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Abstract. Vector-borne disease risk assessment is crucial to optimize surveillance, preventative measures (vector
control), and resource allocation (medical supplies). High arthropod abundance and host interaction strongly correlate to
vector-borne pathogen transmission. Increasing host density and movement increases the possibility of local and long-
distance pathogen transmission. Therefore, we developed a risk-assessment framework using climate (average tem-
perature and rainfall) and host demographic (host density and movement) data, particularly suitable for regions with
unreported or underreported incidence data. This framework consisted of a spatiotemporal network-based approach
coupled with a compartmental disease model and nonhomogeneous Gillespie algorithm. The correlation of climate data
with vector abundance and host–vector interactions is expressed as vectorial capacity—a parameter that governs the
spreading of infection from an infected host to a susceptible one via vectors. As an example, the framework is applied for
dengue in Bangladesh. Vectorial capacity is inferred for eachweek throughout a year using averagemonthly temperature
and rainfall data. Long-distance pathogen transmission is expressed with human movement data in the spatiotemporal
network. We have identified the spatiotemporal suitability of dengue spreading in Bangladesh as well as the significant-
incidence window and peak-incidence period. Analysis of yearly dengue data variation suggests the possibility of a
significant outbreak with a new serotype introduction. The outcome of the framework comprised spatiotemporal suit-
abilitymaps andprobabilistic riskmaps for spatial infection spreading. This framework is capable of vector-borne disease
risk assessment without historical incidence data and can be a useful tool for preparedness with accurate human
movement data.

INTRODUCTION

Inmodern times, threats posed by infectious diseases have
become a significant public health concern due to increasing
connectivity.1 Emerging infectious diseases (e.g., H7N9,
H5N1, and Ebola) as well as endemic diseases (e.g., dengue,
chikungunya, and measles) pose a severe threat to human
health and life.2 Some infectious diseases have high mortality
and morbidity rates (Ebola), and some of these diseases lack
treatments or vaccines (dengue).3,4 Infectious diseases are
creating pandemics due to globalization. For example, 2019
hadexperiencedmajor dengueoutbreaks inmany countries in
the world, including Southeast Asia and Latin America. Other
emerging and endemic infectious diseases had also shown to
spread rapidly across the globe in recent times. Therefore,
accurate risk assessment of disease outbreak is highly im-
portant for preparedness in this modern world. Risk has been
defined bymedical epidemiologists and health organizations5

as disease development probability within an individual in a
specified time interval. Risk is also defined as the potential
adverse consequences to human life, health, property, or the
environment6 of unwanted phenomena (disease/event). Ac-
curate risk-assessment models have the potential to improve
epidemic prevention and control capabilities.
Because of the complexity in vector-borne disease spread-

ing, risk is often associated with vector or host suitability, the
basic reproduction number, vectorial capacity, vector preva-
lence, or incidence history.5,7–9Onemethod to assess risk is by
detecting disease outbreaks from surveillance data—a retro-
spective approach that has a limitation of allowing enough time

for preparedness.10 However, some areas have limited re-
sources for the surveillance system. Especially in developing
countries, collected data may not be adequate as most people
choose not to use medical facilities unless they have severe
conditions. Therefore, disease surveillance data–dependent
risk assessment is not always efficient with unreported or
underreported incidences. Because of this, researchers have
developed other risk-assessment methods to overcome the
problem with retrospective methods. The impact of climate
change on vector survival, suitability, and pathogen trans-
mission has been assessed for vector-borne diseases in nu-
merous research projects.11–19 Unfortunately, very limited
research has included spatial and temporal heterogeneity of
weather conditions, population demography, and movement
information in the risk-assessment models.
In this context, we develop a risk-assessment framework

incorporating the aforementioned significant elements for
vector-borne diseases. In this article, we focus on mosquito-
bornediseases todemonstrate the risk-assessment framework
as they comprise most of the vector-borne diseases. This ar-
ticle has threemajor contributions. The first is the formulationof
a spatiotemporal, network-based risk-assessment framework
by incorporating climate data and demographic information,
especially for regions with unreported or underreported in-
cidence data. The second is deriving a spatiotemporal suit-
ability map of competent mosquito species in the disease
transmission with only temperature data. The third is the de-
velopment of spatial risk maps for disease transmission,
showing the relative riskof each location comparedwithothers.
In addition, identification of the significant-incidence window
and peak-incidence period is performed by comparing simu-
lation results with data (when available). A serotype analysis is
conducted to identify contributing factors for the year-to-year
difference in incidence data. This novel risk-assessment
method is capable of incorporating both human movement
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and contact patterns, as well as impacts of weather factors in
human–mosquito interaction.
Finally, an application of the novel framework is presented

for dengue spreading in Bangladesh. A spatiotemporal net-
work is developed for human movement in Bangladesh using
demographic information, and 1-month– and 2-month–
lagged climate (temperature and rainfall) data. A map for the
spatiotemporal suitability of human–mosquito interaction and
spatial dengue transmission risk maps are obtained from
simulation results. Simulation results match closely with the
significant-incidence window and peak-incidence period with
Bangladesh dengue transmission dynamics. The year-to-year
data variability shows a correlation with the dominant sero-
type. The combined knowledge obtained from the framework
(i.e., significant-incidence window, peak-incidence period, risk
map, and spatiotemporal suitability map) provides a guideline to
public health personnel in prioritizing spatiotemporal resource
allocation to reduce/preventdengue transmission.Riskmapsare
developed incorporating generalized human movement data in
the spatiotemporal network, and have the adaptability to include
actual and accurate movement data.

MATERIALS AND METHODS

Risk-assessment framework. Our novel risk-assessment
framework couples a spatiotemporal network-based approach
with a compartmental disease model and a spatiotemporal
spreading algorithm. The risk-assessment framework has the
following five different components:

1. Compartmental model
2. Pathogen transmission model with climate data
3. Spatiotemporal network
4. Spatiotemporal spreading algorithm
5. Risk calculation

Eachof these components is described in subsequent parts
of this section.
Compartmental model. Compartmental models express

transitions of the host population from one disease state/
compartment to another.20 These compartments are, for exam-
ple, susceptible, exposed, infectious, recovered, removed, vac-
cinated, andalert.Someparametersgovern inter-compartmental
transitions. The transition rate from susceptible to exposed/
infected compartment (transmission rate) is the most crucial pa-
rameter for the vector-borne disease model. The transmission
rate is correlated with climate/weather-dependent factors such
asvector abundanceandhost–vector interactions. Therefore,we
incorporate climate data in the transmission rate for the risk-
assessment framework developed.
Pathogen transmission model with climate data. The

transmission rate for vector-borne diseases has a compli-
cated relationship with the environment and the host. For
example, mosquito abundance and its interaction with the
host population cause the transition from susceptible to in-
fected (or exposed) states. When the mosquito population is
the vector for disease, temperature and rainfall data are used
to develop the correlation between mosquito abundance and
its interaction with the host population. This relationship can
be expressed as vectorial capacity—a parameter governing
the spread of infection from an infected to a susceptible host
via vectors. Vectorial capacity is a parameter that governs the

spreading of infection from an infected host to a susceptible
host via vectors. During the 1960s, Garret-Jones formulated
thevectorial capacity, theaveragenumberof secondarycasesof
a disease (e.g., malaria and dengue) arising from each primary
infection in a defined population of susceptible hosts.21,22 As
vectorial capacity has been used to transmit the pathogen by
Garret-Jones, subsequent literature has also used it for simula-
tionusinganetwork-basedmodel.Scoglioetal.,23usedvectorial
capacity to express the pathogen transmission for Rift Valley
fever in cattle using the vectorial capacity forCulexmosquitoes.
Riad et al.24 and Sekamatte et al.,25 have also used vectorial
capacity to express pathogen transmission via mosquitoes for
Rift valley fever and Japanese encephalitis, respectively. The
expression for vectorial capacity is given in Equation (1).

Vc ¼ma2bhbmc�μmn

μm
: (1)

Vector parameters used are 1) average daily vector biting rate
(a), 2) probability of vector-to-human transmission per bite
(bh), 3) probability of human-to-vector infection per bite (bm), 4)
duration of the extrinsic incubation period (n), 5) vector mortality
rate (μm), and 6) mosquito vector density with respect to the
host (m).21,22,26 These parameters are specific for the mosquito
species and the concerned disease. We choose Aedes aegypti,
one of the most competent mosquito species in transmitting
dengue, Zika, chikungunya, yellow fever, and other severe dis-
eases, tomodel the transmission rate/vectorial capacity. Except
for mosquito vector density with respect to the host, all other
parameters in Equation (1) can be calculated empirically using
spatiotemporal temperature data.26 The following empirical
formulas are used to calculate temperature-dependent param-
eters, where T is the temperature in degrees Celsius.

1. Biting rate (a): Liu-Helmersson et al.26 and Scott et al.27

developed the following empirical equation fromnumerous
experimental data to model the relationship between
temperature and average blood meal frequency of the fe-
male A. aegypti.

aðTÞ¼ 0:0043T þ 0:0943
�
day�1�: (2)

2. Probability of vector-to-human transmission per bite (bh):
The empirical equation for the probability of human in-
fection was expressed with the following thermodynamic
function.26,28

bh ðTÞ¼ 0:001044TðT � 12:286Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
32:461� T

p
, for

12:286 �C £T £ 32:461 �C: (3)

3. Probability of human-to-vector infection per bite (bm):
Lambrechts et al.29 derived the relationships between
temperature and the probability of infection based on
empirical data for several A. aegypti–borne diseases.

bmðTÞ¼
0:000729T � 0:9037 ð12:4 �C £T £ 26:1 �CÞ

1 ð26:1 �C £T £ 32:5 �CÞ:

�

(4)

4. Duration of the extrinsic incubation period (n): An expo-
nential function was used to fit experimental data for the
extrinsic incubation period.29,30
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nðTÞ¼ 4þ e5:15�0:123T : (5)

5. Vector mortality rate (μm): Yang et al.31 developed a fourth-
order polynomial equation to fit experimental data tomodel
the mortality rate in relation to temparature.

μmðTÞ¼ 0:8692� 0:1590T þ 0:01116T2

� 3:408 p10�4 T3 þ 3:809 p10�6T4: (6)

6. Mosquito vector density with respect to the host (m): The
mosquito vector density with respect to the host mostly
depends on the rainfall. Therefore, in this article, this pa-
rameter is expressed as proportional to theweekly average
rainfall.32 We have normalized the average weekly rainfall
in each location before using it in the vectorial capacity
model.

Spatiotemporal network. To account for the spatiotem-
poral heterogeneity of the disease transmission risk with
changing weather conditions, we propose a spatiotemporal
network. The spatiotemporal network is developed using host
demographic information such as population density, distri-
bution, and movement. In this network, nodes represent in-
dividuals within spatially homogeneous locations, and links
represent movements within and between these locations.
The network is spatially explicit and has multiple temporal
realizations to represent heterogeneities inweather conditions
with time and space. This network is then combined with a
spatiotemporal spreading algorithm to simulate the spatio-
temporal transmission of the infection. The network is peri-
odically updated to reflect changing weather conditions in the
spatiotemporal spreading algorithm.
Spatiotemporal spreading algorithm. Nodes influence

each other through statistically independent pairwise inter-
actions in most network-based models. Sahneh et al.33,34

developed the generalized epidemic modeling framework
(GEMF) for stochastic spreading processes over complex
networks based on these independent pairwise interactions.
The GEMFsim tool was later developed for numerical simu-
lation of GEMF-based models by implementing the Gillespie
algorithm.33 The combined state of all nodes in a network can
be described as a random variable XN(t) = x1(t), x2(t),. . ., xi(t),
where xi(t) is the state (compartment) of node i at time t.
Transition time from one state to another is expressed as an
exponential distributionwith a transition rateσn (xn→ J), where
J is the destination state after the transition. This transition can
be node based (dependent only on the node state xi[t]) or edge
based (dependent on the combined network state XN[t]). After
a transition occurs, the combined network state will change,
and therefore, edge-based transition rates will change. How-
ever, node-based transition rates remain constant. General-
ized epidemic modeling frameworksim accounts for changes
in transition rates due to the change in the combined network
state. However, the GEMFsim does not account for the tem-
poral variation of the transition rates due to external factors
(weather conditions or human activities).
The temporal variability of the transition rate is crucial for

simulating vector-borne disease transmission. Therefore, it is
required to adapt the Gillespie algorithm in the GEMFsim to
account for the changing rates. In this article, we incorporate
the nonhomogeneous Gillespie algorithm in the GEMFsim,

which works for exponential event distributions and non-
constant transition rates.4,35,36 The modified spreading algo-
rithm is capable of periodically changing transition rates to
reflect the temporal heterogeneity of vector-borne disease
transmission.
Risk calculation. As the spreading process in our spatio-

temporal network is highly stochastic, we need to perform an
adequate number of simulations. We keep track of each
node’s status and count the numbers of simulations inwhich a
particular node is infected. This count is later used to calculate
the risk of the spatial disease spreading. The formula for risk

calculation is Rj =
+
Nj
n=1

In

Nj

Nsimulation
, where Rj = spreading risk in loca-

tion j, In = number of simulations where node n is infected,
Nsimulation = number of simulations, and Nj = total number of
population in jth location. The calculated risk is normalized for
comparison with the risk of different spatial locations.
Application of the risk-assessment framework for

Bangladesh dengue incidence. Dengue is transmitted by
Aedesmosquitoes in tropical andsubtropical regionsandmay
cause a wide range of manifestations from asymptomatic in-
fections to deaths.37 Arbovirus transmission is known to be driven
by the interplayof gender, age, and travel of individuals. In addition,
the transmission also depends on the type of host community
(urban/rural), mosquito abundance, and use of mosquito control
measures.38–41 Understanding the relative importance of these
factors is required for accurately assessing the risk of dengue.
A recent dengue outbreak in Bangladesh with a record

number of cases drew close attention to assess the trans-
mission risk. Bangladesh has a history of dengue incidence
dating back to 1960, and a major outbreak occurred in
2000.42–44 Since 2000, the Ministry of Health and Family
Welfare of the People’s Republic of Bangladesh has been
recording clinical cases, which are reported annually. Recent
urbanization throughout the tropical world has accelerated
dengue spreading as A. aegypti—the primary vector for
dengue transmission—lives in densely populated human-
made environments.45 Bangladesh is a densely populated
country with rapid urbanization, which provides a conducive
environment for mosquito populations. Therefore, a risk-
assessment tool for dengue transmission has become very
important in Bangladesh.
Several studies have used historical time series data for

reported dengue incidence. However, getting accurate data
on dengue infection is surprisingly difficult. Only 11–32% of
infected people are likely to have symptoms, with just a few
being sick enough to require formal medical treatment.45,46

Misdiagnosis and underreporting are common for cases re-
quiring medical care as well. Therefore, risk assessments
based on clinical case counts are not always useful, and may
just reflect differences in access to healthcare, diagnostics,
and the ability to report cases.47 Record-keeping also requires
significant resources not always available in Bangladesh.
Therefore, our developed framework, which does not require
incidence data, can be a useful tool for assessing spatial
dengue transmission risk and spatiotemporal suitability in
Bangladesh. The adapted framework for Bangladesh dengue
spreading is presented in the following text.
Compartmental model for dengue. When the dengue vi-

rus (DENV) enters the bloodstream of a susceptible person via
infected mosquito bites, the individual becomes exposed to
the disease. After a specific time for viral replication, the
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exposed individual becomes infectious. The infectious indi-
vidual finally transitions to the removed state after recovery or
death. Therefore, four specific phases/states concern the
disease—susceptible, exposed, infected, and removed. The
model is called SEIR. Its inter-compartmental transitions are in-
dependent Poisson processes with transitions rates expressed in
Equations (7)–(9).

Prðxi½tþΔt� ¼Ejxi½t� ¼S, XN½t�Þ ¼βiðtÞYiΔtþoðΔtÞ, (7)

Prðxi½tþΔt� ¼ Ijxi½t� ¼E, XN½t�Þ ¼ δΔtþ oðΔtÞ, (8)

Prðxi½tþΔt� ¼Rjxi½t� ¼ I, XN½t�Þ ¼ γΔtþoðΔtÞ: (9)

In these equations, xi(t + Δt) = S, E, I, and R express the
probability of node i occupying the susceptible, exposed, in-
fected, or removed state at time (t + Δt), respectively. XN(t) is
the combined network state at time t. The transition rate from
susceptible to exposed state is an edge-based transition,
which is also time variant because of its dependency on
weather conditions. We express this time-variant parameter
βi(t) with vectorial capacity for node i at time t, which is cal-
culated from spatiotemporal weather conditions. Yi is the set
of infected neighbors of node i within the spatiotemporal
network at time t. Parameter δ is the intrinsic incubation rate,
which governs the transition from exposed to infected state.
The transition from infected to removed state is expressed
with the removal rate γ. Incubation rate δ and removal rate γ
are node-based transition rates whose values are assumed
equal to 0.17 and 0.14, respectively, and are time invariant in
this work.48,49 These values of δ and γ reflect the means of
exponentially distributed parameter values used in the spa-
tiotemporal spreading process.
Pathogen transmission model with Bangladesh climate

data. Transmission rate β is modeled with weekly average
temperature and rainfall data in Bangladesh. Climate data
for Bangladesh are collected from CLIMATE-DATA.ORG.50

The upazila-level spatial unit is used in this work for network
development. Climate data are used to calculate each pa-
rameter in the vectorial capacity in Equation (1). All param-
eters, except for mosquito vector density with respect to
the host, are calculated from the weekly temperature data.
The mosquito vector density parameter is assumed pro-
portional to the weekly average rainfall, and a proportional
constant is assumed to reflect a realistic outbreak scenario
in Bangladesh.
An urbanization factor is assumed to reflect the suitability of

an Aedes mosquito habitat for dengue transmission. The
population density is used to classify the urbanization level of
each location. Three urbanization factors are used to reflect
back-country (population density < 1,000/km2), rural (1,000 £
population density < 3,000/km2), and urban (population
density £ 3,000/km2) locations. The final transmission rate
used in simulating dengue transmission is equal to vectorial
capacity multiplied by the urbanization factor.
Spatiotemporal network for Bangladesh. Developing a

network is a crucial part of the risk assessment framework.
The spatial structure in Bangladesh is as follows:

1. Administrative level 1, eight divisions.
2. Administrative level 2, 64 districts.
3. Administrative level 3, 544 upazila.

For network development, we have used the administrative
level 3 spatial resolution. Therefore, Bangladesh is divided into
544 spatial locations before creating the network. Population
data are collected for each spatial location from the city
population website.51 The population in each location is
scaled by 10,000 to reduce the computational burden during
simulations.
We assume an Erdos–Renyi network within each upazila,

where links are created with a probability of 0.2. Inter-upazila
links are created using an exponential dispersion kernel. We
use the kernel function e−kD for link generation, where k is a
constant, and D is the distance between the source and
destination location. We choose the value of k = 0.1 for
creating the spatiotemporal network. District-level anddivision-
level human movement, along with the exponential dispersion,
are incorporated to reflect human movement patterns. District-
level human movement is incorporated by generating links be-
tween the capital city Dhaka and all-district cities. Links are
created between Dhaka and all-division cities to include
division-level human movement in the network. Figure 1 dem-
onstrates a simplified outline of the network.
Bangladesh is a small country, having only 147,500 km2 of

area. However, there are still spatial and temporal difference

FIGURE 1. A simplifiednetworkdiagram forBangladesh. Eachblack
circle represents thenetworkwithin an upazila,whereas lines between
circles expresshumanmovement.Circle sizesare scaledaccording to
human movement (node degree) for that location. Greater circle size
indicates a greater amount of human movement flow.
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between temperature and rainfall throughout the country. This
spatiotemporal weather variation is very important for accu-
rately representing dengue transmission. We included a spa-
tiotemporal heterogeneity in the created network due to
weather patterns, that is, pathogen transmission ratesoneach
link. The literature shows the correlation between a 1-month–
and 2-month– lagged temperature, rainfall, and dengue oc-
currence in Bangladesh.52 The heterogeneity in the weather
patterns is reflected on a weekly value of transmission rate (β)
calculated using both 1-month– and 2-month–lagged tem-
perature and rainfall data.
We create two instances of the spatiotemporal network for

two different outbreak types: first, major outbreaks spreading
throughout the whole country, and second, minor outbreaks
spreading only within major divisional cities. We explicitly in-
corporate district-level human movement for major outbreak
scenarios with the exponential dispersion kernel. Division-
level human movement is incorporated for minor outbreak
scenarios along with the exponential dispersion. On de-
veloping the spatiotemporal network, we apply the stochastic
spreading algorithm for risk assessment.

RESULTS AND DISCUSSION

Assessed risk in this work is a combination of weather-
dependent spatiotemporal suitability and risk maps from the
network-basedmodel. Therefore,wepresent our results in the
following two sections as

1. spatiotemporal suitability of dengue transmission in
Bangladesh

2. risk maps for dengue transmission in Bangladesh

Spatiotemporal suitability of dengue transmission in
Bangladesh.Spatiotemporal suitability expresses spatial and
temporal suitability of the vector’s (mosquito’s) survival and
function in pathogen transmission. When comparing dengue
epidemic potential over time and space, it is preferable to use
the relative vectorial capacity,26 expressed as the vectorial
capacity relative to the vector-to-human population ratio, and
formulated as rVc = a2bhbmc�μmn

μm
.26 All parameters are temper-

ature dependent in the relative vectorial capacity defini-
tion. A higher relative vectorial capacity indicates a higher
potential for a dengue epidemic. We calculate the relative
vectorial capacity for theAedesmosquito inBangladesh to infer
thesuitabilityofdenguespreading.A thresholdvalue for relative
vectorial capacity exists beyond which Aedesmosquitoes can
function properly in transmitting dengue infection. A relative
vectorial capacity greater than 0.61 indicates the suitability of
dengue spreading.26 The spatiotemporal suitability maps for
dengue spreading in Bangladesh are presented in Figure 2 for
each month of the year. The relative vectorial capacity is found
to be higher than the threshold value (0.61) for manymonths of
the year in almost all locations (red and yellow regions).
It is evident fromFigure 2 thatmonths between January and

March are poorly suited for dengue transmission. In April,
some southern parts of the country, as well as the capital city
of Dhaka, become highly suitable. Other parts of the country,
except the northern most corner, become moderately suit-
able. Starting from May, the whole country becomes highly
suitable, and the situation remains similar until November. The
most northern part of the country becomes poorly suitable,

whereas the capital and southern part stay highly suitable in
December. After December, the whole country becomes
poorly suited again, which continues until April.
Dengue incidence data since 2000 show cases throughout

the year, which supports our results for the suitability of den-
gue transmission. Bangladesh is a tropical country, which
provides a suitable temperature for mosquito survival year-
round. However, for temperate regions with widely varying
temperatures, mosquitoes may not be able to survive in the
coldest months.
Risk maps for dengue transmission in Bangladesh. The

network-based model enables us to simulate the spreading
process within the spatiotemporal network described earlier.
Every year, the dengue outbreak in Bangladesh shows a dif-
ferent trend. Some years cases are reported from most parts
of the country, whereas some years outbreaks are mostly
limited within divisional cities. Depending on the spreading,
outbreaks are divided into two categories—major outbreaks,
with widespread dengue cases, and minor outbreaks, with
cases mostly in some divisional cities. Therefore, two distinct
simulation scenarios are assumed to match the two different
outbreak types. Simulations are performed with parameters
calculated using both 1-month– and 2-month–lagged tem-
perature and rainfall data, which are presented in the sub-
sequent parts of this section.
Scenario 1: Major outbreak. A major outbreak is defined

when dengue cases are widespread throughout the whole
country. For major outbreaks, the network is generated with
district-level human movement incorporated. Dhaka is the
capital of the country; therefore, frequentmovement amongall
district towns is assumed to and from Dhaka. We performed
1,000 iterations for each scenario to account for stochasticity
in the simulation results. Simulations are started with an en-
tirely susceptible population with one infected human in the
initial outbreak location. The initial outbreak location is also
changed to see the impact of human movement on trans-
mission risk. Simulation results for 1-month–lagged climate
data, and two initial conditions—Dhaka and Chittagong out-
breaks starting—are presented in Figure 3.
Figure 3A and D show the fractions of infected people and

cumulative infected peoplewith a 95%CIwhen the simulation
started in Dhaka and Chittagong, respectively. The curve for
the average number of infected shows two peaks in Figure 3A
and D. The first peak refers to the rapid spreading within the
vicinity of the initial outbreak location, and the second peak
represents the widespread outbreak. For novel vector-borne
diseases, the infections start with a single infected human or a
single infected mosquito. If we assume a single infected hu-
man started the infection, then the infection will start locally
with competent mosquitoes biting the infected person. As
mosquitoes have a short flying range, the infectionwill be local
at the beginning, and this is evident from the smaller initial
peak. Size of the peak depends on population size, level of
urbanization, and area of the outbreak location. As Dhaka is
densely populated, an outbreak starting there will result in a
pronounced initial peak due to only local transmission
(Figure 3A). We started our simulation in April as it is the first
month of high suitability for the Aedes mosquito within the
year for Bangladesh. However, the suitability increases with
time, as shown in Figure 2, and the infection starts spreading
to distant locations because of human movement as well as
higher suitability. Hence, we have another peak in August with
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numerous cases countrywide. Although Figure 2 shows
all locations are highly suitable from May to November, the
underlying mosquito-dependent transmission rate keeps in-
creasing until August and attains higher values in June–
August. Therefore, despite human movement from Dhaka to
other locations all year, because of the lower value of trans-
mission rates, no widespread infections start until June. With
the higher value of transmission rates, the number of infected
individuals keeps increasing from June and attains its peak in
August. Around 16% of the total population in the network
becomes infected in this outbreak scenario. Almost 70% of
the total infections are observed within the period of July–
September. The peak consists of 2.5% of the entire pop-
ulation in our developed network. These infected people
during August may require hospital care, which will be a huge
burden on the healthcare system. Therefore, propermeasures
should be taken, and more resources should be allocated for
dengue health care during July–September. Figure 3D shows
the dynamics when dengue infection started in Chittagong.
Total fractions of cumulative infected people and infected
people during peak times are both significantly lower for this
outbreak scenario, which can be attributed to the fact that
Chittagong is not very densely populated as well as not well
connected to the whole country as is Dhaka. Therefore, both
the initial smaller peak and the second higher peak are smaller
than the peaks in the Dhaka outbreak scenario. When the in-
fection starts in Chittagong, around 6% of the population
becomes infected compared with 16% in the Dhaka outbreak
scenario. Therefore, starting location of the infection is a

crucial determining factor of the extent and dynamics of the
epidemic.
Figure 3B and E show the histogram with fractions of cu-

mulative infected humans in the Bangladesh dengue network
and the number of simulations performed. The x-axis repre-
sents fractions of infected humans in the simulation, and the
y-axis shows the number of simulations where a particular
infection size is obtained. Figure 3B shows that almost 80%of
simulation results are in the 10–20%of infected humans in the
representative network when the initial outbreak happens in
Dhaka. This accounts for the narrower CI in Figure 3A and E
expresses around a 20% probability of 10–20% of humans
being infected. This variability in the fractions of infected in-
dividuals accounts for the wider CI in the simulation results in
Figure 3D.
Transmission dynamics presented in Figure 3 are obtained

using the network with district-level human movement in-
corporated, and 1-month–lagged temperature and rainfall
data. However, when we perform simulations with 2-month–
lagged temperature and rainfall data, the simulation is started
in May, and the peaks are delayed by a month. The analysis
of Bangladesh dengue incidence data since 2000 showed
the occurrences of peaks in July–October.42,43 Therefore, 2-
month–lagged data also show significant similarity with the
actual incidence data. Risk maps are similar for both 1-month–
lagged and 2-month–lagged data. Simulation results for 2-
month–lagged data are presented in the supporting materials.
Scenario 2: Minor outbreak. Dengue infections are often

confined within divisional cities, and a widespread outbreak

yaMlirpAhcraM-yraunaJ

June-October November December

FIGURE 2. Spatiotemporal suitability maps for dengue transmission in Bangladesh based on temperature. The map represents suitability in the
following manner: green (lowly suitable), yellow (moderately suitable), and red (highly suitable). This figure appears in color at www.ajtmh.org.
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does not happen. Therefore, we propose another scenario
where we explicitly incorporate human movement from the
city of Dhaka to other divisional cities, alongwith the distance-
based exponential movement kernel. We call this scenario a
minor outbreak as the infection does not spread countrywide.
We perform simulations for both 1-month– and 2-month–
lagged climate data.
The results are presented in Figure 4, when simulations are

performed with 1-month–lagged climate data and the same
initial conditions as major outbreak scenarios, namely, start-
ing simulations in Dhaka and Chittagong.
Figure 4A and D show a similar trend as shown in Figure 3A

and D. For 1-month–lagged data, a major peak is observed
in August with rapidly increasing infections from July–
September. However, comparing Figures 3 and 4, we can see
that both the value of the fraction of infected people during
the peak infection time and the whole outbreak period are
smaller during minor outbreaks.

Human movement can also be considered as a crucial
factor in vector-borne disease spreading, although the path-
ogen transmission does not happen via direct physical con-
tact. An exposed/infected person may move/travel to a
different location and become infectious after reaching the
destination. That person can be bitten by a competent local
mosquito and may start a local outbreak in the destination
location. Therefore, mosquitoes are responsible for local
transmission, whereas humanmovement is mostly responsible
for long-distance pathogen transmission during a period of
higher suitability. The reduction in thenumberof infections in the
minor outbreak scenario can be attributed to the reduced hu-
man movement volume within the network rather than with the
major outbreak scenario.
It is evident from the comparison between panels (a) and (d)

of Figures 3 and 4 that the major dengue-spreading period in
Bangladesh is June–September. Identifying this time window
for significant transmission is crucial for public health officials.

FIGURE 3. Simulation results and risk maps for dengue transmission in Bangladesh for a major outbreak. Left-side panels are results of
simulations started in Dhaka, whereas right-side panels are results of simulations started in Chittagong. (A and D) show dengue transmission
dynamics, (B andE) present histograms of the number of simulations and infection size, and finally, (C andF) display riskmaps for dengue infection.
This figure appears in color at www.ajtmh.org.
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Identification of the significant-incidence window will enable
them to take prompt action during the surge of infection. The
major action for controlling a vector-borne disease is always
controlling the vectors. Therefore, control measures need to
focus mostly on the significant-incidence months to reduce
the mosquito population when resources are inadequate for
the whole year.
Figure 4C and F show the normalized risk maps for dengue

spreading during a minor outbreak. It is evident from the fig-
ures that high-risk areas are confined within major-division
cities and their nearby locations in contrast to Figure 3Cand F,
where many locations throughout the country are at high risk.
This reduction in the spreading risk can be attributed to re-
duced human movement in the minor outbreak scenario.
Therefore, making people aware of human movement’s im-
pact on long-distance travel through social media or radio/TV

broadcasting would help contain the epidemic. Simulations
are also performed for 2-month–lagged climate data, and all
results are like those obtained with 1-month–lagged data.
These simulation results are presented in the supporting
materials.
Our proposed framework is a generalized risk-assessment

tool based on climate and demographic data, which can be
used for risk assessment, especially in regions with un-
reported or underreported incidence data. Risk maps de-
veloped in this work are generated with the generalized
concept of human movement within Bangladesh. The frame-
work can incorporate more detailed and accurate human
movement data. The incorporation of detailedmovement data
will provide a more accurate assessment of the transmission
risk at each location. Once proper and accurate movement
data are incorporated into the network, control measures

FIGURE 4. Simulation results and risk maps for dengue transmission in Bangladesh for a minor outbreak. Left-side panels are results of
simulations started in Dhaka, whereas right-side panels are results of simulations started in Chittagong. (A and D) show dengue transmission
dynamics, (B andE) present histograms of the number of simulations and infection size, and finally, (C andF) display riskmaps for dengue infection.
This figure appears in color at www.ajtmh.org.
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should be applied to high-risk areas first, followedbymedium-
and low-risk areas, depending on availability of resources.
Serotype analysis. Since 2000, dengue cases arise every

year inBangladesh.However, the number of cases varies from
year to year. Importantly, the available data concern only
hospitalized and reported cases of dengue. In this section, we
show the existence of a correlation between the number of
cases and the circulating DENV serotypes. Dengue fever can
be caused by any of four genetically related DENV serotypes
(DENV1,DENV2,DENV3, andDENV4).53 After recovering from
infection with one dengue serotype, a person has immunity
against that particular serotype.53 Unfortunately, the person
can be infected again with any of the remaining three dengue
serotypes.54 Subsequent infections often put individuals at
greater risk for severe dengue illnesses than those who have

not been previously infected.55 A bar graph of yearly dengue
incidences in Bangladesh with serotypes is presented in
Figure 5.
The primary bar color represents the dominant circulating

serotype, whereas the border color represents co-circulating
serotypes. The x-axis shows the year, and the y-axis shows
the number of reported dengue cases in Bangladesh. The bar
and border colors are as follows: black for DENV1, blue for
DENV2, red for DENV3, and green for DENV1, 2, and 4 to-
gether. The height of each bar corresponds to the number of
cases in the corresponding year. Figure 5 shows the dominant
circulating serotype was DENV3, with the other three co-
circulating during the years 2000–2002. Within the period
2003–2016, DENV2 was the dominant serotype and DENV1
was co-circulating.54 The DENV3 reemerging in 2017 resulted

FIGURE 5. Serotype analysis of dengue spreading in Bangladesh since 2000. The bar chart presents the number of dengue caseswith circulating
serotypes each year in Bangladesh. The main bar color represents the dominant serotype, whereas the border represents other circulating
serotypes. This figure appears in color at www.ajtmh.org.

FIGURE 6. (A) Comparison of peak time from our simulationwith incidence data during aminor outbreak in 2018 and (B) comparison of peak time
from our simulation with incidence data during a major outbreak in 2019. This figure appears in color at www.ajtmh.org.

1452 RIAD AND OTHERS

http://www.ajtmh.org
http://www.ajtmh.org


in a significant increase in the number of cases during 2018.
However, DENV2was still the dominant circulating serotype in
2018.54 If a serotype is circulating long enough within a pop-
ulation, all recovered people may become immune to that
specific serotype. An increase in the number of cases in 2018
can be attributed to the reemergence of DENV3. DENV3 be-
came the dominant circulating serotype in 2019, which cre-
ated an extreme and unprecedented surge in the number of
infections. More than 100,000 cases were reported in
2019—which is more than double the number of combined
cases in the previous 19 years—because of a vast susceptible
population for DENV3 serotype.Currently, DENV3 is already in
circulation in Bangladesh. Neighboring countries of Bangla-
desh have all four serotypes. Therefore, Bangladesh is always
at risk for all four serotypes, including DENV4. Healthcare
personnel should be vigilant to identify dengue patients before
the significant-incidence period to identify the circulating se-
rotypes. The introductionof a newserotypewill produceahigh
probability of a surge in dengue infections.
Peak timing validation. The yearly reported cases varied

widely for dengue incidence in Bangladesh. For example,
there were 10,148 cases in 2018, and more than 100,000
cases were reported in 2019.54,56 Therefore, a high variability
in year-to-year dengue cases exists. From the serotype
analysis in the previous section, the unprecedented increase
in 2019 can be attributed to the DENV3 circulation. The yearly
number of dengue cases is a complex combination of circu-
lating serotypes, movement patterns of the human pop-
ulation, and measures taken for mosquito control. For widely
varying year-to-year case numbers, we used the peak-
incidence time and transmission dynamics to compare our
simulation results with the incidence data. Peak incidence
happened mostly in August and September in Bangladesh.54

Simulation results with 1-month–lagged climate data show
incidence dynamics with the major peak in August. Two-
month–lagged climate data resulted in a peak in September.
We compare our simulation with actual incidence data for
2018 and 2019 in Figure 6.
In 2018, the peak of incidence data was observed in Sep-

tember, as shown in Figure 6A. Simulation results for 2-
month–lagged climate data show a peak in September in
accordance with 2018 incidence data in Figure 6A. Disease
dynamics from simulations with 1-month–lagged climate data
shows a similar trend with a coinciding peak for 2019
(Figure 6B).

CONCLUSION

Climate data can be used to develop a generalized risk-
assessment framework for vector-borne diseases together
with demographic data—spatial distribution of individuals and
their movement patterns. Therefore, we develop a novel risk-
assessment framework with a spatiotemporal network model
and a nonhomogeneous Gillespie algorithm, using both cli-
mate and demographic data. The assessed risk from this
framework comprised spatiotemporal suitability maps and
spatial risk maps. Spatiotemporal suitability maps show
spatial and temporal suitability of vector-borne transmission.
Spatial risk maps represent the disease transmission risk of
each location compared with other locations on themap. This
framework also identifies high-risk or elevated-riskmonths, as
well as the peak-incidence period within a year.

On development, the framework is applied to the study of
dengue transmission in Bangladesh for major and minor out-
break scenarios. The difference between major and minor
outbreaks is defined by different levels of humanmovement to
demonstrate the critical role of human dispersal on wide-
spread pathogen transmission. Reduced human migration
throughout the country will reduce the spread of infection to
divisional cities. We generate the spatiotemporal suitability
map and the risk maps for Bangladesh dengue transmission.
Simulation results also showed a similar significant-incidence
window as well as the peak-incidence period with reported
dengue-incidence data in Bangladesh. Serotype analysis in-
dicates the importance of identifying circulating DENV sero-
types before the significant-incidencewindow. The possibility
of a major outbreak is associated with the introduction and
reemergence of new DENV serotypes. The proposed risk-
assessment tool provides guidelines for public health officials
to prioritize resource allocation and control measure appli-
cation according to the estimated risk.
The network-based model has the flexibility to incorporate

very detailed mitigation measures in the model. These miti-
gation measures can be social distancing, reduced human
movement, or other disease-specific preventive measures.
We will extend this work to explore different mitigation strat-
egies in our future work.
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