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Abstract: Sensitive and rapid detection of botulinum neurotoxins (BoNTs), the most 
poisonous substances known to date, is essential for studies of medical applications of 
BoNTs and detection of poisoned food, as well as for response to potential bioterrorist 
threats. Currently, the most common method of BoNT detection is the mouse bioassay. 
While this assay is sensitive, it is slow, quite expensive, has limited throughput and 
requires sacrificing animals. Herein, we discuss and compare recently developed 
alternative in vitro detection methods and assess their ability to supplement or replace the 
mouse bioassay in the analysis of complex matrix samples. 

Keywords: botulinum neurotoxin; detection; endopeptidase; botulism; mouse lethality 
assay; ELISA; lateral flow test; mass spectrometry; FRET; immuno-PCR 

 

1. Introduction 

Botulinum neurotoxins (BoNTs) are the most poisonous substances known to humans, with a 
median lethal dose (LD50) of approximately 1 ng per kg of body weight [1] and are the cause of the 
life-threatening neuroparalytic disease botulism [2]. BoNT intoxication is presented by flaccid 
paralysis originating from an inhibition of neuromuscular signal transmission. Lethality of the disease 
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is then connected with muscle paralysis-caused respiratory failure. On a molecular level, BoNTs are 
zinc-dependent metalloproteases that cleave SNARE (soluble N-ethylmaleimide-sensitive factor 
attachment protein receptor) complex proteins that are critical for the release of the neurotransmitter 
acetylcholine from neuronal cells [3]. 

BoNTs are produced by the Gram-positive anaerobic soil bacterium Clostridium botulinum [4], first 
discovered as a contaminant of poorly preserved ham in the late 19th century. Besides soil and spoiled 
food, C. botulinum can grow in wounds or the human intestine and can be also cultured in large scale 
in a laboratory. Due to the extreme potency, lethality and easy procurement, BoNTs have the potential 
to be very dangerous biological weapon and therefore represent significant warfare and terrorism 
threat [5]. Consequently, BoNTs are one of the six category A agents listed as the highest risk threat 
agents for bioterrorism by the US Centers for Disease Control and Prevention (CDC) [6]. 

Apart from being a dangerous biohazard agent causing incidental death and a potential biological 
weapon, BoNTs also have important therapeutic value. These toxins are utilized in the treatment of a 
wide variety of conditions including cervical dystonia, strabismus, blepharospasms, hemifacial spasms, 
hyperhidrosis, myofacial pain, migraine headaches, vocal cord dysfunction, diabetic neuropathy, anal 
fissure and multiple sclerosis [7–9]. Additionally, the most well-known application of botulinum 
neurotoxin serotype A (BoNT/A) is its use in the cosmetic industry as an anti-wrinkle agent, under the 
commercial name Botox®. 

1.1. Molecular Mechanism of BoNT Action 

BoNTs are produced by C. botulinum as a single 150 kDa inactive protein, which becomes 
activated by proteolytic cleavage into the light chain (LC) metalloprotease catalytic domain (50 kDa) 
and heavy chain (HC), which consists of translocation and binding domains (100 kDa) [10]. These two 
chains are linked as a heterodimer by a single disulfide bond, as well as numerous non-covalent 
interactions between the two peptide chains. There are seven different serotypes of BoNTs, named A-
G; these are up to 70% different at the amino acid sequence level, but all serotypes share similar folded 
conformations and identical activity at the organismal level, albeit with slightly different molecular 
targets. 

BoNT intoxication occurs in three steps: (i) neuronal cell specific binding and internalization by 
receptor-mediated endocytosis, (ii) translocation and release of the LC into the cytosol and (iii) 
cleavage of the SNARE complex proteins (Figure 1) [11]. Examining this process in more detail, toxin 
binding to neuronal cells occurs via HC binding to two receptors. Toxin first associates with the cell 
membrane via a ganglioside followed by migration of the complex to its cognate protein 
receptor [12,13]. Upon binding to both receptors, toxin is then internalized by endocytosis. After 
endocytosis, LC escapes the endosome through an endosome membrane translocation process [11]. It 
is believed that as the pH in the endosome lowers, it triggers a subsequent conformation change in the 
toxin, resulting in the HC acting as a transport channel and chaperone, facilitating LC translocation 
through the endosome membrane and into the cytosol [14,15]. Finally, inside the cytosol, the LC acts 
as zinc-dependent metalloprotease and cleaves proteins of the SNARE complex, which are the part of 
exocytosis apparatus, effectively destroying this apparatus and leading to inhibition of neurotransmitter 
release [3]. In this last step of SNARE complex protein cleavage, each of the seven different BoNT 
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serotypes cleaves a unique peptide bond located on one of the SNARE proteins [16–18]. BoNT/A, /C 
and /E cleave synaptosomal associated protein of 25 kDa (SNAP-25), at positions 197–198, 198–199 
and 180–181, respectively. BoNT/B, /D, /F and /G target synaptobrevin, cleaving at positions 76–77, 
59–60, 59–59 and 81–82, respectively. Interestingly, in addition to SNAP-25, BoNT/C also cleaves 
syntaxin at position 253–254. 

Figure 1. Mechanism of action of botulinum neurotoxin. Left side: Release of 
acetylcholine at the neuromuscular junction is mediated by the assembly of the SNARE 
protein complex, allowing the the membrane of the synaptic vesicle containing 
acetylcholine to fuse with the neuronal cell membrane. SNARE protein complex includes 
synaptobrevin, SNAP-25, and syntaxin. Right Side: BoNT binds to the cell membrane and 
enters the neuron by endocytosis, the light chain is translocated through the membrane and 
then cleaves specific sites on the SNARE proteins, preventing complete assembly of the 
synaptic fusion complex and thereby blocking acetylcholine release. Botulinum toxins 
types B, D, F, and G cleave synaptobrevin; types A, C, and E cleave SNAP-25; and type C 
cleaves syntaxin. Reprinted with permission from [19]. Copyright © 2002 Massachusetts 
Medical Society. All rights reserved. 

 

1.2. Botulism 

Human botulism is caused mainly by BoNT/A, /B, /E and occasionally /F, with BoNT/A being the 
most poisonous to humans followed by BoNT/B. Ingestion of food contaminated with BoNT-
producing C. botulinum, wound infections and intestinal colonizing infections in infants (as well as 
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adults with misbalanced intestinal flora) are three most common causes of botulism disease [5,20,21]. 
In the case of an infected wound or intestine, toxin is produced in vivo by C. botulinum. The symptoms 
and manifestation of botulism are identical for all serotypes, with the onset of flaccid paralysis usually 
occurring within 12 to 48 hours after intoxication. Muscle paralysis typically starts with the facial 
muscles controlled by cranial nerves, causing double vision, drooping eyelids, etc. and continues to 
descend into shoulders, arms and finally legs. Severe botulism leads to paralysis of respiratory muscles 
and respiratory failure [22]. 

Treatment of botulism has to be started as soon as possible after intoxication as paralysis cannot be 
reversed by any therapeutic intervention. The current standard of care consists of administration of 
equine antitoxin (commonly antibodies against three serotypes, BoNT/A, /B and /E) which binds to 
toxin that has not yet internalized into neuronal cells. It is critical to note that antitoxin is unable to 
enter poisoned cells and reverse the paralysis. Other support such as mechanical ventilation is provided 
to patients with severe botulism for weeks or months until full recovery [22]. 

2. BoNT Detection 

Due to the extreme toxicity, the speed of symptom onset and lack of treatment to reverse paralysis, 
a sensitive and rapid BoNT detection method is needed to diagnose botulism in suspected cases before 
paralysis occurs. Additionally, there is a great need for the sensitive detection of BoNT outside of 
clinical diagnostics. As mentioned above, BoNT represents a high bioterrorism threat. In the case of a 
terrorist attack, rapid, sensitive and field deployable detection would be needed to assess the extent of 
contamination and to take necessary action. Finally, with the ever-increasing medical use of BoNT, its 
sensitive and specific detection in manufacturing processes as well as clinical research laboratories is 
of crucial importance. Methods of BoNT detection were recently reviewed in several excellent 
publications [23–25]. This article is intended to give the reader an update on the most recent 
developments and put them into the context of previously reported methods. 

3. Mouse Lethality Assay 

Despite enormous progress in the development of alternative in vitro methods for botulinum 
neurotoxin detection [23–25], the mouse lethality assay has remained the only accepted standard test to 
confirm active BoNTs [26]. This test is based on intraperitoneal injection of mice with dilutions of 
BoNT-suspected samples and subsequent observation of these mice for symptoms of botulism and, 
ultimately, death. Such symptoms include fuzzy hair, muscle weakness, narrowed waist, gasping for 
breath, and subsequent respiratory failure that usually occurs during the first 48 h post injection. It is 
necessary to find both the maximum sample dilution that kills mice and the minimum dilution that 
does not kill in order to estimate the quantity of BoNT in the sample. If the dilution that does not kill is 
not found and all injected animals die, the sample has to be diluted further and the procedure 
repeated [26]. The quantity of toxin in the sample is then estimated by relating the maximum dilution 
which kills to the known mouse lethal dose (MLD50, 10 pg for BoNT/A) [27]. The toxin serotype is 
then determined by neutralization of the toxin with serotype specific antitoxin usually administrated 
prior to toxin injection. Mice are observed for signs of botulism for another 48h to conclude which 
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specific antitoxin is protective. Thus, in order to appropriately conduct this assay, a minimum of four 
to six days are required before an estimate of toxin concentration can be obtained. 

The mouse lethality assay has been used for analysis of complex sample matrices ranging from 
bacterial cultures to serum, fecal, gastric and wound samples. Examples of matrix interference with the 
assay are known, particularly when other substances or toxins present in the sample cause 
lethality [28,29], but the assay is generally considered to be highly sensitive and specific. Another 
advantage is that it detects functionally active toxin, unlike the majority of immunological methods 
that do not provide information about toxin activity. However, this is not to imply that the mouse 
lethality assay is without substantial drawbacks. Several laboratory animals have to be sacrificed for 
one test, the procedure is laborious and expensive and inherently limited to laboratories with an animal 
facility. Furthermore, a single test with serotype determination takes a minimum of four days to 
perform. This is unacceptably long when fast action is needed, for example, in suspected clinical cases 
of botulism.  

3.1. Variations of Mouse Bioassay 

Variations of the mouse lethality assay have been developed to reduce the number of laboratory 
mice required. One variation relates the toxin quantity to the severity of local symptoms (e.g., 
paralysis), their offset and time-to-death after subcutaneous injection of the sample at the inguinocrural 
region [30]. This method can estimate BoNT/A quantities ranging from as little as 0.075 mouse LD50 

to an upper detection limit of about 38 LD50s (sensitivity over nearly 3 logs) with just one animal. A 
similar method based on assessing the severity of flaccid paralysis was developed to analyze low 
concentrations of therapeutic samples of BoNT/A without the necessity of a terminal end point [31]. In 
another related method, toxin dilution is injected intravenously and time-to-death is correlated to toxin 
concentration [32]. 

More recently, a rat test was developed in which a direct measure of neuromuscular signal 
transmission, the compound muscle action potential (CMAP), was used to quantify BoNT 
concentration [33]. The CMAP is generated by the contraction of muscle fiber and changes in the 
resulting micro current can be directly measured upon toxin treatment. One day post treatment, 
BoNT/A, C and E could be detected at levels lower than 1 MLD50 (with BoNT/A having significant 
effect on CMAP at levels as low as 0.03 MLD50). The related in vitro mouse/rat hemidiaphragm 
muscle contraction assay correlates muscle twitch tensions to the toxin concentration [34]. In this in 
vitro method, hemidiaphragm preparations with attached phrenic nerves are stimulated with a 
supramaximal pulse and the resulting tension of muscle twitches is recorded. The signal from 
preparations treated with BoNT is compared to the pre-treatment signal to estimate the toxin 
concentration. The assay was successfully utilized in a development of BoNT antagonists [35,36]. 

All of these methods can estimate toxin quantity with significantly fewer animals required than the 
mouse lethality assay, but the toxin serotype must be known in advance to correlate symptoms and 
survival times to dose. If the serotype is unknown, a toxin neutralization assay or alternative assay has 
to be performed to determine which serotype is present. However, all of these mice/rat based assays 
still have limitations inherently connected to animal experiments, including necessity of an animal 
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facility. In addition, the assays are slow when immediate action is needed, have very limited 
throughput and are impossible to automate. 

4. In Vitro Methods of BoNT Detection 

Alternative in vitro methods for detection of BoNT have been developed to overcome some of the 
limitations of the mouse bioassay [23–25,37]. The majority of the in vitro assays developed over the 
last four decades are immunological methods based on the binding of an antibody to the toxin. As 
such, they are usually easier to perform and are significantly faster; however, unlike mouse bioassays, 
immunological assays do not discriminate between functionally active and inactive form of the toxin. 
Early implementation of immunological methods relied on technologies such as radioimmuno-
assays [38,39], passive hemagglutination assays [40], and immunodiffusion assays [41–44]. 
Ultimately, these assays were overcome by more sensitive Enzyme-Linked Immunosorbent  
Assays (ELISA). 

5. ELISA 

Over three decades of use for BoNT detection [45–47], ELISA has become by far the most 
commonly employed method for in vitro detection of the toxin [23–25]. As a means of detection, 
ELISA uses specific antibody binding to the toxin. In a typical sandwich ELISA setup, wells of a 
microtiter plate are first coated with a capture antibody that is specific for the toxin, followed by 
nonspecific blocking of the remaining well surface by an unrelated protein (e.g., bovine serum 
albumin, BSA). Then, sample putatively containing the toxin is applied to the well and if present, the 
toxin binds to the capture antibody, while other components of the sample and matrix are washed out. 
Subsequently, a detection antibody conjugated to a suitable reporter (e.g., horseradish peroxidase 
(HRP), alkaline phosphatase) binds specifically to the immobilized toxin. The reporter enzyme then 
converts a colorless chromogenic substrate (e.g., 3,3’,5,5’-tetramethylbenzidine, TMB, in case of 
HRP) into a colored product which is spectroscopically quantified using a plate reader. Signal is then 
compared to a standard calibration curve and the toxin quantity is interpolated. The experiment usually 
takes 5–6 hours to complete, and is significantly faster than mouse lethality assay. ELISAs with an 
experimental setup analogous to this were reported to have a wide range of sensitivities, depending on 
the specific antibody and reporter system used, and have been employed for detection of all BoNT 
serotypes [48–51]. 

Several variations of the ELISA protocol were developed to enhance assay sensitivity. In an 
amplified ELISA, alkaline phosphatase linked to secondary antibody converts reduced nicotinamide 
adenine dinucleotide phosphate (NADPH) to reduced nicotinamide adenine dinucleotide (NADH). The 
resulting NADH then triggers a secondary cyclic enzymatic reaction, that is, the reduction of 
iodonitrotetrazolium violet (INT-violet) to an intensely colored formazane dye, which can be 
spectroscopically detected. Amplified ELISA was used for detection of BoNTs with sensitivities 
ranging from 1–10 MLD50 [27,52,53]. This technique has been accepted as a method for prescreening 
the toxin samples prior to the mouse lethality assay [26], and validated for screening of food 
samples [54]. Another example of an amplification system used to enhance the sensitivity of ELISA is 
the Enzyme-Linked Coagulation Assay (ELCA) [55–57]. ELISA-ELCA relies on a complex multistep 
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amplification cascade starting with cleavage of factor X by snake venom coagulation factor conjugated 
to a detection antibody and ending with the color change of an alkaline phosphatase substrate. Despite 
the good sensitivity of this method, which is comparable to or exceeding that of mouse lethality assay  
( < 1 MLD50), it has not been widely accepted due to its excessive complexity. 

Serotype specificity of the ELISA depends on the specificity and cross-reactivity of the antibodies 
used. All BoNT serotypes are immunogenic and can elicit production of antitoxin antibodies. The 
seven serotypes differ by up to 70% on the amino acid level, thus making the selection of antibodies 
with little or no cross-reactivity possible [58]. Both monoclonal and polyclonal antibodies have been 
used in ELISA experiments for the detection and serotyping of BoNTs, with polyclonals being more 
common due to reduced procurement costs and easier accessibility. Polyclonal antibodies with high 
specificity against serotypes A, B, E, and F (serotypes generally causing human disease) were 
employed to identify these BoNT serotypes by amplified-ELISA (amp-ELISA) and ELISA with 
digoxigenin-labeled antibodies (DIG-ELISA) [26,27] with high sensitivity in the range of 1–10 MLD50 
and no cross-reactivity. Like amp-ELISA, DIG-ELISA was developed by the Food and Drug 
Administration (FDA) for prescreening samples for the presence of BoNTs prior to the mouse lethality 
assay [26]. Sensitive ELISAs relying on monoclonal antibodies with high serotype specificity have 
also been developed [48]. 

ELISA methodologies have been successfully employed in the detection and quantification of 
purified botulinum toxin [49,51,59], in C. botulinum cultures that produce the toxin [60–62], in an 
extensive variety of food samples [52,54,63–65] (both contaminated food and food artificially spiked 
with the toxin), and in clinical samples such as serum [49] and feces [66]. Some foods tend to interfere 
with ELISAs and decrease their sensitivity; therefore, results should be confirmed by mouse lethality 
assay. The degree of food sample interference with ELISAs is difficult to anticipate de novo and must 
be examined on an individual basis. However, there are some general considerations to make; for 
example, protocols employing biotinylated reagents (e.g., antibodies) are not suitable for investigation 
of samples containing eggs due to the high content of avidin in egg whites. Furthermore, interference 
of clinical samples of feces with ELISAs may be even more severe than that of food samples [66]. It 
has been shown that conditions of the assay can be modified appropriately (e.g., with dilution into fetal 
bovine serum (FBS) buffer) to decrease the amount of the feces sample interference [66]. 

5.1. Alternative ELISA Formats 

Apart from antibody capture, peptide capture-based ELISAs have also been developed as a sensitive 
and cheaper alternative as large quantities of peptide can be chemically synthesized, contrary to the 
significant expense of antibody production [67]. An 11-mer cyclic peptide identified by phage display 
technology was attached to a polymer matrix and used as capture phase in an ELISA experiment 
(Figure 2). In this case, the capture peptide polymer showed high specificity for BoNT/A, bringing 
sensitivity of the assay to a respectable 1 pg/ml of BoNT/A [67]. 

Another variation introduced into ELISA protocols is the use of ganglioside-bearing liposomes as 
the detection agent, substituting the detection antibody [68]. Gangliosides are glycosphingolipids 
present in the membranes of neuronal and other cells known to be receptors for bacterial 
toxins [69,70], with the trisialoganglioside GT1b characterized as a co-receptor of BoNTs [71,72]. 
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6. Flow Cytometric Assays 

Fluorescent sandwich immunoassays have been also performed on beads with flow cytometry 
instrumentation used to detect and quantify toxin [77–79]. Detection of BoNT/A and BoNT/B was 
performed in multiplex with other toxins (e.g., cholera toxin, ricin and staphylococcal enterotoxin B 
(SEB)) using different color-coded beads [78,79]. The use of magnetic beads in flow cytometry was 
shown to have several advantages including that a preconcentration step can be involved, resulting in 
increased sensitivity and making analysis of turbid or heterogenous samples possible as beads can be 
easily separated from the matrix [79]. BoNT/A and B were detected at concentrations of 21 ng/mL and 
73 ng/mL, respectively, in 5-plex assay together with ricin, SEB and abrin. This sensitivity was 
comparable to the sensitivity of an ELISA performed for one analyte at the time with the same set of 
antibodies (detection limits of 12 ng/mL and 124 ng/mL, respectively, for BoNT/A and B). Another 
assay was performed using an automatic fluidic system format. Beads with capture antibody were 
trapped in a flow cell, where sample toxin capture, washes, and binding of detection antibody were 
performed under the control of a system before flow cytometric analysis. The detection limit of this 
assay was found to be 50 pg/ml of BoNT/A heavy chain (used as nontoxic simulant) [77]. 

Although being based on the same principle of sandwich immunoassay, flow cytometric assays 
have several significant benefits over ELISA. Flow cytometric assays are easier to automate and 
therefore can be less laborious; assays are easier to multiplex and therefore, it is easier to interrogate 
samples for the presence of multiple toxins and/or several BoNT serotypes in one test tube; there are 
inherent advantages of capture on beads compared to a well surface including better capture kinetics 
and enhanced analyte concentration. Additionally, quantitation of toxin in a given sample by flow 
cytometric assay is faster than ELISA. Also, it is reasonable to expect that the sensitivity of flow 
cytometric assays will at least reach that of sensitive ELISAs. However, that does not imply that this 
technique is not without drawbacks. In particular, the instrumentation needed to perform flow 
cytometric analysis is significantly more expensive and complex than the plate-readers needed  
for ELISA.  

7. Electrochemiluminescence Immunoassay 

Electrochemiluminiscence (ECL) immunoassays have been employed in BoNT detection as an 
alternative to standard ELISAs [80–83]. In essence, ECL immunoassays rely on the same type of 
interactions between capture antibody, analyte and reporter antibody involved in the majority of 
immunoassays. The primary difference is that the reporter antibody in an ECL assay has an 
electrochemiluminiscence tag, such as a ruthenium (II) tris(bipyridyl) complex, which becomes 
luminescent in the presence of an electric potential. Unlike ELISA, ECL assays are typically 
performed on magnetic beads coated with capture antibody. Upon binding of the toxin and reporter 
antibody, beads are directed by a magnet to an electrode where the ECL reaction occurs. Potential 
gains in sensitivity can come from several sources: (i) higher luminescent signal-to-noise ratio; (ii) 
high surface area of beads allowing for denser antibody packing; (iii) enhanced kinetics of antibody-
antigen interactions because beads are free in suspension; (iv) volume of sample probed by beads can 
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be greater than the volume of the ECL detection reaction upon concentration of the beads by a magnet, 
introducing another amplification step. 

In an early example of an ECL assay, BoNT/A was detected at concentrations as low as 5 
pg/mL [80]. Direct comparison of detection sensitivity of ECL and ELISA using the same antibodies 
and purified BoNT/B as analyte has been also performed [81]. With a detection limit of about 1 ng/mL, 
the ECL methodology performed about four-fold better than comparable ELISA in terms of sensitivity 
and was twice as fast. In another assay, ECL was used for detection of BoNT/A, B, E and F in a 
limited number of foods and clinical samples [82]. Sensitivity in tested matrices ranged from 50 pg/ml 
(BoNT/A) to 400 pg/mL. However, despite the above mentioned advantages of ECL, the sensitivity 
boost compared to ELISA is relatively marginal. Additionally, the number of matrices tested with ECL 
is very limited compared to ELISAs, and the equipment needed for ECL detection is more specific. 
Consequently, all of these issues preclude wide spread application of this method. 

8. Immuno-PCR 

The polymerase chain reaction (PCR) enables exponential amplification of a DNA template, 
making it a powerful tool for sensitive nucleic acid detection. Immuno-PCR is an ELISA-type 
immunoassay that uses PCR for exponential amplification of ELISA signal [84]. As in the classical 
sandwich ELISA described above, analyte (BoNT) is captured by the adsorbed antibody and detected 
by reporter antibody binding to preformed capture antibody/analyte complex. In the case of immuno-
PCR, the reporter antibody is a DNA-antibody conjugate with DNA used as an amplifiable tag. 
Amplification of DNA is performed either by normal PCR, which requires agarose gel electrophoresis 
detection of the PCR product, or more conveniently, by real-time quantitative PCR, which is capable 
of direct DNA quantification using fluorescent dye labeling of the formed PCR product. 

Immuno-PCR has been used for detection of BoNT/A with sensitivity reaching that of the mouse 
lethality assay [85]. In another report, sensitivity of as little as 1 pg/mL of BoNT/A in buffer was 
accomplished, using streptavidin to connect the biotinylated DNA tag to biotinylated antibody instead 
of covalent DNA-antibody conjugation [86]. 

An alternative assay termed liposome-PCR has been developed recently to detect BoNT and cholera 
toxin [87,88]. In this assay, approximately 60 copies of reporter DNA are encapsulated in a liposome, 
which has its outside surface labeled with ganglioside (trisialoganglioside GT1b for BoNT binding, 
Figure 4). The surface GT1b of DNA-loaded liposomes then binds to a capture antibody/BoNT 
complex followed by liposome rupture and real-time quantitative PCR of released DNA. To eliminate 
contaminating DNA which could be present in the sample and could increase background signal, 
captured liposomes can be treated with DNase to digest any contaminating DNA outside of the 
liposomes. By liposome-PCR, BoNT/A at a concentration as low as 0.02 fg/mL was detected in 
purified water [87], making this method five orders of magnitude more sensitive than the mouse 
lethality assay and the most sensitive in vitro immunological method reported. However, application of 
this assay in the detection of BoNT in complex matrices was not reported. Nonspecific binding of 
liposomes, as well as their stability in presence of complex matrices, may be problematic and could be 
a significant drawback to this method. 
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Figure 4. A representation of liposome-PCR reagents. The dsDNA reporter (green with red 
bars) is encapsulated inside the liposome (yellow) with ganglioside receptor (blue) 
incorporated into the membrane. Liposome reagent binds to the analyte (shown here as a 
pentameric protein) which is captured by an antibody. Reprinted by permission from 
Macmillan Publishers Ltd. from [87]. Copyright © 2006. 

 

9. Lateral Flow Tests 

The lateral flow test is a hand-held immunochromatographic assay that also relies on a capture 
antibody-analyte-detection antibody interaction, typically on a nitrocellulose strip resulting in visual 
(color) change of the strip. A good example of this type of detection device is the commercial 
pregnancy test. In the lateral flow test for BoNT detection, liquid toxin sample is applied on one end of 
the strip and then migrates towards the opposite end via capillary action. First, toxin binds to a 
detection agent (antibody) conjugated to reporter (e.g., dye, gold nanoparticles) then the whole 
complex toxin/detection antibody continues to migrate down to the strip, ultimately to be captured in 
the detection zone by the capture antibody, resulting in a color change in the detection zone (Figure 5). 

Lateral flow tests have significant advantages over other detection methods. They are inexpensive, 
easy to use, generate a visual read-out with no equipment needed and are very rapid with a typical 
analysis taking only 15 min. All of these properties make them ideal for field use by untrained 
personnel. However, the price for this ease of use is lower sensitivity compared to ELISA and other 
modern immunological methods. Typical limits of detection of lateral flow tests for BoNT employing 
detection antibody conjugated to gold nanoparticles range from 5 to 50 ng/mL  
(500–5,000 MLD50/mL) [89–92]. Despite this reduced sensitivity, some of these assays are 
commercially available [89,91]. Successful detection of BoNT/A, B and E with lateral flow assay in a 
wide variety of food samples has been demonstrated, showing the importance of sample preparation 
and pre-treatment to increase assay reliability [89]. 
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devices use to detect analyte is based on interrogation of the analyte by evanescence wave technology. 
Surface-bound molecules labeled with fluorophore are excited by an evanescent field, producing a 
fluorescent signal. A sandwich immunoassay format, consisting of capture antibody, analyte and 
labeled detection antibody, is used on the surface of the sensor. Since the penetration depth of the 
evanescent field is limited, only surface bound fluorophores are detected, thus enabling analysis in 
heterogeneous and turbid samples. Additionally, capture antibodies are easy to array on the detector, 
allowing for multiplexed detection of bacterial and other toxins. 

Using this system, multiple biosensors were tested with BoNTs [98–103]. Sensitivities of the 
sensors range from 150 pg/mL (15 MLD50/mL) for BoNT/E [100] to 200 ng/mL for BoNT/B [101] in 
buffers. Besides single analyte sensors, array sensors for multiple analytes were constructed for the 
simultaneous detection of several toxins such as BoNT/A, /B, cholera, ricin and staphylococcal 
endotoxin B, and bacterial samples [101,102]. Detection of BoNT/A toxoid in various food samples 
has been reported as well with sensitivities typically around 50 ng/mL [103]. Biosensor assays take 
only 10–20 minutes to complete, regardless of the number of analytes to be detected simultaneously. 
This makes it one of the fastest assays reported to date. But as in case of lateral flow devices, limited 
analytical sensitivity is the trade off for the speed. 

Recently other biosensors relying on standard fluorescence assays [104,105] or optical immuno-
assays [106] have been reported. Interestingly, in one of the assays, the capture antibody was replaced 
by antimicrobial peptides with broad specificity for not only bacterial pathogens but also for bacterial 
toxins [105]. 

11. Endopeptidase Activity Based Assays 

BoNTs are Zn2+-dependent endopeptidases that inhibit neurotransmitter release by specific cleavage 
of synaptic SNARE complex proteins. Exploitation of this endopeptidase role of BoNTs has led to 
numerous detection methods. Unlike the immunological in vitro methods described above which are 
unable to discriminate between an active and inactive form of the toxin, endopeptidase assays detect 
the active form only. For example, if food that was heated tested positive for the presence of BoNT by 
immunoassay, it may be negative by the mouse lethality assay and endopeptidase assays as the toxin 
may be inactive. In this sense, endopeptidase assays are closer to the mouse lethality bioassay than 
immunoassays. Detection of the active form is arguably more relevant because only the active form 
results in the associated morbidity and mortality. 

Another advantage of endopeptidase assays is the inherent amplification of the signal by the 
catalytic cleavage reaction. In an endopeptidase activity assay, the actual analyte is the specific 
cleavage product rather than the toxin itself. The toxin concentration is then proportional to the 
concentration of the cleavage product. Because the cleavage process is catalytic and one molecule of 
the toxin can specifically cleave a large number of substrate molecules, an inherent amplification step 
is involved. This applies regardless of the actual method used for the detection of cleavage product. 

On the other hand, endopeptidase assays are inherently more sensitive to sample matrix interference 
since toxin catalyzed cleavage of substrate is generally significantly less efficient in complex matrices. 
To overcome this problem, in some methods, toxin is captured from the matrix first, followed by 
performing the cleavage reaction in an optimized reaction buffer (see below). 
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12. Fluorescence Endopeptidase Assays 

A change in fluorescence of the substrate upon cleavage is often used to detect the endopeptidase 
activity of an enzyme. High-throughput fluorescence endopeptidase assays have been developed for 
detection of BoNT/A, /B, /E and /F. In this assay, a serotype-specific peptidic substrate labeled with 
fluorescein was chemically synthesized and immobilized on a solid support. After specific cleavage 
with one of the BoNTs, the peptide fragment labeled with fluorescein was released into the solution 
and spatially separated from uncleaved substrate for quantification [107]. This assay allowed detection 
of all four serotypes relevant to human botulism at concentrations as low as 2 ng/mL in microtiter  
plate format. 

More recently, an assay based on the same principle (e.g., cleavage of a fluorophore labeled peptide 
from a solid support), but working in semiautomatic microfluidic format has been developed 
[108,109]. The microfluidic device (Figure 6) consists of two ports (input and detection) 
interconnected by a microchannel. The toxin sample is applied into the input port to catalyze the 
cleavage reaction of the fluorescein labeled peptide derived from sequence of SNAP-25 from the solid 
support. The cleaved fluorescein labeled fragment diffuses into the detection port designed to facilitate 
evaporation of the solution and effectively preconcentrate analyte before fluorescence detection. This 
evaporation led to 3-fold signal amplification over 35 minutes. The first generation device [109] used a 
fluorescent substrate tethered to silica beads but both intra- and inter-assay variation in bead load led to 
a decrease in sensitivity. In an improved second generation device [108] the substrate was tethered to a 
self-assembled monolayer on a gold surface and this device was able to detect as little as 3 pg/mL of 
BoNT/A (holotoxin) in buffer. Unfortunately, when tested in a complex matrix, the sensitivity 
dramatically decreased to 500 ng/mL of BoNT/A (holotoxin), suggesting that use for detection oftoxin 
in relevant matrices could be limited. 

Figure 6. Microfluidic device for fluorescent endopeptidase assay. (A) Fluorescein labeled 
BoNT/A substrate attached through the linker to the gold surface. (B) View of the array of 
40 devices (scale bar = 5 mm). (C) BoNT/A is added into input port. During incubation, 
immobilized substrate is cleaved and the fluorescent fragment is released into the solution 
and concentrated at the detection port via evaporation. Reprinted with permission from 
[108]. Copyright © 2009 American Chemical Society.  
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13. FRET Endopeptidase Assays 

Another widely used technology for the detection of cleavage of peptide bonds is fluorescence 
resonance energy transfer (FRET). In one setup used for detection of BoNTs, an oligopeptide 
resembling natural substrate carries two tags flanking the cleavage site. One tag is the so called 
fluorescence quencher and other is a fluorescence donor. If they are close to each other in space, as in 
an uncleaved substrate, the fluorescence of an excited donor fluorophore is quenched (absorbed) by the 
quencher. However, once the substrate is cleaved and the quencher and donor fluorophore become 
separated, fluorescence of the donor is no longer quenched and can therefore be detected. Multiple 
variations of fluorophore/quencher modified substrates derived from SNAP-25 have been developed 
and used for the detection of BoNT/A [110–115]. Similarly, internally quenched fluorescent substrates 
derived from synaptobrevin and syntaxin have been developed [115]. The detection limit of direct 
FRET based assays depends on the particular FRET substrate used and range from 40 ng/ml of 
BoNT/A in apple juice or buffer [110,111] to 60 pg of BoNT/A in buffer [113]. As in the case of other 
endopeptidase assays, food samples tested can severely interfere with the assay [110]. 

Alternatively, recombinant SNAP-25 or synaptobrevin with cyan fluorescent protein (CFP) and 
yellow fluorescent protein (YFP) at each side of the protein were employed as FRET substrates instead 
of chemically synthesized substrates [116–118]. The FRET between CFP/YFP pair is detected in the 
uncleaved protein but fluorescence is abolished once the substrate is cleaved. This CFP/YFP–SNAP-
25 sensor could detect 2 ng/mL of BoNT/A and /E in vitro; a synaptobrevin based sensor detected 
approximately 30 ng/mL of BoNT/B and /F in vitro within 4 h [116,117]. To further improve assay 
sensitivity, recombinant protein derived from SNAP-25 having one CFP donor in the middle of two 
substrate proteins with two YFP acceptors on each side was constructed, enhancing the capture of CFP 
emission in uncleaved protein and improving in vitro sensitivity to 0.3 ng/mL of BoNT/A [118]. 
Additionally, CFP/YFP sensors were transfected into PC12 cells and the toxin could be detected in 
living cells [116,117]. 

13.1. FRET Assays with Immunocapture 

Crucial enhancement in the sensitivity of FRET based endopeptidase assays as well as a significant 
reduction of sample matrix interference was achieved by coupling the assay with an immunoseparation 
step (Figure 7) [112,114]. In this setup, the toxin is first captured from the sample by beads with toxin 
specific antibodies. The beads with captured toxin are subsequently resuspended in endopeptidase 
reaction buffer containing the synthetic FRET substrate to initiate the cleavage reaction. Importantly, 
the capture antibody utilized must be selected so as not to interfere with the catalytic function of bound 
BoNT. This system has several advantages: (i) the immunoseparation step eliminates/decreases 
interference from the matrix by separating the toxin from other sample containing nonspecific 
proteases, (ii) beads with toxin are resuspended in an optimal cleavage buffer, considerably increasing 
the efficiency of the cleavage reaction, (iii) toxin can be effectively concentrated by minimizing the 
volume of the cleavage reaction. This immunoseparation coupled FRET assay has been reported to 
have the impressive sensitivity of about 1 fg/mL (BoNT/A complex in buffer) which is five orders of 
magnitude more sensitive than the mouse lethality assay [112]. Comparable sensitivity in a limited 
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number of matrices (e.g., serum, carrot juice, milk) has also been demonstrated. It is clearly the most 
sensitive assay reported, and only its application to more complex matrices will show if it is robust 
enough for widespread implementation. 

Figure 7. (A) Diagram for the preparation of an immuno-affinity matrix for BoNT 
enrichment. Protein A beads are coupled to anti-BoNT antibodies and crosslinked via the 
Fc domain with disuccinimidyl suberate. Non-crosslinked antibodies are washed out. (B) 
Immobilized BoNT/A cleaves FRET substrate restoring fluorescence. Reprinted from 
[112], Copyright © 2008 the authors.  

 

14. Immunodetection of Cleavage Product 

Immunological detection of proteolytically generated SNARE protein (or synthetic analogue) 
cleavage products has been used in several assays. Typically, a chemically synthesized peptide 
substrate, derived from one of the SNARE protein sequences, is immobilized on a solid support and 
then treated with the toxin. The resulting cleavage product on the support is subsequently detected by 
cleavage product specific antibodies. Cleavage of SNAP-25 derived substrates was used for the 
detection of BoNT/A [119–121], BoNT/C1 [122], and BoNT/E [120]; cleavage of synaptobrevin has 
also been utilized for the detection of BoNT/B and its light chain [119,123]. Detection limits of this 
type of assay range from 200 pg/mL (BoNT/B) [119] to as low as 40 fg/mL (BoNT/A) [120]. 
However, all detections were performed in optimized reaction buffers. Detection of the toxin in 
relevant matrices was not demonstrated, but a significant decrease in sensitivity can be expected due to 
suboptimal cleavage conditions. It has also been demonstrated that the antibodies involved are able to 
adequately discriminate among the serotype specific cleavage products, suggesting that the assay can 
be used as a highly specific in vitro serotyping method [122]. 

To overcome matrix interference with the endopeptidase assay, immunoseparation of BoNT/B from 
the matrix, analogous to that employed in FRET assays, was developed [124]. BoNT/B sample was 
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first applied onto an immunoaffinity column and the matrix was washed out after a short incubation. 
Biotin-modified substrate in reaction buffer was then applied onto the column and incubated to allow 
the cleavage to occur. Cleavage product specific antibodies were used for detection of the product 
upon elution from the column and immobilization on a streptavidin-coated plate. Using this system,  
1 MLD50 of BoNT/B was dectectable in a limited number of food samples [124]. 

In another report, BoNT/A1, /A2, /A3, /B1 and /F were captured from media by brain synaptosomes 
before incubation with an appropriate substrate. Serotype specific cleavage products were detected by 
ELISA with sensitivities from 0.5 to 10 MLD50/mL in buffer or diluted sera and with limited 
sensitivity in food [125]. The method has its disadvantages: rat brain isolated synaptosomes are not a 
readily available reagent and differences in sensitivity with and without capture were not clearly 
demonstrated. However, in this report, synaptosome binding is more of a selection for holotoxin with 
the correct fold than a separation procedure in that only toxin with functional heavy chain binds. This 
ability to discriminate to some extent between functional light chain only and functional holotoxin 
makes this method unique among in vitro assays. 

15. Endopep-MS 

A method using mass spectrometry (MS) for the detection of the SNARE cleavage products has 
been developed at the US CDC; the assay has been called Endopep-MS assay [126,127]. Mass 
spectrometry in tandem with liquid chromatography can be used not only for the quantification of the 
toxin, but it is also able to differentiate all seven toxin serotypes by discriminating between each 
serotype’s unique cleavage product(s). The detection limits achieved a range from 0.039 to  
0.625 MLD50/mL for BoNT/A, /B, /E and /F in a buffer [126]. However, the sensitivity of the method 
in serum and stool samples was not as impressive. To enhance the sensitivity of the assay in these and 
other complex matrices, an antibody capture step for toxin concentration, as well as separation from 
other nonspecific proteases from the matrix, was introduced [128,129]. Separation/concentration 
increased the sensitivity of the method by up to two orders of magnitude in reaction buffer and allowed 
detection of BoNT/A, /B, /E, and /F with sensitivities of 0.1–10 MLD50/mL in sera samples and  
0.5–100 MLD50/mL in stool samples [128]. In order to further expand the identification of serotypes to 
the identification of subtypes, the authors analyzed samples by means of mass spectrometry after a 
trypsin digest [130]. As identification of the subtype requires the analysis of the toxin protein itself, 
significantly more material is needed for the assay (about 2 μg of the toxin). 

The endopep-MS assay combined with antibody capture represents a very sensitive detection 
platform, with the additional advantage of serotype identification in one experiment. Together with the 
immunodetection of the cleavage product, these are the only two procedures able to detect the active 
toxin and discriminate between serotypes in a single experiment. However, a liquid chromatography 
system coupled with a mass spectromether is not available in every laboratory and is certainly less 
common than the simple plate readers required for quantification of signal from an immunodetection 
experiment. 
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16. Emerging in Vitro Assays and Technologies 

Aptamers are single stranded nucleic acids (DNA or RNA) selected from large nucleic acid libraries 
and used to bind specific targets such as small molecules or proteins, making them suitable for 
analytical and other applications [131]. Like antibodies, aptamers have a defined three dimensional 
structure that allows for specific interaction with the target. Additionally, they are faster and easier to 
select from a library of binders compared to immunoreagents, and once the sequence of aptamer is 
known, it can be easily chemically synthesized in high quantities. 

BoNT/A detection methods based on structural changes of an aptamer upon binding to its target 
have been reported [132,133]. In one of the two reported methods [132], upon binding of BoNT/A to 
the aptamer, the aptamer can no longer assume the unbound three-dimensional conformation and is 
accessible to capture conjugated HRP used for amplification of the signal (Figure 8). The assay was 
able to detect toxoid at a concentration as low as 40 pg/mL in buffer. Unfortunately, the ionic 
composition of the detection buffer, and in particular, the potassium ion concentration present in the 
buffer had an enormous impact on assay performance. This can be attributed to the fact that the 
unbound aptamer contains a long G-quadruplex that is known to be stabilized by potassium ions.  

Figure 8. Aptamer-based electrochemical detection of BoNT/A toxoid. Reprinted from 
[132] with kind permission from Springer Science+Business Media. Copyright © 2009 the 
authors. 

 

Microfluidic technology with chemical reactions, biochemical assays and biological processes 
performed on a chip on the micrometer scale has attracted enormous attention in the last decade. 
Indeed, detection of BoNT on microfluidic chips has been developed [134–136]. Assays carried out on 
a chip are miniaturized versions of the macroscopic assays described above, such as the sandwich type 
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immunoassay [136] or FRET based endopeptidase assay [134,135]. There are clear advantages to 
microfluidic technology, including a reduction of reagent consumption and the ability to operate in a 
semiautomatic mode for all steps (e.g., sample preparation, pretreatment, mixing, incubation, washing) 
carried out on a chip. Particularly in the context of field deployment, there is huge promise to this 
technology.  

In addition, there are various other techniques emerging as potential BoNT detection platforms. For 
example, surface plasmon resonance [137–139], rapid detection by transistors with gates modified by 
anti-toxin antibodies by change in drain-source current upon BoNT binding [140], liquid 
chromatography coupled to mass spectrometry [141], capillary electrophoresis [142], micromechano-
sensor able to detect synaptobrevin molecule cleavage by BoNT/B [143] or time resolved fluorescence 
assay [144]. Many of these techniques show promise but rely on expensive instrumentation and/or 
have not been sufficiently tested. 

17. Cell Based Assays 

Cell-based assays can be particularly valuable as diagnostics as they can recapitulate the natural 
environment experienced by an analyte more accurately, particularly when the analyte has a multistep 
activation mechanism, such as BoNTs. A FRET based cell assay (see above) has been 
developed [116,117], but this is not the only reported cell-based BoNT diagnostic. Another cell-based 
assay with fluorescence read-out has been reported recently [145]. Another interesting cell based assay 
is based on neural cultures grown on microelectrode arrays, which are used to record action potentials 
of the neural culture [146]. Toxin added into cell media then causes the changes in action potential 
signature of the culture. Cell based assays are good model for the study of all aspects of BoNT activity: 
cell surface receptor binding, endocytosis internalization, membrane translocation and finally SNARE 
cleavage. While in vitro activity assays only detect endopeptidase activity, the cleavage of the SNARE 
proteins in a cell occurs as the last step of this cascade. This makes these cell based assays and the 
others [147] ideal for BoNT inhibitor screens. However, their sensitivity in comparison to both mouse 
assay and in vitro assays is limited (usually in ng/mL range) and it is difficult to obtain quantitative 
results. Furthermore, compared to in vitro methods, cell based assays are slow (days for detection), 
experimentally more demanding and require the maintenance of cell cultures. All of this makes them 
less suitable for routine toxin detection. 

18. Summary and Outlook 

In recent years, the development of in vitro assays for BoNT detection has accelerated, decreasing 
the limit of detection to femtogram per milliliter range (Table 1). However, none of the assays 
developed to date has been validated to be robust enough to completely replace the mouse lethality 
assay, the FDA-approved standard of BoNT detection. Although there are assays having sufficient 
sensitivity and specificity in simple buffer systems, these characteristics dramatically change when 
these assays are employed in BoNT detection in complex matrices such as food and clinical samples. 
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Table 1. Summary of BoNT detection techniques. 

Method Detection limit Analysis 

time 

Multiplex Automation Matrix 

interference 

Mouse lethality assay 1 MLD50 

(20 pg/mL BoNT/A) 

4–6 days no no low 

ELISA 5 pg/mL–2 ng/mL 5–6 hours limited limited manageable 

Flow cytometric assay 50 pg/mL–20 ng/mL 4 hours yes yes manageable 

Electrochemiluminescence immunoassay 5 pg/mL - 50 ng/mL 1 hour limited limited manageable 

Immuno-PCR 1–5 pg/mL 6–9 hours limited no manageable 

Liposome-PCR 0.02 fg/mL 7–9 hours limited no N/A 

Lateral flow test 5–50 ng/mL 15 min no - high 

Biosensor (evanescence wave based) 150 pg/mL–200 ng/mL 10 min yes yes low 

Fluorescence endopeptidase assay 3 pg/mL 3 hours no on-chip high 

FRET endopeptidase assay 60 pg/mL–40 ng/mL 3 hours no no high 

FRET endopeptidase assay with 

immunoseparation 

1 fg/mL 2.5 hours no no low 

Immuno-detection of cleavage product 40 fg/mL–200 pg/mL 6 hours limited no high 

Endopep-MS 0.4–6 pg/mL 3–4 hours yes yes high 

Cell based assay 1–10 ng/mL 2–3 days no no low 

 
If one was to postulate the characteristics of an “ideal” BoNT diagnostic, a number of features can 

be readily identified. It is clear that this assay must have at least the sensitivity of the mouse lethality 
assay, have minimal interference with complex matrices, have suitable throughput and be fast  
(e.g., performed in less than 1 h). The need for a rapid assay is particularly important in cases of 
suspected clinical botulism, when fast action is needed to fight disease development. In this scenario, 
even the mouse lethality assay is not rapid enough. A successful assay would also allow for toxin 
serotype identification in the same experiment as toxin quantification, such as some types of 
immunoassays using serotype specific antibodies, endopep-MS or assays with immunodetection of the 
toxin cleavage product. Multiplexed identification of several toxins simultaneously with their 
serotypes and full automation of the assay is a further desirable extension beyond this. Additionally, an 
assay that can distinguish active and inactive forms of the toxin and quantify both would be 
advantageous since depending on the circumstances, detection of one form over the other may be 
beneficial. For example, activity of the toxin in older samples can diminish and give false negative 
results in activity assays, including the mouse lethality assay. On the other hand, as only active toxin 
can cause botulism, detection based on activity is of great clinical importance. It is likely that to get 
information about both active and inactive toxin, two independent assays will be needed. Lastly, a 
technology compatible with a hand-held type of device, or at least portable device, is essential for field 
deployment as in the scenario of a response to a bioterrorist attack. 

These requirements are difficult to match and even the mouse lethality assay that has been used for 
decades does not fulfill all of the requirements of an “ideal” assay. To eliminate or minimize the effect 
of the matrix on assay performance has proven quite difficult in a number of technologies; in order to 
match this requirement, a given in vitro assay must perform with minimal variation under a wide 
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variety of suboptimal conditions associated with a large range of sample matrices. Clearly, in all cases 
using the current technology available for BoNT detection, more research is required to validate the 
methods with a variety of complex matrices. 

Tremendous progress has been made in the development of BoNT diagnostics and while the 
developed assays to date may not yet be fully validated, a set of capable alternatives to the mouse 
lethality assay are now available. While there is no single method that fulfills all the requirements of 
an ideal assay, individual methods have been developed that can address varying aspects of these 
requirements, allowing one to find the right assay for a given scenario. 
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