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ABSTRACT

Bioactive molecule library screening may empirically
identify effective combination therapies, but molec-
ular mechanisms underlying favorable drug–drug in-
teractions often remain unclear, precluding further
rational design. In the absence of an accepted sys-
tems theory to interrogate synergistic responses,
we introduce Omics-Based Interaction Framework
(OBIF) to reveal molecular drivers of synergy through
integration of statistical and biological interactions in
synergistic biological responses. OBIF performs full
factorial analysis of feature expression data from sin-
gle versus dual exposures to identify molecular clus-
ters that reveal synergy-mediating pathways, func-
tions and regulators. As a practical demonstration,
OBIF analyzed transcriptomic and proteomic data of
a dyad of immunostimulatory molecules that induces
synergistic protection against influenza A and re-
vealed unanticipated NF-�B/AP-1 cooperation that is
required for antiviral protection. To demonstrate gen-
eralizability, OBIF analyzed data from a diverse ar-
ray of Omics platforms and experimental conditions,
successfully identifying the molecular clusters driv-
ing their synergistic responses. Hence, unlike exist-
ing synergy quantification and prediction methods,
OBIF is a phenotype-driven systems model that sup-
ports multiplatform interrogation of synergy mecha-
nisms.

INTRODUCTION

Superior treatment outcomes are achieved for many dis-
ease states when more than one therapeutic agent is ad-
ministered (1–4). Indeed, there are many well documented
instances when the therapeutic benefit of two agents ad-
ministered together substantially exceeds the benefit that
would be predicted by the additive effects of the agents ad-
ministered individually. These clinical observations paral-
lel the many instances of synergy observed in nature (1–
5). Widespread availability of high throughput technolo-
gies has allowed multi-level study of complex biological
responses from genome to phenome (6–8). Yet, there re-
mains lack of consensus regarding the appropriate analysis
of statistical and biological interactions found in antagonis-
tic or synergistic responses (5,9,10). Moreover, previously
proposed strategies to analyze these interactions frequently
lack sufficient generalizability to study these processes out-
side of their home Omics platforms (1,10–14). Thus, while
synergistic therapeutic combinations may be empirically de-
rived from fortuitous clinical experiences or through screen-
ing of bioactive small molecule libraries, the absence of es-
tablished means to investigate these favorable drug–drug in-
teractions ultimately precludes understanding of their un-
derlying mechanisms. Similarly, quantification of biologic
synergy or antagonistic interactions can be accomplished
with existing tools, but the mechanisms of their interac-
tions will remain elusive. Consequently, development of a
methodology to integrate the statistical and biological com-
ponents of synergistic interactions in diverse Omics settings
can advance the rational design of combination therapies
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while affording deeper understanding of molecular interac-
tions in a broad range of biological contexts.

Pneumonia is a major worldwide cause of death (15–18).
Further, the ongoing COVID-19 pandemic highlights the
need to develop novel anti-pneumonia interventions with
activity against both established and emerging pathogens
(19–21). We have previously reported that a therapeutic
dyad of immunostimulatory small molecules induces robust
protection against a broad range of pneumonia-causing
pathogens (22–25), including coronaviruses (26), while the
individual components confer only modest protection. This
combination (hereafter, ‘Pam2-ODN’) Comprises a Toll-
like receptor (TLR) 2/6 agonist, Pam2CSK4 (‘Pam2’), and
a TLR 9 agonist, ODN M362 (‘ODN’), which stimulate
protective responses from lung epithelial cells (22). This bio-
logical response, termed inducible epithelial resistance, pro-
motes survival benefits and microbicidal effects that signifi-
cantly exceed the additive effects of the individual ligands
(23,27). Thus, understanding the molecular mechanisms
underlying this unanticipated synergy may allow optimized
manipulation of epithelial antimicrobial responses and sup-
port new generations of host-based therapeutics against in-
fections.

In the absence of a systems theory to interrogate synergis-
tic mechanisms (5), we introduce Omics-Based Interaction
Framework (OBIF) to identify molecular drivers through
integration of statistical and biological interactions in syn-
ergistic biological responses. Unlike existing statistical mod-
els that are principally designed to either predict synergis-
tic drug combinations (11–14,28–33) or to quantify synergy
between drugs (1,34–36), OBIF is a phenotype-driven (6)
synergy interrogation model that is applicable to any com-
bination of exposure types (e.g. drugs, genotypes, environ-
mental conditions, etc.). To explain the molecular mecha-
nisms underlying empirically observed instances of synergy,
OBIF performs full factorial analysis (37–39) of feature ex-
pression data from single vs. dual factor exposures to iden-
tify molecular clusters that reveal synergy-mediating path-
ways, functions and regulators. To demonstrate the utility of
OBIF, we applied this strategy to multi-Omics experimental
data from epithelial cells exposed to Pam2-ODN to iden-
tify biologically relevant, unanticipated cooperative signal-
ing events that we subsequently confirmed to be required
for the synergistic pneumonia protection. Then, to demon-
strate generalizability, OBIF was applied to datasets from
diverse types of Omics platforms and experimental mod-
els, successfully identifying molecular clusters driving their
combined responses.

MATERIALS AND METHODS

Experimental models

All mouse experiments were performed with 6- to 10-week-
old C57BL/6J mice of a single sex. Immortalized human
lung epithelial (HBEC3-KT) cells were cultured in ker-
atinocyte serum-free media (KSFM) supplemented with
human epidermal growth factor and bovine pituitary ex-
tract. Mouse lung epithelial (MLE-15) cells were cultured in
RPMI supplemented with 2% fetal bovine serum. Cultures
were maintained in the presence of penicillin and strepto-
mycin. The cell lines used were authenticated by the MD

Anderson Characterized Cell Line Core Facility. All mouse
experiments were performed in accordance with the Insti-
tutional Animal Care and Use of Committee of The Uni-
versity of Texas MD Anderson Cancer Center, protocol
00000907-RN01.

Exposure to TLR ligands

S-[2,3-bis(palmitoyloxy)-propyl]-(R)-cysteinyl-(lysyl) 3-
lysine (Pam2 CSK4) and ODN M362 were reconstituted in
endotoxin-free water, then diluted to the desired concen-
tration in sterile PBS. For in vivo experiments, as previously
described (24,25), the indicated ligands were placed in an
Aerotech II nebulizer driven by 10 L/min air supplemented
with 5% CO2 for 30 min. The nebulizer was connected by
polyethylene tubing to a polyethylene exposure chamber.
Twenty-four hours prior to infections, 10 ml of PBS, Pam2
(4 �M) alone, ODN alone (1 �M) or both (Pam2 4 �M and
ODN 1 �M) was delivered via nebulization to unrestrained
mice for 30 min, and then mice were returned to normal
housing. For in vitro experiments, PBS, Pam2 (2.2 �M)
alone, ODN alone (0.6 �M) or both (Pam2 2.2 �M and
ODN 0.6 �M) was added into 2 ml of the culture media 4
h prior to inoculation with virus (24,25).

Reverse-phase protein array

To simultaneously evaluate the expression of 161 regula-
tory proteins and phospho-proteins in HBEC3-KT cells af-
ter exposure to either PBS, Pam2, ODN or Pam2-ODN,
a targeted high-throughput screening proteomic assay was
performed by the Reverse Phase Protein Array Core Fa-
cility at The University of Texas MD Anderson Cancer
Center (40,41). The RPPA included 4 biological replicates
per treatment condition, and data is available at GitHub
(www.github.com/evanslaboratory/Datasource).

Infection models

For in vivo infections, frozen stock (2.8 × 107 50% tis-
sue culture infective doses [TCID50] ml − 1) of influenza
A H3N2 (Wide et al, 1977), virus was diluted 1:250 in
0.05% gelatin in Eagle’s minimal essential medium and de-
livered by aerosolization for 30 min to achieve a 90% lethal
dose (LD90) to LD100 (∼100 TCID50 per mouse). Mouse
health was followed for 21 d post infection, n = 15 mice per
condition. Animals were weighed daily and sacrificed if they
met euthanasia criteria, including signs of distress or loss of
20% pre-infection body weight. For in vitro infections, IAV
(multiplicity of infection [MOI] of 1.0) with or without NF-
�B inhibitor IMD-0354 at 25 ng/�L was added to cells in
submerged monolayer and viral burden was assessed 24 h
post infection.

Pathogen burden quantification

To measure transcript levels of IAV nucleoprotein (NP)
gene, samples were harvested in RNAlater and RNA was
extracted using the RNeasy extraction kit. About 500 ng
total RNA was reverse transcribed to cDNA by using an
iScript cDNA synthesis kit and submitted to quantitative
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reverse transcription-PCR (RT-PCR) analysis with SYBR
green PCR master mix on an Bio-Rad CFX Connect Real-
Time PCR Detection System. Host 18S rRNA was similarly
probed to determine relative expression of viral transcripts
(24,42).

Omics dataset formatting

To perform analysis of interaction effects across both the
Omics and feature level, OBIF performs a sequence of
transformations to the unscaled original data matrix m
that are tailored to meet the statistical assumptions needed
for two-way ANOVA analysis of interaction terms across
(43,44) different Omics platforms: (i) background correc-
tion is applied if it has not been corrected for abun-
dant negative or low signal intensities (45–47); (ii) a log2-
transformation of count- (i.e. raw counts from sequencing-
based platforms) or continuous-based (normalized counts,
signal intensity and peak area from sequencing-, array- and
spectrometry-based platforms respectively) data are applied
to provide a Gaussian-like data distribution, if the expres-
sion values are not normally distributed (48,49); and (iii)
quantile normalization is applied to all datasets to equal-
ize inter-sample variances (50,51). These transformations
allow OBIF to have an analysis-ready (non-negative, non-
zero values) (52,53) data matrix m (Figure 1D) with expres-
sion values and of dimensions f x n, where f is the num-
ber of features as rows and n is the number of samples S
as columns. The appropriate sample order in dimensions n
of m is:

n = S(0,0)
1 + . . . + S(0,0)

i + S(1,0)
1 + . . . + S(1,0)

i + S(0,1)
1

+ . . . + S(0,1)
i + S(1,1)

1 + . . . + S(1,1)
i

The subscripts denote the condition of the samples: ex-
posed to neither factor (0,0), exposed to factor A alone
(1,0), exposed to factor B alone (0,1) or exposed to both
factors A and B (1,1). The superscripts represent the sam-
ple replicates from 1 to i within each of the four conditions.

Synergy definition

To evaluate non-additive phenotypes of combined expo-
sures as synergistic, we used an effect-based definition of
synergy using the response additivity metric (43,44,54).
First, the observed effects of single and dual factor expo-
sures are calculated from their main differences relative to
the unexposed (sham) group:

EA = � (S(1,0) - S(0,0)) for individual exposure to Factor A,
EB = � (S(0,1) - S(0,0)) for individual exposure to Factor B,
EAB = � (S(1,1) - S(0,0)) for combined exposure to Factor

A and Factor B.

Hence, the observed combination effect (EAB) is com-
pared to the expected non-interacting additive effect of indi-
vidual exposures (EADD = EA + EB) where EAB > EADD indi-
cates synergism, while EAB = EADD indicates additivity, and
EAB < EADD indicates antagonism. Then, a significant in-
teraction effect (P-value < 0.05) is systematically evaluated
(1,5) to discriminate true synergistic or antagonistic combi-
nation effects from a non-interacting cooperation between

factors when EAB �= EADD (43,44,54). Significant interaction
effects were calculated from a multivariate Cox model with
an interaction term for survival data, a two-way ANOVA
for viral NP expression data and using full factorial analy-
sis for feature expression data.

Omics-based interaction analysis

To evaluate significant interaction terms between factors at
the Omics level within a dataset, OBIF performs a multiple
linear regression across its feature expression values:

IO 0 + FA + FB + FA · FB

where the Omics-based interaction (IO) regression formula
is equivalent to a two-way ANOVA analysis where the in-
tercept is referenced to the control samples (0) and returns
a statistical summary of terms for the individual factor A
(FA), factor B (FB) and their interaction (FA · FB). Goodness
of fit is calculated from the adjusted R2 values, and over-
all significance is determined by the P-values of F-statistics
that result from the IO regression.

Full factorial analysis of Omics data

OBIF performs full factorial analysis across the expression
values of m to calculate the factorial effects of both expres-
sion and contrast analysis. The fixed-effect model fitted to
the expression levels of features is:

L f = β0 + β1 · FA + β2 · FB + β3 · FAB

where the expression levels of features (Lf) requires an inter-
cept parameter to reference the control samples (β0) and es-
timates � coefficients for the main effects of individual fac-
tor A (FA) and factor B (FB) and their combination (FAB).
Subsequent model fitting for each treatment condition (Fac-
tor A, B and AB) involves ß0 and their respective beta coef-
ficient (ß1–3). Therefore, calculation of main effects for each
condition requires subtraction of ß0 from their respective
fitted model (ß0 + ß1 for Factor A, ß0 + ß2 for Factor B,
or ß0 + ß3 for Factor AB) to accurately represent the group
comparisons used for differential expression for selection of
differentially expressed molecules (DEMs):

ME of FA = (β0 + β1) − −β0 = β1
ME of FB = (β0 + β2) − β0 = β2
ME of FAB = (β0 + β3) − β0 = β3

To adjust for multiple testing, the resulting P-values
are controlled for false discovery rate (FDR) using the
Benjamini–Hochberg procedure to select FA DEMs, FB
DEMs and FAB DEMs, respectively. The Bonferroni proce-
dure and Tukey’s range test can be applied to datasets that
require control for family-wise error rate. Similarly for de-
tection of interactive DEMs (iDEMs), the remaining multi-
factor effects are estimated using contrast analysis for the
simple main effects (SME) and their interaction effect:

SME of FA = (β0 + β3) − (β0 + β2) = β3 − β2
SME of FB = (β0 + β3) − (β0 + β1) = β3 − β1

Interaction e f f ect FA × FB (β4) = [(β0 + β3) − (β0 + β2)]

− [(β0 + β1) − (β0)] = β3 − β2 − β1
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A significance threshold of P-value < 0.05 is used to de-
termine if FAB DEMs are susceptible to any SME. iDEMs
are defined as FAB DEMs with a statistically significant in-
teraction term (P-value is < 0.05) during full factorial anal-
ysis that results in their synergistic or antagonist expression
after combinatory dual exposures. Hence, iDEMs are more
representative of synergistic or antagonistic statistical inter-
actions than of molecular interactions between DEMs.

Synergy quantification

To evaluate non-additive expression levels of individual fea-
tures, OBIF uses an Interaction Score (IS) where the ab-
solute ratio of the Log2 fold change with combined fac-
tors (FCAB) over the linear sum of the Log2 fold change of
individual factors (FCA + FCB) can identify antagonistic,
synergistic or additive features using fold change principles
where additivity is represented when FCAB = FCA + FCB. A
subsequent log2-transformation can then quantify the size
of the interaction effect by re-scaling the additivity thresh-
old around 0 for additive features, with IS > 0 for synergistic
and IS < 0 for antagonistic features.

IS = Log2 (| (Log2FCAB) / (Log2FCA + Log2FCB) |)
Antagonistic and synergistic features (iDEMs) are differ-

entiated from additive features with a significant interaction
effect (P-value < 0.05) (44,55) calculated during full facto-
rial analysis.

Feature selection with OBIF

All differentially expressed molecules (DEMs) were rep-
resented in heatmaps after hierarchically clustering using
Ward’s minimum variance method with Euclidean distances
of Log2FC values to compute dissimilarity by rows (fea-
tures) and by columns (samples). Column dendrograms
were plotted to represent the distance between samples, ver-
tical side bar colors summarize DEMs according to their
and horizontal side bars colors represent sample types by
factors. Color scale keys indicate the levels of feature ex-
pression with upregulation in red and downregulation in
green. DEMs with FAB (Pam2-ODN) were clustered by
principal component analysis based on the mean linear fold
change difference to reveal the expression patterns biolog-
ically present across all factors FA, FB and FAB. Principal
components 1 and 2 were used for plotting DEMs with FAB
and the variability between features is marked in each axis.
Expression profiles (EPs) were identified in the clusters for
each individual feature according to Figure 3 C.

Mixed-effects model

We compared OBIF’s capacity to detect interaction effects
at the level of individual features against a mixed-effect
model (56):

L f −Mi x = β0 + β1 · FA + β2 · FB + β4 · FA · FB + (1|S)

where the expression level of features in a mixed-effect
model (Lf-Mix) is a function of the estimated � coefficients
for the fixed effects of individual factor A (FA) and factor

B (FB) and their interaction (FA · FB) with a random ef-
fect (1|S) for all sample conditions (S(0,0), S(1,0), S(0,1), S(1,1)).
After fitting the mixed-effect model, empirical Bayesian
shrinkage is used to estimate the model fitness from the
t- and F-statistics of the Lf-Mix regression formula. The
significance threshold of the interaction term uses a P-
value < 0.05 to determine interaction between FA and FB.

Beta-uniform mixture model

To compare the performance of OBIF against other mod-
els and bioinformatic tools, we applied a beta-uniform mix-
ture (BUM) model using the ClassComparison R package
to distributions of P-values in order to compute the ‘ground
truth’. The BUM model estimates a ground truth reference
for a large set of P-values by calculating the occurrence of
true positive (TP), false positive (FP), true negative (TN)
and false negative (FN) detections under the fundamental
properties that such P-values are distributed uniformly and
can be expressed as mixture of false null hypothesis and true
null hypothesis (57,58). This approach has been validated to
address the multiple-testing errors often found in large sets
of P-values calculated from two-way ANOVA models (as
OBIF), correlation analyses, Kruskal–Wallis tests and oth-
ers (57,59). Using these estimates, we systematically com-
pared their discrimination ability by calculating the follow-
ing parameters:

Precision = T P/ (T P + F P)
Recall (Sensi tivi ty) = T P/ (T P + F N)
False Discover y Rate = F P/ (T P + F P)
Diagnostic Odds Ratio = (T P/F N) / (F P + TN)

Receiver operating characteristic curve

Applying BUM estimates, we compared the model fitness of
OBIF against other models or bioinformatic tools by calcu-
lating the following parameters:

Sensi tivi ty (True Positive Rate) = T P/ (T P + F N)
Speci f ici ty (True Negative Rate) = TN/ (F P + TN)

Then, a receiver operating characteristic area under the
curve (ROC AUC) is calculated for each model or tool by
plotting their sensitivity against their 1- specificity.

Enrichment analysis

To provide biological interpretation of the full factorial
analysis and classification of features, enrichment analysis
was integrated in the pipeline (60) to determine candi-
date effectors and regulators, biological pathways and
functional processes. OBIF allows export of feature lists
and expression values of DEMs, EPs and iDEMs. These
are formatted to be used with common bioinformatic
enrichment tools, including GSEA (61,62), EnrichR
(63,64) and Ingenuity Pathway Analysis (IPA) (65). Data
presented here were initially analyzed with IPA (QIAGEN
Inc. https://www.qiagenbioinformatics.com/products/
ingenuitypathway-analysis) using core analysis with the
expression values of DEMs, EPs, and iDEMs. Both gene
and chemical Ingenuity Knowledge Base modules are used

https://www.qiagenbioinformatics.com/products/ingenuitypathway-analysis
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as enrichment reference, considering only experimentally
observed confidence levels for identification of direct
and indirect relationships. The thresholds of significance
for canonical pathways, upstream analysis, diseases and
functions, regulator effects and network analysis were
selected from those with a z-score ≥ 2 for activation or
≤ -2 for inhibition, and < 5% false discovery rates for
all predictions (65). Validation of enrichment results of
iDEMs from IPA was accomplished with EnrichR using
the TRRUST Transcription Factor 2019 reference database
and the top enriched terms were selected and clustered
using their combined score (P-value + z-score) (63,64).

DNA-binding ELISA

HBEC3-KT were grown to 80–100% confluence in 24-well
plates and treated with PBS, Pam2, ODN or Pam2-ODN
for the indicated durations. Measurements of DNA-binding
activity of NF-�B and AP-1 transcription factor subunits
were performed from whole cell lysates were made using
their respective TransAM Kit according to product direc-
tions. For signal detection, samples were read immediately
for absorbance at 450 nm with reference wavelength at 655
nm on a microplate reader. Experiments were repeated in
triplicate and statistical analysis was performed with un-
paired Student’s t test using GraphPad Prism 8.0 with a sig-
nificance threshold of P-value < 0.05.

Detection of Nuclear Translocation

HBEC3-KT were grown to 80–100% confluence in 100 mm
dishes and treated for 30 min with PBS, Pam2, ODN or
Pam2-ODN with or without pretreatment with NF-�B in-
hibitor IMD-0354 at 25 ng/�l for 16 h. Cells were de-
tached from the plate with a 5 min incubation at 37ºC de-
grees with 3 ml of Accutase to prevent additional activa-
tion of transcriptional activity. Cells were pelleted in indi-
vidual 15 ml tubes at 500 g for 5 min and suspended in 500
�l of eBioscience FOXP3 fixation/permeabilization buffer
for 15 min at room temperature. Cells were stained with a
LIVE/DEAD Fixable Near IR Dead Cell Dye and with a
1:1000 dilution of NF-�B/p50 (E-10) Alexa Fluor 647, NF-
�B/RelA (F-6) Alexa Fluor 488, AP-1/cJun (G-4) Alexa
Fluor 594 and AP-1/cFos (D-1) Alexa Fluor 546 conju-
gated antibodies for 1 h on ice and protected from light.
After incubation, cells were pelleted and washed with 200
�l of sterile PBS 4 times, then resuspended in 100 �l ster-
ile PBS. After the last wash, cells were pelleted and resus-
pended in 50 �l of sterile PBS and nuclear DAPI staining at
0.5 �g/ml was performed just prior to data acquisition on
ImageStreamX MII. HBEC3-KT images were acquired us-
ing INSPIRE software on the ImagestreamX Mark II imag-
ing flow cytometer (Amnis Corporation) at 60 × magnifica-
tion, with lasers 405 nm (50.00 mW), 488 nm (200.00 mW),
561 nm (200.00 mW), 642 nm (200.00 mW) and side scat-
ter (782 nm) (2.25 mW). About 10 000–25 000 images per
sample acquired include a brightfield image (Channel 1 and
9), p65 Alexa Fluor 488 (Channel 2), c-Fos Alexa Fluor 546
(Channel 3), c-Fos Alexa Fluor 594 (Channel 4), side scat-
ter (Channel 6), DAPI (Channel 7) and p50 Alexa Fluor
647 (Channel 11). The laser outputs prevented saturation

of pixels in the relevant detection channels as monitored by
the corresponding Raw Max Pixel features during acquisi-
tion. For image compensation, single color controls were
stained with all fluorochromes and 500 events were recorded
with each laser for individual controls. Fluorescent images
were taken in all channels with brightfield LEDs and scat-
ter lasers turned off to accurately capture fluorescence. In-
dividual single-color control file was then merged to gener-
ate a compensation matrix and all sample files were pro-
cessed with this matrix applied. After compensation for
spectral overlap based on single color controls, analysis was
performed, and individual cell images were created using
IDEAS® software version 6.1. Cell populations were hier-
archically gated first by single cells, then cells in focus, then
negative selected for live cells, and finally as double posi-
tive for both DAPI and the transcription factor subunit of
interest (Supplementary File S3D). The spatial relationship
between the transcription factors and nuclear images was
measured using the ‘Similarity’ feature in the IDEAS soft-
ware to quantitate the mean similarity score in the cell pop-
ulations per sample. A similarity score > 1 represents nu-
clear translocation, and the shift in distribution of nuclear
translocation between two samples was calculated using the
Fisher’s Discriminant ratio (Rd value) (66).

Statistical analysis and quantification

Statistical analyses were performed using Prism 8 (Graph-
Pad, San Diego, CA, USA) and R. Analysis of survival was
performed by calculation of Kaplan–Meier curves and mul-
tivariate Cox model was used for group comparisons rela-
tive to PBS. Analysis of viral NP expression was performed
using a two-way ANOVA with post hoc Tukey analysis for
paired comparisons that was adjusted for multiple testing.
Analysis of DNA-binding activity in vitro was performed
using a Student’s t test for comparisons between two groups
or using one-way ANOVA for comparison between mul-
tiple groups. Grouped data are shown as means ± stan-
dard error of the mean. To verify the statistical assump-
tions for each test, Gaussian distribution was evaluated with
Saphiro–Wilk test, and equal variance between two sam-
ples was evaluated with F-tests, or for more than two sam-
ples with Barlett’s or Levene’s test. Simultaneous multiple
outlier detection was performed using the robust regression
and outlier removal (ROUT) method with a q value of 5%
(maximum FDR). Treatment allocation of animals was ran-
domized in the experiments, though assessment could not
be blinded. A pre-specified minimum requirement of three
biological replicates for in vitro studies and 10 for in vivo
studies.

Computational requirements

Data preprocessing and analysis with OBIF was performed
in RStudio on both Mac- and Windows-based computers.
For Mac-based analysis, R version 3.6.3 (2020–02-29) with
x86 64-apple-darwin15.6.0 platform was used on a personal
computer equipped with 2.7 GHz Quad-Core Intel Core i7
with 16GB of RAM under macOS 11.6 operating system.
For Windows-based analysis, R version 4.1.0 (2021–05-18)
with x86 64-w64-mingw32 platform was used on a desktop
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computer equipped with 3.4 GHz Intel Core i-6700 CPU
with 16GB RAM under Windows 10 Enterprise operating
system. To provide a processing power reference for OBIF
users in other computers, we use the benchmarkme R pack-
age (https://github.com/csgillespie/benchmarkme) to assess
the calculation speed of matrix benchmark functions. We
used the bm matrix cal lm() function to model a linear re-
gression over a 5000 × 5000 matrix and obtained an elapsed
time of 0.857 and 0.870 s in a Mac- and Windows-based
computer, respectively. We used the bm matrix cal manip()
function to create, transpose and deform a 5000 × 5000 ma-
trix and obtained an elapsed time of 0.458 and 0.630 s in a
Mac- and Windows-based computer, respectively.

RESULTS

Pam2-ODN synergistically induced epithelial resistance
against pneumonia

Our laboratory’s interest in synergistic interactions arises
from our experience investigating single versus dual im-
munostimulatory treatments to prevent pneumonia (9,22–
25,27,67). As a demonstrative example, data are presented
here from influenza A virus (IAV) challenges of differ-
ent models following pretreatment with Pam2 alone, ODN
alone or the Pam2-ODN combination (i.e. both treat-
ments delivered together). When mice are challenged with
IAV 24 h after the indicated inhaled treatments, we ob-
served little increase in survival after the individual treat-
ments compared to sham-treated control mice, whereas
mice treated with the Pam2-ODN combination demon-
strated profound antiviral protection (Figure 1A). Simi-
larly, when isolated mouse lung epithelial (MLE-15) cells
were challenged with IAV 4 h after pretreatment with the
individual ligands, we observed no significant reductions
in the viral burden relative to PBS-treated cells. However,
cells pretreated with Pam2-ODN showed a significant re-
duction in viral nucleoprotein (NP) gene expression as as-
sessed by qPCR relative to host 18s gene (Figure 1B). Com-
paring the effect of combination ligand treatment (EAB)
to the expected response additivity of the individual lig-
and treatments (EADD = EA + EB) (44) reveals synergis-
tic effects on both in vivo survival benefits and in vitro vi-
ral clearance (Figure 1C). To better understand the molecu-
lar mechanisms driving such unanticipated synergy, we de-
veloped OBIF as a phenotype-driven model (6) to under-
stand the mechanisms underlying observed favorable com-
bination exposure interactions that mediate synergistic re-
sponses and outcomes.

Development of a systems synergy model from experimental
Omics data

To formally test whether the effect of combined factors
(FAB: Pam2-ODN) is greater than the expected linear sum
of its individual factors (FA: Pam2; FB: ODN), an ini-
tial 2-level 2-factor (22) factorial design is required (43,44).
Our strategy adapts the traditional analysis of variance
(ANOVA) approach into a model that links the empirical
analysis of synergy (43,44) with the high-throughput capac-
ity and high-dimensionality of Omics datasets (68,69) (Fig-

ure 1D). As summarized in Figure 1E, OBIF integrates sta-
tistical and biological interactions in Omics data matrices
from single versus dual factor exposures, leveraging Omics
screening to promote discovery of the molecular drivers of
synergy, and facilitating the biological validation of such
regulators. The analytical pipeline is freely available as an
R package at GitHub (www.github.com/evanslaboratory/
OBIF) (Table 1). Naturally, the experimental approach to
validating computational findings must be tailored to the
individual tools and characteristics of the biological re-
sponses being studied.

OBIF allows sequential transformation of an unscaled
original data matrix with background correction, Log2-
transformation, and quantile normalization (Figure 2A) in
order to improve performance of an Omics-based inter-
action analysis between the studied factors (Figure 2B).
This allows better adjusted R2 and F-statistic P-values of
the two-way ANOVA with improved detection of interac-
tion terms (Supplementary File S1A) across multiple plat-
form types. We further evaluated OBIF’s overall model fit-
ting using multiple standard test performance metrics cal-
culated from 40 publicly available (4,27,55,56,70–80) Omics
datasets (Supplementary File S5) that contain a broad
range of samples (n = 4–30) and data sizes (161 to 217 507
features). Here, we found that OBIF’s overall performance
is best when the total sample size is n ≥ 12 (i.e. ≥3 biologi-
cal replicates/condition) because that sample size adjusted
R2 values ≥ 0.6 (Supplementary File S1B), area under the
receiver-operating characteristic (ROC) curve (AUC) anal-
ysis ≥ 0.8 (Supplementary File S1D) and diagnostic odds
ratios (DOR) ≥10 (Supplementary File S1F).

Full factorial analysis dissects hidden effects of combined fac-
tor exposures

Analysis of factorial effects in a data matrix from single ver-
sus combined factor exposures can statistically differenti-
ate whether stochastic feature expression in a combination
is correlated with the effect of an individual factor (simple
main effect, SME) or their influence on each other (inter-
action effect) (81–83). Based on this principle, OBIF per-
forms full factorial analysis through paired comparisons of
calculated � coefficients in each condition (84) to discover
main effects during expression analysis and multi-factor ef-
fects (SMEs and interaction effect) from contrast analysis
(Figure 2C) (85). These statistical effects can be readily vi-
sualized (Figure 2D) to aid investigators in evaluating the
adequacy of model fit when using OBIF for their unique
datasets. Main effect P-values and expression changes are
represented in volcano plots to facilitate determination of
cut offs for individual analyses during feature discovery.
Simple main effect calculations are represented in quantile-
quantile (Q-Q) plots to detect normal and/or skewed distri-
butions of individual features.

After confirming adequate model fitness (i.e. adjusted
R2 > 0.5, F-test < 0.05), OBIF’s full factorial analysis on
scaled data identifies DEMs from a dataset with better
discriminatory power for interaction effects than a mixed-
effects model (Supplementary File S1C), particularly with
datasets of at least n ≥ 12 samples (Supplementary File

https://github.com/csgillespie/benchmarkme
http://www.github.com/evanslaboratory/OBIF
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S1D). Similarly, OBIF outperforms other profiling tools
commonly used to analyze multiple Omics data types, as
demonstrated by superior values for area under the re-
ceiver operating characteristic (ROC) curve (AUC) and bet-
ter false discovery rates, precision and recall (Supplemen-
tary File S1E) to select differentially expressed features from
combination treatments with an improving overall perfor-
mance in its diagnostic odds ratio as the sample size in-
creases (Supplementary File S1F). Together, incorporation
of full factorial analysis to dissect both main effects and
hidden multi-factor effects allow enhanced analytical ca-
pacities over other available Omics profiling and processing
tools (Table 2).

Differentially expressed molecules reveal synergy-specific
pathways

To investigate the mechanisms underlying Pam2-ODN syn-
ergy, we used OBIF to re-analyze previously published
(27) lung homogenate transcriptomic data from mice in-
halationally treated with single versus combination ligands
(GSE28994). Despite unsurprising overlap of detected dif-
ferentially expressed features, OBIF outperformed com-
monly used methods of differential expression analysis with
increased R2 values and more significant P values in all
treatment conditions (Supplementary File S2A). Once fea-
ture expression is fitted (Figure 2D), this analysis identifies
3456 features as differentially expressed molecules (DEMs)
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Table 1. OBIF package functions

Platform-dependent
steps Available functions

Background noise
removal

Feature values import; RPKM/FPKM/TPM
tresholding;
Signal/Intensity/Area Normalization

Dataset
transformation

Background correction; Linear/Log2
transformation;
Quantile normalization

Quality control Pre-/Post-scaling distribution plots;
Clustering analysis;
Outlier detection

Dataset
management

Standardized analysis-ready output;
Metadata support;
Flexible data/figure export

Platform-
independent
steps

Available functions

Omics-level
interaction analysis

Model fitness statistics; Two-way ANOVA
test;
Interaction plots

Feature-level
interaction analysis

Full factorial analysis; Interaction scoring per
feature;
Feature discovery of DEMs, EPs and iDEMs

Quality assessment Model diagnostic plots; Regression model
comparisson;
Interaction analysis performance evaluation

Data visualization Hierarchical clustering; Heatmap;
Venn/Euler diagram;
Upset plot; PCA; Interaction score plot;
OBIF Circos plot

Data analysis
management

Standardized OBIF output; Data
visualization tools;
Flexible data/figure export

RPKM, Reads Per Kilobase Million; FPKM, Fragments Per Kilobase
Million; TPM, Transcripts
Per Kilobase Million; ANOVA, Analyisis of variance; DEMs, Differen-
tially Expressed Molecules;
EPs, Expression Profiles; iDEMs, interacting DEMs; PCA, Principal
Component Analysis;
OBIF, Omics-Based Interaction Framework.

2 h after treatment with Pam2, 2941 DEMs after ODN
treatment, and 3138 DEMs after treatment with Pam2-
ODN (Figure 3A). Despite the fact that 52% (1617/3138)
of DEMs were shared by Pam2-ODN and the individual
ligands, enrichment analysis using IPA software revealed
an over-representation of 11 canonical cellular immune re-
sponse pathways that were activated by Pam2-ODN (Figure
3B). Of these 11 immune and host defense pathways, most
were only enriched by Pam2-ODN treatment, with a few
enriched to a lesser degree by Pam2, and none by ODN.

Expression profiles summarize biological interactions and
disentangle effectors of synergistic functions

Rather than relying on potentially redundant DEM clus-
ters, OBIF classifies FAB DEMs into eight expression pro-
files (EPs) that characterize cooperative and competitive
biological interactions of individual factors (Figure 3C).
EPs are defined by expression directionality (up- or down-
regulation) of individual features and are not biased by the
expression analysis of DEMs. Cooperative EPs have accor-
dant expression directionality induced by FA and FB (i.e.
both individual exposures induce increased feature expres-
sion or both induce decreased expression), while competi-

tive EPs have opposite directionalities induced by FA and
FB. Among the cooperative EPs, concordant profiles result
when FAB directionality corresponds with the single factor
effects (EPs I and II), and discordant profiles occur when
FAB directionality opposes the single factors (III and IV).
Alternatively, among the competitive EPs, factor-dominant
profiles are defined by FAB directionality correspondence
with one factor (FA-dominant EPs V and VI; FB-dominant
EPs VII and VIII). Principal component analysis (Figure
3D) demonstrates that concordant EPs I and II were the
most abundant in our dataset, followed by Pam2-dominant
EPs V and VI. This abundance of EPs I and II better empha-
sizes the cooperative effects of both factors than does con-
ventional DEM clustering alone (Supplementary File S2B).

Notably, enrichment analysis reveals that molecular ef-
fectors clustered by EPs correspond with Pam2-ODN-
induced functions (Figure 3E), suggesting a biological ba-
sis for both the synergy and feature selection. Specifically,
we found that features in EPs I and V contributed to host
survival functions. Considered from an organizational per-
spective, induction of resistance to infection at the organis-
mal level correlated with features in concordant EP I, at the
cellular level with concordant EP II, and by leukocytes with
Pam2-dominant EP V.

Multi-factor effects integrate biological and statistical inter-
actions in EPs

Main effects determined significant DEMs per condition,
while multi-factor effects explained whether Pam2-ODN
DEMs and EPs resulted from SMEs and/or an interaction
of individual ligands (Figure 3F). This analysis showed that
most features in concordant EPs I and II are influenced by
at least one multi-factor effect, while all features in discor-
dant EPs III and IV are influenced by all multi-factor ef-
fects simultaneously. Not surprisingly, Pam2-dominant EPs
V and VI and ODN-dominant EPs VII and VIII expression
mainly results from their respective SMEs. This analysis
also revealed that 67% (2116/3138) of Pam2-ODN DEMs
are driven by the interaction effect of Pam2 and ODN as
interactive DEMs (iDEMs). Thus, OBIF reconciled the bi-
ological interactions from EPs with the statistical interac-
tions from multi-factor effects of Pam2-ODN.

iDEMs represent synergy drivers

Synergistic or antagonistic responses result from strong
interaction effects between two factors in a combination
(43,54). Hence, iDEMs integrate this principle during fea-
ture selection based on significant interaction effects be-
tween factors, allowing quantification of feature expression
in a narrower set of DEMs. Using an interactions score (IS)
that quantifies the effect size of the interaction effect relative
to the additivity threshold, we can separate non-interactive
DEMs (non-iDEMs) from true antagonistic (IS < 0) and
synergistic (IS > 0) iDEMs (Figure 3G). This allows more
focused enrichment analysis (Supplementary File S3A), in
this case supporting NF-�B/RelA and AP-1/cJun as key
transcriptional upstream regulators of Pam2-ODN’s inter-
action effect and synergistic expression (Figure 3H), re-
gardless of the enrichment method (Supplementary File
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S3A,B). To visually represent the DEMs, EPs and iDEMs
with the integrative analysis of biological and statistical in-
teractions, OBIF generates a custom Circos plot that sum-
marizes the main characteristics of these synergy-mediating
feature clusters (Figure 3I).

Discovery of synergy-mediating feature clusters allows cross-
Omics validation of molecular drivers

Downstream analyses of DEMs, EPs and iDEMs have the
capacity to discern the contributing roles of individual fac-
tors to a combination treatment regardless of the Omics
platform being studied. To demonstrate the cross-Omics
function of OBIF, we analyzed our reverse-phase protein
array (RPPA) data from single- or dual-treated human lung
epithelial cells (Supplementary File S2C) and were able to
visually compare the prevalence of DEMs, EPs and iDEMs
in transcriptomics and proteomics datasets (Supplemen-
tary File S2D). Interestingly, the use of EPs improved the
analysis of hierarchical clustering given that the latter ap-
proach alone did not reveal distinctive gene clusters to ex-
plain the synergistic response while the abundance of con-
cordant EPs I and II highlighted the contribution of ODN
to the protective combination that might otherwise be over-
looked, as enrichment analysis showed far fewer signal-
ing pathways (Figure 3B) and had a greater clustering dis-
tance from Pam2-ODN samples (Supplementary File S2B)
from the microarray. Similar to our previous findings with
iDEMs (Figure 3H), transcription factors from many path-

ways were involved, and NF-�B and AP-1 transcription
factors subunits remained central elements of the regula-
tory network analysis from our microarray results while
our RPPA data identified the top phospho-signaling DEMs
and cross-validated STAT3, NF-�B/RelA and AP-1/cJun
as transcriptional regulators involved in the Pam2-ODN
signaling network (Supplementary File S2E).

Experimental validation of molecular regulators of Pam2-
ODN synergy

Prompted by the foregoing results, we tested whether NF-
�B and AP-1 subunits were biologically relevant syn-
ergy regulators of Pam2-ODN-induced epithelial resis-
tance. DNA-binding activity of a panel of NF-�B and AP-
1 family subunits in human lung epithelial cells (HBEC3-
KT) after stimulation with Pam2-ODN confirmed that NF-
�B/RelA and AP-1/cJun subunit activation was strongly
increased after 15 min of treatment without significant con-
tribution of other subunits (Figure 4A and Supplemen-
tary File S3C). Indeed, NF-�B/RelA and AP-1/cJun sub-
units exhibited surprisingly similar activation kinetics after
Pam2-ODN treatment, further supporting cooperation or
coordination (Figure 4B). Investigating this co-activation of
non-redundant transcriptional families, single-cell nuclear
translocation of canonical NF-�B (p50/RelA) and AP-1
(cFos/cJun) complexes was assessed in HBEC3-KT cells by
imaging flow cytometry. We found that all transcriptional
subunits exhibited an increased nuclear translocation (sim-
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Table 2. Function comparison of Omics profiling tools

Omics profiling and processing tools

OF LA D2 ER LE DS PI MP MA MG

Omics input type Genome • • • • • • •
Epigenome • • • • • • •
Transcriptome • • • • • • • •
Proteome • •
Metabolome • •
Microbiome • •

Preprocessing Single-omics data import • • • • • • • • •
Multi-omics data import • • •
Dataset aggregation • • • • • • •
Unique feature ID • • • • •
Signal normalization • • • • • • • •
Background correction • • • •
Log2 transformation • • • •
Variance stabilization • • • • •
Outlier detection •
Metadata support • • •

Analysis Tests for interaction effects • • • • •
Pairwise differential expression • • • • • • • •
Multi-group differential expression • • • • • • • •
Omics-based interaction analysis •
Feature-level full factorial analysis •
Fold change value calculations • • • • • • • •
Combination index calculations •
Interaction score calculations •
P-value calculations/corrections • • • • • • • •
Sample/feature clustering • • • • • •

Visualization Data distribution plots • • • • • •
Pre-/Post-scaling distribution plots • • • •
Dimensionality Reduction plots • • • • • • •
Sample/Feature clustering plots • • • • • • • •
Expression/Significance plots • • • • • • • • •
Heat maps • • • • • • •
Feature intersection/overlap plots • • • •
Interaction score plots •
Summarizing circos plot •
Model fit diagnostic plots • • • • • • •
Regression model comparison plots • •
Interaction analysis performance plots •

Outputs Standardized analysis-ready dataset • • • • • •
Standardized analysis output data • • • • • • •
Standardized feature selection clusters • • •
Source code file export • • • • • •
Data analysis file export • • • •
Flexible data/figure export • • • • • • • • •

OF, Omics-based interaction framework (OBIF); LA, Limma/Glimma; D2, DESeq/DESeq2; ER, EdgeR;
LE, Lme4; DS, Devis; PI, PIVOT; MP, MaxQuant/Perseus; MA, Metabo Analyst; MG, MetagenomeSeq.

ilarity score > 2) after 15 min of Pam2-ODN treatment rel-
ative to the PBS-treated cells (Figure 4C). However, neither
Pam2 nor ODN alone induced the same magnitude of nu-
clear translocation, whether assessed by change in similarity
scores (Rd value) or by the percentage of translocated cells
(Figure 4D) relative to PBS-treated cells.

Discovery of novel NF-�B and AP-1 cooperation required for
antiviral protection

To differentiate transcriptional cooperation from coinci-
dental transcriptional activation after Pam2-ODN treat-
ment, we assessed the Pam2-ODN-induced nuclear co-
translocation of NF-�B (p50/RelA) and AP-1 (cFos/cJun)
complexes in the presence or absence of NF-�B inhibitor
IMD-0354 (IMD). As expected, pre-treatment with IMD

alone reduced the Rd Value and percentage of translocated
cells for NF-�B/RelA and NF-�B/p50 subunits without
significantly modifying the percentage of translocation for
AP-1/cJun and AP-1/cFos subunits. However, NF-�B in-
hibition with IMD also unexpectedly reduced the Pam2-
ODN-induced similarity score shifts and nuclear translo-
cation of AP-1 subunits, particularly of AP-1/cFos (Figure
4E). This indicates that NF-�B inhibition impaired Pam2-
ODN-induced AP-1 nuclear translocation, supporting the
cooperative regulation of these two non-overlapping sig-
naling pathways. Representative images shown in Figure
4F demonstrate that inhibition with IMD reduced Pam2-
ODN-induced heterodimerization and nuclear transloca-
tion of NF-�B (p50/RelA) and AP-1 (cFos/cJun) com-
plexes. Further, we confirmed that disruption of this tran-
scriptional cooperation was sufficient to impair the in-
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Figure 3. Full factorial analysis allows discovery of synergy-mediating feature clusters. (A) Euler diagram of DEMs following single or dual treatment in
mouse lung homogenates. (B) Most overrepresented activated canonical pathways after IPA enrichment of DEMs. (C) Expression profiles depict biological
interactions during dual factor exposure. (D) Principal component analysis of Pam2-ODN DEMs identified by expression profiles. (E) Top activated
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ducible viral burden reduction seen with Pam2-ODN (Fig-
ure 4G).

Applications of OBIF across multiple platforms and condi-
tions

To demonstrate its generalizability, we used OBIF to inter-
rogate the synergistic mechanisms of different datasets us-
ing a single- (Figure 5A) or a multi-Omics approach (Fig-
ure 5B). In our first case study, OBIF analyzed transcrip-
tome data from untargeted total RNA-seq of an in vivo
mouse model of K-ras mutant lung adenocarcinoma (CC-

LR) (56). In this model, the exposure factors are sex (FA:
Male) and genetic alterations (FB: conditional Stat3 knock-
out lung epithelial cells), where only male mice without
STAT3 gene expression (FAB: Male + Stat3 K.O.) have a
significant increase of tumor burden (Figure 5A). To inves-
tigate this currently unexplained interaction, we performed
functional enrichment analysis of iDEMs, and disentangled
a tumorigenic cluster (antagonistic iDEMs) from an im-
munosuppressive cluster (synergistic iDEMs). The investi-
gators’ previously suspected that both tumorigenic changes
and failures of immune surveillance in the tumor microenvi-
ronment might result in the observed synergistic phenotype
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(56), but OBIF provides the first mechanistic support for
that hypothesis. Additionally, network analysis of iDEMs
revealed four previously unrecognized regulators (CCL28,
CAGA, CAGB and CSF3R) that help explain the immuno-
suppressive molecular mechanisms that are permissive for
the increased tumor burden in Male + Stat3 K.O. CC-LR
mice.

In our second case study, OBIF analyzed both transcrip-
tome data from an untargeted microarray and proteomic
data from a targeted RPPA of an in vitro cell culture model
of a chemotherapy-resistant adenosquamous lung carci-

noma. In this model, cancer cells are exposed to a drug (FA:
Volasertib, a polo-like kinase 1 inhibitor) and/or a cytokine
(FB: TGF-ß). It has been shown that tumor growth is inhib-
ited only by combined exposure (FAB: Volasertib + TGF-
ß) (72). Here, iDEMs upstream regulator analysis and hier-
archical clustering from both platforms co-identified tran-
scription factor cJun from antagonistic iDEMs as a central
regulator of the observed exposure synergy. Further, build-
ing on the investigators’ report that the cMet/FAK/SRC
axis regulates tumor growth inhibition in this model (72),
network analysis of iDEMs yields downstream mechanistic



NAR Genomics and Bioinformatics, 2022, Vol. 4, No. 2 13

A
Si

ng
le

-O
m

ic
s 

A
pp

lic
at

io
n Experimental Design

    FA: Male (Sex)
    FB: Stat3 K.O. (Gene alteration)

Systems Model
    In vivo
    K-ras mutant lung adenocarcinoma

+
+
− −

Omics Platform
    Transcriptome
    Untargeted Total RNA-Seq

Phenotypic Synergy
    Lung cancer burden is increased 
    in Male + Stat3 K.O. CC-LR mice  

B

OBIF Summary Synergy Drivers Projected Mechanism

Malignant tumor
Extracranial solid tumor

Solid tumor
Nonhematologic malignant tumor

Chemotaxis of granulocytes
Endothelial cell development

Chemotaxis of neutrophils
Binding of neutrophils

iDEMs

Syn
ergisti

c

Antagonisti
c

-2 0 +2

n.s.

279 FAB DEMs 63 iDEMs: 19 Synergistic, 44 Antagonistic 4 Synergistic iDEMs

Activation
Z-score

IL17RA

CCL28 CSF3RCAG
A & B

Granulocytes
Phagocytes

Myeloid
cells

Myeloid
cells

Immune
cells

M
ul

ti-
O

m
ic

s 
A

pp
lic

at
io

n 

Experimental Design
    FA: Volasertib (Drug)
    FB: TGF-β (Cytokine)

Systems Model
    In vitro 
    Adenosquamous lung carcinoma

Omics Platform
    Transcriptome; Proteome
    Microarray; Targeted RPPA

Phenotypic Synergy
    Combined Volasertib + TGF-β 
    allowed inhibition of tumor growth

OBIF Summary Synergy Drivers Projected Mechanism

PML
JUN

CTNNB1
STAT4
SOX11
HNF4A

iDEMs

Syn
ergisti

c

Antagonisti
c

  FAB DEMs
Microarray  2018
RPPA  29

iDEMs Synergistic Antagonistic
288   153  135
3   2  1

1 Multi-Omics Antagonistic iDEM

-2 0 +2

n.s.

Z-score

SRC

cJun   (pS73)

RNA-Seq

Microarray

RPPA

Endothelial
cell development

Trunk
development

Cell proliferation of
tumor cell lines

Invasion
of cells

c-Jun
AMPK

Histone H3

iDEMs FA FB FAB

n.s.

Log2FC
-1 0 +1

Microarray RPPA+
+
− −

Figure 5. Single- and multi-Omics applications of OBIF in alternate systems. (A) Single-Omics application of OBIF in a K-ras mutant lung adenocarci-
noma using RNA-seq data. The exposures investigated are presence of male sex (FA) and presence of a Stat3 gene alteration (FB). The displayed outputs are
(i) OBIF summary analysis; (ii) functional enrichment and (iii) network analysis of iDEMs. (B) Multi-Omics application of OBIF in an adenosquamous
lung carcinoma using Microarray and RPPA data. The exposures investigated are treatment with volasertib (FA) and treatment with TGF� (FB). The
displayed outputs are (i) OBIF summary analysis, (ii) Upstream regulator enrichment and heatmap clustering and (iii) network analysis of iDEMs.

insights into tumor growth regulation and epithelial to mes-
enchymal transformation through cJun that were not previ-
ously hypothesized.

OBIF was similarly applied to additional datasets de-
rived from Omics platforms including microarray (27),
RNA-seq (56), RPPA (72) and mass spectrometry-based
metabolomics (4) investigations of diverse factor classes and
biological systems (Supplementary File S4) to demonstrate
that the synergy-mediating clusters can be universally iden-
tified. The statistical summary of the Omics-based interac-
tion analysis demonstrates the effects of individual factors
and interactions in other Omics platforms through inter-
action plots and statistical significance calculations (Sup-
plementary File S4A). OBIF’s full factorial analysis can
be broadly applied to identify: (i) DEMs (Supplementary
File S4B) from both individual and combined factors; (ii)
EPs that represent the biological interactions in an unas-
sisted fashion from FAB DEMs (Supplementary File S4C);
and iDEMs that represent the statistical interactions in
feature expression through IS plots (Supplementary File
S4D). These are displayed in a visual summary using a Cir-
cos plot containing co-expressed features, DEMs, Log2FC,
EPs, multi-factor effects and iDEMs with their interaction
score (Supplementary File S4E).

DISCUSSION

Synergistic and antagonistic interactions are common in
nature and frequently promote efficacy of therapeutic in-
terventions (1–5). While synergy quantification from dose–
response data, combinatorial screening of molecule li-
braries, and other synergy prediction may suggest poten-

tially beneficial conditions or treatments, they do not pro-
vide substantive insights into the underlying molecular
mechanisms (1). Thus, synergy-mediating pathways cannot
be strategically targeted in rational drug development only
with synergy quantification or prediction models.

Our interest in synergy arose from our observations of
the strikingly favorable interactions of one such empirically
derived combination, Pam2-ODN. While we could easily
quantify the superiority of protection conferred by the dual
treatment, in the absence of a systems theory to interro-
gate synergistic mechanisms (1,5), we were limited in our
capacity to use available Omics datasets to deduce the mech-
anisms mediating the synergy. This is important because,
although this lack of mechanistic understanding does not
limit the utility of the current combination, it precludes
development of next generation interventions that more
precisely (perhaps, more efficaciously) target the synergy-
driving pathways with fewer off-target (potentially toxic)
effects. In contrast to prediction and quantification mod-
els, OBIF was developed as a synergy interrogation model
with the explicit intent to investigate observed synergistic
events instead of combined exposures with additive-only
effects or phenotypes (a potential misuse) for which gen-
eralized additive models are already available (86,87). As
such, it is inherently a phenotype-driven model that per-
forms full factorial analysis on feature expression data from
single vs. dual factor exposures to identify molecular clus-
ters that reveal synergy-mediating pathways, functions and
regulators.

Current synergy quantification methods and tools (34–
36) use accepted statistical approaches to detect drug–drug
interactions (34) (e.g. Loewe additivity, Bliss additivity,
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Chou-Talalay Method, response surface methods, isobolo-
gram analysis, etc.). These approaches use dose-effect met-
rics to identify unestablished interactions (screening) that
cannot be easily applied to Omics-based datasets because
of the large number of observations and resources needed,
while OBIF was designed to investigate mechanisms of ob-
served instances of synergy (phenotype-driven). Although
OBIF is not designed to predict toxicities, as do some of
these synergy quantification tools, enrichment analysis of
cytotoxic pathways or functions may also provide insights
into the safety and tolerability of certain combined expo-
sures. Further, these approaches require a series of obser-
vations derived from dose–response data (continuous vari-
ables) to conform to their required principles for synergy
detection, face validity and formal validity (34,43,44,54,88–
90), whereas OBIF can be applied to beyond continuous
variables (i.e. dichotomous or categorical factors). This
principle expands the potential applications of OBIF to
study multiple factor classes (i.e. cytokines, cell lines, drugs,
environmental factors, genetic alterations, gender differ-
ences, time), system levels (i.e. in vitro, in vivo, ex vivo, clini-
cal) and both targeted and untargeted platform formats (i.e.
array-based, sequencing-based, mass spectrometry-based)
(Supplementary File S5).

Other Omics-based models rely on molecular interac-
tions (30), pathway- (28,32) or network-based analysis
(12,28,31), and drug response similarity scores (29,33) to
predict synergistic drug combinations. While these predic-
tive strategies have facilitated the discovery of some novel
drug combinations (1,7,10), they largely depend on model-
ing of drug targets, drug actions, and organism- or disease-
specific data inputs that limit their capacity to explore po-
tential mechanisms and hinder their transferability to other
Omics platforms or research fields. In contrast, OBIF is ca-
pable of revealing mechanistically relevant molecular clus-
ters (DEMs, EPs and iDEMs) directly from single- or multi-
Omics expression data following combined exposures and
can be easily transferred for downstream analysis with a
wider span of bioinformatic tools. Thus, while established
synergy prediction and quantification tools can offer im-
portant contributions to the discovery of drug–drug inter-
actions, the objectives of a synergy interrogation tool are
entirely different. In contrast to these types of tools, OBIF
is applied only after synergy has been observed in any of
a wide range of biological exposures and contexts, and fo-
cuses exclusively on the mechanistic interrogation of the
drivers of synergistic interactions rather than on detect-
ing undiscovered/unanticipated synergistic combinations
de novo, and is capable of achieving this via independent sin-
gle Omics dataset analysis with high correspondence when
OBIF is serially applied to both cross-platform or multi-
Omics analysis.

Using Pam2-ODN datasets as demonstrative examples,
OBIF identified unanticipated transcriptional coopera-
tion between non-redundant transcription factors, NF-�B
(p50/RelA) and AP-1 (cFos/cJun) complexes, as a molec-
ular mechanism of inducible synergistic protection against
IAV. Thus, by facilitating understanding of combined factor
exposures in terms of the individual components, a compu-
tational discovery allowed focused experimental validation
of a discrete, novel mediator of a synergistic biological re-

sponse. Perhaps as importantly, the computational analy-
ses were accomplished by integration of data from different
Omics platforms, different specimen types, and even differ-
ent host species (Figure 5 and Supplementary File S4). In
all three detailed examples, OBIF revealed molecular mech-
anisms that were congruent with previously published find-
ings and suggested novel mechanistic hypothesis for exper-
imental validation. These applications already include sin-
gle (Figure 3A–H) and multi-Omics (Supplementary File
S2B–E) tested scenarios for Pam2-ODN’s specific RelA and
cJUN interaction (Figure 4A–F) and broad antiviral re-
sponse (Figure 4G). These applications also include single
(Figure 5A) and multi-Omics (Figure 5B) untested scenar-
ios where specific (Figure 5B) and broad (Figure 5A) molec-
ular drivers and mechanisms have been discovered using
OBIF. Thus, OBIF can be used to rationally focus investiga-
tion into phenotypically observed synergy in a broad array
of contexts, including currently unexplored synergistic gene
mutation or copy number alterations from mapped reads
in DNA copy number variation sequencing (CNV-seq) or
from intensity signals obtained from array-based compara-
tive genomic hybridization (aCGH) (91).

Unlike most 22 designs, OBIF dissects factorial effects of
combined factor exposures through full factorial analysis
of feature expression data in a single processing step bet-
ter than conventional differential expression pipelines (i.e.
LIMMA, DESeq2, MetaboAnalyst) that are limited to a
few platform-specific Omics dataset. This allows simultane-
ous identification of DEMs directly from main effects of sin-
gle or combined factors, overcoming pairwise comparisons
to control and repetitive analysis of each condition. While
this simultaneous identification of DEMs could alternately
be performed with a mixed-effect model, we showed how
the mixed-effect model is suboptimal to detect interaction
effects at the level of individual features and to facilitate
iDEM selection when compared with full factorial analy-
sis. Additionally, clustering by DEMs, EPs and iDEMs im-
proves the specificity of enrichment analysis to disentan-
gle the signaling pathways, functions and regulators of this
synergistic combination and to capture their specific driv-
ing features. Further, quantification of multi-factor effects
(SMEs and interaction effects) reveals whether particular
features, molecular clusters or functions enriched by com-
bined exposures are the result of individual factors or their
crosstalk.

These statistical relationships have biological analogues
that are integrated during feature discovery of DEMs, EP
and iDEMs. Because each study of combined exposures
using Omics datasets is unique, fixed cut-offs are not ap-
propriate for every application. These statistical effects are
visualized in volcano and Q-Q plots during model fitting
to tailor each application. In fact, concordant EPs I and
II rescued the underrepresentation of ODN observed in
distance-based clustering and enrichment analysis. Further,
iDEMs derived from features with significant interaction ef-
fects allow focusing discovery on molecular regulators and
the calculation of interaction scores allows quantification
of their synergistic or antagonistic expression. Thus, unlike
most systems models of synergy, OBIF facilitates integra-
tive analyses of biological and statistical interactions that
are easily discoverable and interpretable through molecular
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clusters representing the complex dynamics of dual expo-
sures.

OBIF is available as an open-source R package with a
semi-automated pipeline to facilitate its broad application
to unscaled original data from various targeted and non-
targeted Omics platforms, factor classes and biological sys-
tems. Compared to other commonly used analysis tools and
modeling methods, OBIF demonstrates superior differen-
tial expression analysis for combined factor exposures and
detection of interaction effects at the whole Omics and fea-
ture level. We have shown that OBIF can be fitted to per-
form full factorial analysis and that it adequately identifies
DEMs, EPs, iDEMs and their attendant values and scores
to promote discovery of molecular drivers of synergy in
multiple, diverse datasets.

In summary, OBIF provides a phenotype-driven sys-
tems biology model that allows multiplatform dissection of
molecular drivers of synergy. And, we encourage the ap-
plication of OBIF to provide holistic understanding in re-
search fields where greater-than-additive beneficial combi-
nations remain understudied.
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