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Abstract A robust, selective and highly sensitive chemiluminescent (CL) platform for protein

assay was presented in this paper. This novel CL approach utilized rolling circle amplification

(RCA) as a signal enhancement technique and the 96-well plate as the immobilization and

separation carrier. Typically, the antibody immobilized on the surface of 96-well plate was

sandwiched with the protein target and the aptamer–primer sequence. This aptamer–primer

sequence was then employed as the primer of RCA. Based on this design, a number of the

biotinylated probes and streptavidin–horseradish peroxidase (SA–HRP) were captured on the

plate, and the CL signal was amplified. In summary, our results demonstrated a robust biosensor

with a detection limit of 10 fM that is easy to be established and utilized, and devoid of light source.

Therefore, this new technique will broaden the perspective for future development of DNA-based

biosensors for the detection of other protein biomarkers related to clinical diseases, by taking

advantages of high sensitivity and selectivity.
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1. Introduction

Detection of protein biomarkers in clinical samples is of great

importance for effective diagnosis and prognosis of many

diseases [1]. In general, antibody-based immunoassay systems

are versatile and powerful tools for various molecular analyses

[2]. Enzyme-linked immunosorbent assay (ELISA) is consi-

dered as a standard method to detect protein biomarkers [3].

However, the concentrations of many important biological

markers in clinical examples for cancer, infectious diseases, or

biochemical processes are too low to be detected using

conventional immunoassays [4]. Therefore, several innovative

approaches have been developed to improve the sensitivity by

combining antibody-based molecular recognition with various
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Table 1 DNA sequences used in this work.

Name Sequence

Aptamer–

primer

50-TAC TCA GGG CAC TGC AAG CAA

TTG TGG TCC CAA TGG GCT GAG
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amplification detection techniques, such as metal ion deposi-

tion [5], enzyme amplification [6], bio-barcode detection [7,8],

proximity ligation [9,10], metal nanoparticles [11] and quan-

tum dots [12].

Among them, molecular probes based on nucleic acid

platforms are emerging. One of the representative examples

is the use of aptamer for protein analysis [13–16]. Aptamers

are short synthetic nucleotide sequences (DNA or RNA) that

have been selected in in vitro selection experiments via the

systematic evolution of ligands by exponential enrichment

(SELEX) process [17]. As a novel recognition element,

aptamers possess significant advantages including simple

synthesis, easy labeling, good stability and design flexibility

[18,19]. In addition, aptamer-based assay is easy to combine

with other amplification methods, such as gold nanoparticles,

polymerase chain reaction (PCR) and rolling circle amplifica-

tion (RCA) [20–28]. For example, Csordas et al. [22] reported

a micromagnetic aptamer PCR (MAP) detection system,

which integrated high-gradient magnetic field sample prepara-

tion in a microfluidic device with aptamer-based real-time

PCR readout, to achieve highly sensitive and quantitative

detection of protein targets directly from complex samples.

RCA has also been proven to enhance signals for detecting a

variety of analytes without thermal cycling. Additionally this

RCA process is of linear kinetic amplification model and the

RCA product was a single stranded DNA sequence consisting

of tandem repeats of the complement of the circular template.

Therefore, the RCA amplification strategy has been used to

various detection protocols, including optical diffraction [23],

fluorescent [24–26] and electrochemical [27,28] ones.

Chemiluminescence (CL) is considered one of the most suited

optical detection techniques for developing miniaturized and

highly sensitive analytical devices [29]. Even though the quantum

efficiency of CL reactions is usually low (in the order of 0.01 or

less), the use of enzyme labels such as horseradish peroxidase

(HRP) or alkaline phosphatase (ALP), ensures signal amplifica-

tion and high sensitivity [30,31]. Because of the wide dynamic

range of the CL measurements (up to 6 orders of magnitude), the

target analyte can be detected in a broad concentration range,

from femtomolar to millimolar levels, without the need of sample

dilution. Finally, the absence of an excitation light source as in

fluorescence measurements makes CL detection less sensitive to

interferences attributed to sample components (the only back-

ground signal derives from the instrumental noise) and allows a

wide range of applications in different fields such as environ-

mental chemistries [32], molecular biology [33,34], pathogenic

bacteria [35], clinical diagnosis [36] and cell sensors [37], including

several research works in our group [38–41].

Herein, we present an example of the aptamer-based RCA

assay by coupling of CL detection for the ultrasensitive

protein assay. Platelet-derived growth factor B-chain

(PDGF-BB), an important protein for cell transformation

and tumor growth and progression, was selected as the model

protein.

TAT TTT TTT TGT CCG TGC TAG AAG

GAA ACA GTT AC-30

Padlock

probe

50-phosphate-TAG CAC GGA CAT ATA

TGA TGG ACC GCA GTA TGA GTA

TCT CCT ATC ACT ACT AAG TGG AAG

AAA TGT AAC TGT TTC CTT C-30

Biotinyla-

ted probe

50-biotin-GTT TCC TTC TAG CAC-30
2. Materials and methods

2.1. Materials and reagents

All chemicals were of analytical grade and were used as

received. The DNA-BIND 96-well plate (Costar, 6573) had
an N-oxysuccinimide surface and was obtained from Corning

Inc. (NY, USA). The PDGF-BB proteins and goat anti-

human PDGF-BB antibody were purchased from R&D

Systems (Minneapolis, MN, USA). The PDGF proteins were

reconstituted in 4 mM HCl with 0.2% BSA prior to use. Phi

29 reagent set was purchased from Epicenter (Madison, WI,

USA). Escherichia coli DNA ligase was obtained from Takara

Biotechnology Co., Ltd. (Dalian, China). Streptavidin–

horseradish peroxidase (SA–HRP) was purchased from

Sigma-Aldrich (St. Louis, MO, USA). Bovine serum albumin

(BSA) was obtained from Sino-American Biotechnology Co.

and other reagents were purchased from Sinopharm Chemical

Reagent Co., Ltd. (Shanghai, China). HRP substrate kits were

purchased from Millipore Corporation (Billerica, MA, USA).

Oligonucleotides were obtained from Invitrogen Biotechnol-

ogy Co., Ltd. (Shanghai, China), including the following

sequences (Table 1).

2.2. Buffers

All of the solutions were prepared with water from a Millipore

system (Millipore XQ, MA, USA). Binding buffer (BB) was

0.5 M Na2HPO4–NaH2PO4, pH 8.5. PBS consisted of 2.7 mM

KCl, 1 mM MgCl2, pH 7.4. PBST was PBS containing 0.05%

Tween 20. Blocking buffer was PBS containing 5% BSA.

Ligation buffer (LB) consisted of 30 mM Tris–HCl, pH 8.0,

4 mM MgCl2, 10 mM (NH4)2SO4, 1.2 mM EDTA and

0.1 mM b-NAD. RCA reaction buffer was 40 mM Tris–HCl

(pH 7.5), 50 mM KCl, 10 mM MgCl2, 5 mM (NH4)2SO4 and

4 mM DTT.

2.3. Apparatus

CL measurement was carried out using a PC-controlled

Fluoroskan Ascent FL (Thermo Electron Corporation).

2.4. Sandwich assay with RCA or without RCA

In a typical experiment, goat anti-human PDGF-BB antibody

was diluted to 0.75 mg/mL in BB and added into the wells in a

96-well plate (100 mL each well). The plate was incubated for

1 h with gentle mixing at 37 1C. Excess PDGF-BB antibody

was removed by decanting the supernatant. The plate was

washed and blocked with blocking buffer (150 mL per sample)

for 60 min at 37 1C. After decantation of blocking buffer,

series dilutions of PDGF-BB were prepared in 100 mL PBS
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and added into the above wells and incubated for another

40 min with gentle mixing at 37 1C. After washing, 100 mL of

7.5 pmol aptamer-primer complexes in PBS and 5 pmol

padlock were added into the wells, which was incubated for

60 min at 37 1C. And then the padlock probe was circularized

via ligation by 1 U of E. coli DNA ligase in LB (100 mL each

well) for 60 min at 37 1C to form the circular template for

RCA. The complex was incubated with 100 mL of 40 U phi29

DNA polymerase and 100 mM dNTPs in RCA reaction buffer

for 75 min at 37 1C. After a rinsing step, 100 mL of 7.5 pmol

biotinylated probe (at the 50 end) was applied to and

hybridized with the resulted RCA products, which then

captured the SA–HRP (1:7500 dilution, 100 mL per well).

Finally, the plate was washed three times with 150 mL of

PBST. The CL signals on the surface of each conjugates were

detected directly with 100 mL of commercial CL HRP

substrate.

In the assay without RCA, after the binding of PDGF-BB

onto the surface of wells, 7.5 pmol aptamer–primer complexes

were added to react with the immobilized PDGF-BB. After

the plate was washed three times with PBST (150 mL each

time), 7.5 pmol of biotinylated probe in 100 mL PBS and

1:7500 dilution of SA–HRP were added and captured on the

surface of the wells sequentially (each for 30 min at 37 1C).

Finally, the plate was washed three times with 150 mL of

PBST. The CL signals were also detected as described above.
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Figure 2 CL intensity vs. the capture antibody amount. Experi-

mental conditions: 5.0 pmol of aptamer–primer, 2.1 pmol of

padlock, 6 U of ligase, 25 U of polymerase, 100 mM of dNTPs,

2.5 pmol of biotinylated probe, 1:5000 dilution of SA–HRP and

10 pM PDGF-BB. The detection procedure was carried out as

described in the Experimental Section 2.4.
3. Results and discussion

3.1. Design of the aptamer-based assay

A ‘‘sandwich-type’’ detection strategy was employed with

HRP as the detection tag in our design (Fig. 1), which

involved the sequential immobilization of capture antibody,

PDGF-BB and aptamer–primer onto the 96-well plate surface

in a classic sandwich assay format. The aptamer–primer had

two functional units. The aptamer part was used to recognize

and bind PDGF-BB, and the primer part at the 30-terminus

was employed as a universal primer sequence to initiate a

linear RCA reaction in the presence of Phi 29 polymerase and

dNTPs. Both the 30- and 50-terminus of a padlock probe could

hybridize to the 30-terminus of the aptamer–primer. Ligation

of the padlock probe resulted in a circular template for RCA,

which then produced single-stranded tandem repeated copies
Figure 1 Schematic representation of aptameric system f
of the circular template. The tandem repeated copies in the

RCA product were complementary to the biotinylated probe.

Thus, the RCA product could hybridize a number of biotiny-

lated probes, which then captured SA–HRP. After the CL

substrates were added, the CL signal was recorded immedi-

ately with the CL measurement. In contrast, for the assay

without RCA, the biotinylated probes directly hybridized the

aptamer–primer, which had been immobilized on the surface

of the 96-well plate as the formation of antibody–antigen–

aptamer complex, and then SA–HRP reacted with the cap-

tured biotinylated probes. Finally, the CL signal was also

obtained by the reaction with CL substrates and recorded by

the CL measurement. All experiments were performed at least

triplicate.
3.2. Optimization of reaction parameters

Several parameters were optimized systematically for the

highly sensitive approach of protein assay, including the

amounts of capture antibody, aptamer–primer, padlock,

ligase, polymerase, dNTPs, biotinylated probe and SA–HRP.
or the detection of PDGF-BB with or without RCA.
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3.2.1. Effect of the capture antibody amount

The amount of capture antibody on the wells played an

important role in the performance of the immunoassay.

Several amounts of anti-PDGF-BB antibody were investigated

as shown in Fig. 2. Elevated CL intensity was observed with

increasing amount of the capture antibody, and peaked at

75 ng of capture antibody. Further increase in the amount of

capture antibody to 100 ng resulted in a decrease of the CL

intensity. This was attributed to steric and electrostatic

hindrances, arising from more tightly packed capture antibody

on the surface of wells, limiting access to the surface-bound

capture antibody by PDGF-BB antigen. Thus, 75 ng capture

antibody was selected for subsequent experiments.
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3.2.2. Effects of the amounts of the aptamer–primer and

padlock

The effects of aptamer–primer and padlock amounts were

subsequently examined and optimized. CL intensity increased

in the range of 0.1–7.5 pmol of aptamer–primer and then
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Figure 3 CL intensity vs. the amounts of aptamer–primer (A)

and padlock (B). Experimental conditions: 75 ng of PDGF-BB

antibody, 6 U of ligase, 25 U of polymerase, 100 mM of dNTPs,

2.5 pmol of biotinylated probe, 1:5000 dilution of SA–HRP and

10 pM PDGF-BB. A, 2.1 pmol of padlock; B, 7.5 pmol of

aptamer–primer. The detection procedure was carried out as

described in the Experimental Section 2.4.
decreased slightly (Fig. 3A). CL intensity increased with

increasing amount of padlock sequences over the range of

0.1–5.0 pmol, and then decreased (Fig. 3B). Thus, 7.5 pmol of

aptamer–primer and 5.0 pmol of padlock sequences were

selected in further studies.
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Figure 4 CL intensity vs. concentration of RCA reagents.

Experimental conditions: 75 ng of PDGF-BB antibody, 7.5 pmol

of aptamer–primer, 5.0 pmol of padlock, 2.5 pmol of biotinylated

probe, 1:5000 dilution of SA–HRP and 10 pM PDGF-BB. A,

25 U of polymerase, 100 mM of dNTPs; B, 1 U of ligase and

100 mM of dNTPs; C, 1 U of ligase and 40 U of polymerase. The

detection procedure was carried out as described in the Experi-

mental Section 2.4.
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3.2.3. Dependence of CL intensity on the amount of RCA

reagents

The amounts of ligase, polymerase and dNTPs also affected

the CL signal in some extent. As shown in Fig. 4, CL intensity

started to increase rapidly as the concentration of ligase

increased from 0 to 1 U, and reached a maximum with 1 U

of ligase. Further increase in the amount of ligase to 10 U

caused a decrease in the CL intensity. Thus, 1 U of ligase was

selected for subsequent experiments. Similarly, 40 U of poly-

merase and 100 mM of dNTPs were selected respectively in

further studies.

3.2.4. Dependence of CL intensity on the amount of report

reagents

The amounts of biotinylated probe and SA–HRP were two

vital factors for the amplification of CL signal. Therefore,

these parameters were also investigated. As shown in Fig. 5,

the range of 0.5–10.0 pmol of biotinylated probe and 1:1000 to

1:15 000 dilution of SA–HRP were studied for the optimal

condition. Finally, the maximum CL intensity was obtained

by using 7.5 pmol of biotinylated probe and 1:7500 dilution of
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Figure 5 CL intensity vs. the concentration of biotinylated probe

and SA–HRP. Experimental conditions: 75 ng of PDGF-BB

antibody, 7.5 pmol of aptamer–primer, 5.0 pmol of padlock,

1 U of ligase, 40 U of polymerase, 100 mM of dNTPs and

10 pM PDGF-BB. A, 1:5000 dilution of SA–HRP; B, 2.5 pmol

of biotinylated probe. The detection procedure was carried out as

described in the Experimental Section 2.4.
SA–HRP, which were thus employed for the subsequent

experiments.
3.2.5. Analytical performance with or without RCA

Under the above-optimized experimental conditions, the

quantitative behavior of the method was assessed by monitor-

ing the dependence of the CL intensity on the concentration of

the target PDGF-BB. As shown in Fig. 6, a linear relationship

was obtained between the CL intensity and the amount of

PDGF-BB in the range of 10 fM–1 nM (lgI¼0.836 lgCþ0.928,
0
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0
lg [PDGF (fM)]

lg
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Figure 6 Log–log calibration data for PDGF-BB by using the

protocol with RCA (up) and without RCA (down). The detection

procedure was carried out as described in the Experimental

Section 2.4.

Table 2 Comparison of sensitivity for different aptamer-

based assays for PDGF-BB.

Analytical method Label Detection

limit

Fluorescence Cy3 0.4 nM [25]

Fluorescence FAM and

DABCYAL

6.8 pM [26]

Fluorescence Fluorescein 110 pM [42]

Fluorescence TOTO 0.1 nM [44]

Fluorescence SYBR-green 0.1 ng/mL

[45]

Fluorescence Dyes 10 ng/mg [46]

Electrochemical AP 10 fM [27]

Electrochemical Methylene blue 63 pM [28]

Electrochemical Fc 1.0 pg/mL

[43]

Densitometry Gold nanoparticles

(AuNPs)

83 aM [20]

Diffractometric Microbeads 10 pM [23]

Photoluminescence Au-nanodots NPs 10 pM [47]

Colorimetric AuNPs 35 nM [48]

Capillary

Electrophoresis

FAM 50 pM [49]

Luminescence [Ru(phen)2(dppz)]
2þ 1.0 nM [50]

Chemiluminescence HRP 10 fM (this

work)
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Figure 7 Selectivity of the proposed strategy. Experimental

conditions: 75 ng of PDGF-BB antibody, 7.5 pmol of aptamer–

primer, 5.0 pmol of padlock, 1 U of ligase, 40 U of polymerase,

100 mM of dNTPs, 7.5 pmol of biotinylated probe, 1:7500 dilution

of SA–HRP, 100 pM PDGF-BB and 1 nM of IgA, IgG, IgM and

thrombin. The detection procedure was carried out as described in

the Experimental Section 2.4.
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R2
¼0.997, where I is the CL intensity and C is the concentra-

tion of target PDGF-BB). And the detection limit was

estimated at 10 fM. For comparison, the performance of

aptamer-based sandwich assay without RCA was also studied.

A good linear correlation was presented between the CL

intensity and the concentration of PDGF-BB in the range of

10 pM–10 nM (lgI¼0.879 lgC�0.446, R2
¼0.998). A 1000-fold

enhancement of sensitivity was achieved based on RCA

amplification. Thus, it was demonstrated that RCA is power-

ful for signal amplification. Furthermore, our CL protocol

allowed detection of PDGF-BB down to fM level and was

competitive with other aptamer-base PDGF-BB assays as

reported previously (Table 2).

3.2.6. Detection specificity

Sensitivity and specificity were the two critical factors for a

successful assay system. In the proposed strategy, the sensi-

tivity of our assay compared favorably with previous efforts.

The detection specificity was also determined and evaluated by

the aptameric recognition function. As shown in Fig. 7,

compared with 100 pM PDGF-BB, the CL intensity from

1 nM of the non-target proteins (IgG, IgA, IgM, interferon

and thrombin) was low. It was demonstrated that the CL

signal was specifically triggered by the aptamer/target binding.
4. Conclusion

A new CL platform for the determination of protein has been

demonstrated by the combination of the aptamer as the

identification unit and RCA as the amplification unit. This

aptamer-RCA based CL technique has significant advantages,

including improved sensitivity and high selectivity. The detec-

tion limit of this novel protocol was demonstrated down to

10 fM, which is a 1000-fold improvement compared to non-

RCA assay, and also comparable to or even better than what

was provided by most previous reports. Furthermore, our

protocol might discriminate the target protein from 10-fold
concentration of other proteins. In summary, this aptamer-

RCA based CL technique possesses great potential to serve as

the PDGF-BB diagnostic tool in clinical test by virtue of its

sensitivity and selectivity. In addition, this new approach can

also be easily extended to the detection of other biomarkers

relating to other diseases, such as IgE or thrombin, etc.
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