MVI diagnosis, has limitations in accurately 
and rapidly identifying MVI and assessing its spatial 

T A B L E  2   The performance of MVI-AIDM on the patch level.

MVI Diagnosis Accuracy

Precision Recall

Normal MVI Normal MVI

Internal test set 0.9749 0.9855 0.9244 0.9843 0.9298

External test set 0.9425 0.9487 0.9011 0.9539 0.9076

Abbreviations: MVI, microvascular invasion: MVI-AIDM, MVI artificial 
intelligence diagnostic model.



      |  9 of 14ZHANG et al.

information. In this study, we developed the MVI-AIDM 
model to evaluate MVI in HCC patients. Our model was 
subsequently validated using an independent external 

cohort and demonstrated remarkable accuracy in iden-
tifying MVI and quantifying some of its essential spatial 
information.

F I G U R E  3   (A) The composition results of MVI prediction for our proposed MVI-AIDM and six pathologists. The number of MVI is 
given to shown the proportion of negative (blue) and positive (red) samples. (B) The comparison for the positive rate of MVI classification. 
The “Senior” and “Intermediate” denote the average results of senior and intermediate pathologists. ****p < 0.0001 (C) The reasons for 
missed diagnosis of MVI by pathologists were: micro MVI (<10 tumor cells, the left top two images), interference from inflammatory cells 
(the right top two images) and interference from erythrocytes (the left bottom two images), challenges in identifying micro satellite nodules 
(the right bottom two images). The red patches and the green patches denote the regions with normal cells and cancer cells, individually. 
Cells with green points are cancer cells annotated by pathologists.
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F I G U R E  4   (A) Visualization of the spatial information of MVI. Based on the results of three processes, the position of tumor region 
(blue) and MVIs (yellow) can be determined. The corresponding distance can be calculated. (B) Visualization of relationship between MVI 
and microvascular walls, including free, adhesion, invasion, and break through. Based on the prediction of microvascular and cancer cells, 
the area ratios can be calculated, which are shown below.
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In this study, the deep learning model was developed 
for automatic quantitative assessment of MVI by simu-
lating the diagnostic approach of a pathologist, using a 
3-step approach: tumor region localization, microvas-
cular segmentation, and cell classification. Our study 
demonstrated that MVI-AIDM can accurately and rap-
idly identify MVI in HCC at different stages and grades. 
At the patch level, MVI-AIDM achieved a high accuracy 
rate of 94.25% in the independent external validation set. 
Interestingly, our results revealed that MVI-AIDM had a 
higher MVI positive detection rate than traditional mi-
croscopic diagnosis (70.85% vs. 64.13%, p < 0.001). This 
implies that MVI-AIDM surpasses traditional pathology 
with its performance, and can assist pathologists in identi-
fying micro MVI and some MVIs that are difficult to iden-
tify controversially.

In recent years, few deep learning studies have been 
conducted on MVI detection through WSI. Most of them 
were retrospective with small sample sizes. Yu et al.30 de-
veloped a macroscopic histological slide that covered the 
entire cut surface of a surgical specimen, which improved 
the detection rate of MVI by matching digital macro-slides 
in a cohort of 91 HCC patients. However, the method does 
not automatically identify MVI from a macro-slide, and 
it requires large-scale manual annotation. This process 
can be time-consuming, laborious, and easily overlooks 
micro MVIs (<10 tumor cells). Sun et al.31 implemented 
a PCformer model to identify MVI regions by classifying 
MVI boundaries according to 69 HCC-WSIs. However, 
the model's F1-score was only 80.06%, and independent 
validation was not conducted. Additionally, differentiat-
ing MVI from satellite nodules can be challenging. Chen 
et  al.32 developed a deep learning model that predicted 
MVI from tumor areas of histology images in a cohort of 
350 HCC patients. The model achieved an AUC of 0.871 
and had predictive significance for HCC patients with nar-
row surgical margins (<0.5 cm) or biopsy only. However, 
83.3% of the MVIs were located within 1 cm from the 
tumor boundary.24 Wide margin resection can effectively 
reduce tumor recurrence and improve survival of HCC 
patients with MVI.33 For a vast majority of HCC patients, 
full postoperative sampling is needed for evaluation of 
MVI. In this paper, our novel approach to automated MVI 
detection mimicked pathologists' method by identifying 
vessels and tumor cells. Our MVI-AIDM model can pre-
cisely identify cancerous or noncancerous regions, seg-
ment microvessels, and accurately identify tumor cells 
in microvessels. Additionally, this model enables quick, 
accurate MVI count, and can calculate tumor cellularity 
(accurate to single digits) and MVI area. Furthermore, it 
can quantify MVI spatial information (distance from the 
tumor or operative margin) and the relationship between 
MVI and microvascular, providing important subvisual 

information. To our knowledge, our study is the first to 
automatically quantify both the tumor cellularity and spa-
tial information of MVI in pathology images. With the de-
velopment of digital pathology, our model can serve as an 
auxiliary tool for pathologists to diagnose MVI, and has 
the potential for clinical transformation in the future.

Training a model to handle rough annotations in patho-
logical images requires a robust strategy to address the 
impact of noisy labels. Prior research in noisy-label learn-
ing has focused on model-based and model-free methods. 
Model-based strategies try to differentiate between clean 
and noisy samples using sample screening techniques,34 
whereas model-free approaches incorporate anti-noise 
loss functions into commonly used models.35 However, in 
the context of pathological images, mislabeled patches are 
specifically related to the surrounding information. As a 
result, our proposed model accounts for the distinct fea-
tures of pathological images, providing critical informa-
tion for tumor detection.

Even though there are numerous fully-supervised 
methods for cell detection36,37 and segmentation38,39 avail-
able, their performance relies heavily on a significant 
number of accurately annotated data. Weakly supervised 
approaches have been explored by Mahmood et al.40 and 
Feng et al.41 using synthetic samples, original annotated 
samples, and a mutual-complementing model of opti-
mized detection and segmentation branches. However, 
due to the unique features of MVI samples in pathological 
images, these methods cannot directly detect and segment 
cancer cells without adequate cell-level annotations. Our 
proposed MVI classification model employs correlation 
filtering, enabling it to carry out accurate cell segmenta-
tion without any cell annotation. The two branches of the 
proposed model take full advantage of MVI sample char-
acteristics and result in excellent performance in both cell 
segmentation and MVI classification.

There are a few limitations in our study. First, MVI is 
a significant prognostic factor for HCC. However, there 
is still considerable international debate regarding MVI 
grading. Multiple research teams have analyzed the MVI 
patterns associated with prognosis to propose novel stag-
ing criteria. Sumie et al.42 evaluated 207 surgically resected 
HCC samples, with a particular emphasis on the burden of 
MVI amount. Iguchi et al.43 evaluated 142 patients treated 
with liver transplant for HCC, believing that the tumor 
cellularity of MVI (>50 cells) was predictive of recurrence-
free survival. Feng et al.44 put particular emphasis on the 
impact on prognosis of the relationships between MVI and 
microvascular. We will further study the grading standard 
of MVI and factors associated with prognosis via MVI fea-
tures extracted by the model. Second, there are three types 
of MVIs in HCC: portal invasion, hepatic vein invasion, and 
hepatic artery invasion. We will attempt to recognize three 
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types of MVI by MVI-AIDM in future research. Third, our 
model may exhibit little false positives owing artifactual 
displacement of cells into microvascular lumen during pro-
cessing that require further verification by pathologists. In 
this manuscript, we provide adequate training samples for 
the three tasks. Insufficient samples often result in model 
overfitting in deep learning. In future research, we will in-
vestigate the impact of varying sample sizes on the diagnos-
tic performance of the model.

5   |   CONCLUSIONS

In conclusion, we developed an AI diagnostic model for 
the rapid and precise identification of MVIs in WSIs. The 
model can evaluate and visualize the information embed-
ded in MVI concurrently. This accomplishment can aid 
pathologists in MVI diagnosis, enhance the detection 
rate of MVIs, and provide additional groundwork for the 
standard grading of MVI. Clinicians can use this model 
to assess recurrence risk and formulate the best individu-
alized therapeutic or management strategies for HCC pa-
tients. There is a wide potential for the clinical application 
of this project.
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