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Abstract

The development and progression of cardiovascular disease (CVD) can mainly be attributed to the narrowing of blood
vessels caused by atherosclerosis and thrombosis, which induces organ damage that will result in end-organ dysfunction
characterized by events such as myocardial infarction or stroke. It is also essential to consider other contributory factors to
CVD, including cardiac remodelling caused by cardiomyopathies and co-morbidities with other diseases such as chronic
kidney disease. Besides, there is a growing amount of evidence linking the gut microbiota to CVD through several metabolic
pathways. Hence, it is of utmost importance to decipher the underlying molecular mechanisms associated with these
disease states to elucidate the development and progression of CVD. A wide array of systems biology approaches
incorporating multi-omics data have emerged as an invaluable tool in establishing alterations in specific cell types and
identifying modifications in signalling events that promote disease development. Here, we review recent studies that apply
multi-omics approaches to further understand the underlying causes of CVD and provide possible treatment strategies by
identifying novel drug targets and biomarkers. We also discuss very recent advances in gut microbiota research with an
emphasis on how diet and microbial composition can impact the development of CVD. Finally, we present various biological
network analyses and other independent studies that have been employed for providing mechanistic explanation and
developing treatment strategies for end-stage CVD, namely myocardial infarction and stroke.
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Introduction
Cardiovascular disease (CVD), specifically coronary heart dis-
ease and stroke, remain the leading cause of death worldwide
accounting for a combined annual total of over 17 million deaths
[1]. A significant number of these deaths are linked to chronic
kidney disease (CKD) with ∼8.5% of global heart disease deaths
and ∼8% of stroke-related deaths attributable to decreased kid-
ney function [2]. Most CVD-related complications are caused
by ischemic CVD [3, 4], which is associated with the accumu-
lation of fat inside the arteries (atherosclerosis) coupled with
an increased risk of blood clots (thrombosis). Consequently, the
rupture of atherosclerotic plaques and the formation of blood
clots are the dominant cause of myocardial infarction, heart
failure and stroke [5, 6]. Besides, heart failure can also occur
through non-ischemic CVD, characterized by adverse cardiac
remodelling and cardiomyopathies that mainly occur through
left ventricular cavity remodelling [7], thus further emphasizing
the complexity of CVD. The progression of these CVDs can pri-
marily be attributed to disturbances in both global and cardiac-
specific metabolism [8]. Furthermore, specific CVD components
are influenced by genetic and epigenetic factors, whether it be
mutations causing adverse cardiac remodelling in heart failure
[9] or modifications that affect the susceptibility of the arterial
wall to plaque formation [10].

Although the prevalence of CVD continues to significantly
increase worldwide, a detailed understanding of the molecular
mechanisms associated with the underlying causes of CVD
is still lacking in some areas, particularly for non-ischemic
CVD. To rectify this, extensive efforts and resources have been
placed into systems biology approaches, which attempt to
further understand the underlying conditions of CVD to improve
early detection and treatment of CVD. The recent advances
in high-throughput technology have enhanced researchers’
ability to analyse whole genomes, transcriptomes, proteomes,
metabolomes and metagenomes, thus facilitating the integrative
analysis of multi-omics data to identify causal genes and
reveal underlying molecular mechanisms that are involved
in the progression of cardiovascular events [11]. In particular,
the development of genome-scale metabolic models (GEMs)
allows for describing molecular variation and quantifying flux
through metabolic pathways in different physiological systems
[12, 13]. To date, several GEMs have been developed to further
understand the heart-specific metabolic processes in health and
disease [14–16]. Moreover, this wealth of data has highlighted
the diverse pathological aspects of CVD, which will be vital
in facilitating risk stratification of patients and optimizing
intervention to prevent CVD progression.

There is a growing body of literature supporting the notion
that specific metabolites secreted by the gut microbiome can
increase cardiovascular risk based on recent studies associating
elevated levels of lipopolysaccharides (LPS) [17], gammabutyro-
betaine [18], trimethyllysine [19] and uremic toxins including
indoxyl sulphate, indole-3-acetic acid and P-Cresyl sulphate
[20], with increased risk of CVD events. Most notably, there
is a substantial amount of evidence linking elevated levels of
the gut microbe-derived trimethylamine-N-oxide (TMAO) to
CVD [18, 21–23] and CKD [24] through a mechanism involving
oxidation of trimethylamine (TMA) to TMAO in the liver.

The subsequent circulation of TMAO in the bloodstream
can induce mechanistic changes in several different cell
types including (i) increased levels of scavenger receptors in
macrophages which alter the cell phenotype and result in
the production of foam cells, (ii) increases in NFκB activation,
adhesion proteins and NLRP3 inflammasome activation coupled
with a decrease in nitric oxide production in endothelial
cells (ECs) and (iii) platelet hyper-reactivity through increased
levels of Ca2+ release. Furthermore, these studies showed that
the microbial production of TMA is strongly dependent on
dietary precursors, and hence it is a combination of microbial
metabolism and dietary interactions that are involved in
the development of CVD. It has also recently been shown
that the gut microbiota composition can alter various serum
metabolite concentrations that are significantly associated with
coronary artery disease (CAD) severity [25]. Hence, integrating
metagenomics with other omics approaches (i.e. genomics,
transcriptomics, proteomics, metabolomics) to study host-
microbiome interactions will allow for advanced panomics
enabling deep phenotyping that could prove invaluable in
developing precision medicine for the treatment of CVD [26].

In this review, we first summarize how systems biol-
ogy approaches have been applied towards mechanistically
explaining the different underlying causes of CVD including
atherosclerosis, thrombosis, adverse cardiac remodelling and
CKD. We mainly focus on studies that identify biomarkers for
stratification and promote the development of personalized
treatment strategies based on a patient’s unique phenotype.
Secondly, we assess the current state of gut microbiome research
in explaining CVD pathophysiology accounting for the effect
of diet. Moreover, we review the application of multi-omics
analyses to the gut microbiota and discuss identification of
gut microbe-derived metabolites that have been proposed
as biomarkers for major adverse cardiac events. Finally, we
comprehensively review the application of integrated multi-
omics systems biology methods for end-stage CVD mainly
characterized by CAD and ischaemic stroke.

Multi-omics approaches towards explaining
the underlying causes of CVD
Atherosclerosis

Atherosclerosis is characterized by artery blockages that arise
from plaque deposits consisting of cholesterol, lipid proteins,
cellular waste products and fibrin [27]. The prerequisite for
plaque formation is the presence of low-density lipoprotein
(LDL)-cholesterol, particularly in oxidized form [28]. Over the
past 50 years, the progression of atherosclerosis has been
linked to a multitude of risk factors, including hyperlipidaemia,
behavioural, metabolism-related, and genetic risk factors,
together with systemic changes in the body (Figure 1A). Previous
research centred around the observation of related clinical
variables and autopsy studies showed that behavioural risk
factors, including physical inactivity [29, 30], unhealthy diet
[31, 32], stress, and alcohol and tobacco abuse [33, 34], play a
significant role in the progression of atherosclerosis. Moreover,
the aforementioned risk factors cause alterations in metabolism
[35–37] related to the onset of hypertension, obesity, diabetes and
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hyperlipidaemia, which are also risk factors for atherosclerosis.
In addition, it has been shown that genetic factors [38, 39],
such as elevated levels of apolipoprotein B (apoB)-containing
lipoproteins and to a lesser extent increased levels of LDL
and very-LDLs, are associated with the disease, together with
increased blood pressure, decreased high-density lipoproteins
levels and family history. Considering several risk factors
exist for atherosclerosis, there has been an increased focus
on discovering pleiotropic effects of variants in lipoprotein
metabolism genes with a recent phenome-wide association
study (PheWAS) identifying two LDL receptor variants as having
several significant lipid-related phenotype associations [40].
Furthermore, several studies have connected atherosclerosis
with systemic inflammatory changes in the body, such as
the increase of pro-inflammatory proteins in adipose [41]
and liver [42]. Specifically, in adipose tissue, it has been
shown that an increase in free fatty acid levels led to the
increase of multiple lipoproteins that cause lipid deposits in
the arteries.

The complex aetiology and systemic effects of atheroscle-
rosis, combined with its severity, has contributed towards
its current status as one of the most studied diseases.
Recent advancements in high-throughput sequencing and
systems biology have allowed for a greater understanding
of the underlying molecular mechanisms that contribute to
atherosclerosis development and progression. As previously
discussed, atherosclerosis is associated with genetic factors, and
this has resulted in several genome-wide association studies
(GWAS) with subsequent identification of multiple loci that are
associated with atherosclerosis [43–45]. Moreover, studies with
transcriptomics technologies have provided an overview of the
global transcriptome map of the disease and revealed important
candidate biomarker genes, biological processes, and pathways
related to the disease in several species [46–49]. For example,
an in vitro study detailing the profile and functions of long non-
coding RNAs (lncRNA) and their association with atherosclerosis
revealed the molecular mechanism surrounding ANRIL’s pro-
atherogenic effect, which was validated in primary human
cells from patients [50]. Furthermore, circular non-coding
RNA of this same gene has been shown to induce processes
that lead to apoptosis and inhibition of cell proliferation in
human vascular cell and tissues, which are critical cellular
functions closely related to atherosclerosis [51]. A separate study
showed 180 differentially expressed lncRNA when comparing
healthy samples with those from atherosclerosis-induced
ischemic stroke patients, with SCARNA8 and SNRPN-2 being the
most significant differentially expressed lncRNAs between the
two sample types. In addition to tissue-level transcriptomics
analysis, single-cell maps of atherosclerotic plaques have
recently been built [52].

Other omics approaches, including proteomics [53, 54],
lipidomics [55, 56] and metabolomics [57, 58], have been lever-
aged to provide overall disease profile and reveal possible early-
stage biomarkers that can be used to further our understanding
regarding the molecular mechanism of the disease (Figure 1A).
This includes a very recent proteomics-based assessment which
identified NPC2 and IGFBP7 as novel candidate biomarkers for
atherosclerotic aortic aneurysm in humans [54]. In addition, a
large-scale metabolomics study revealed 42 significantly altered
metabolites in coronary atherosclerosis patients compared
to controls, with nine of these metabolites combinatorically
identifying the early stage of the disease with high accuracy
(AUC = 0.890) [58] and belonging to a phospholipid, fatty acid,
fructose and fucose, and tryptophan metabolism.

The continuous frictional force of blood flow across the vas-
cular endothelium surface results in hemodynamic stress and
pressure changes throughout each cardiac cycle. This interaction
between the endothelium and fluid shear stress (FSS) is essential
in maintaining vascular homeostasis and in protecting against
or promoting atherosclerosis. Sustained unidirectional laminar
shear (US) forces upregulate expression of genes and proteins
in the endothelium that are protective against atherosclerosis.
In contrast, oscillatory shear (OS) forces result in atherogenesis
through the upregulation of EC genes and proteins that promote
oxidative conditions and inflammatory states in the artery wall
[59–61]. It is also now commonly accepted that FSS induces
intimal hyperplasia and increased retention of subendothelial
accumulation of apoB-containing lipoproteins [62, 63].

The study of EC mechanobiology mainly takes place through
in vitro experiments using techniques such as microarray [64]
and next-generation sequencing [65], thus enabling a global
view of the multiple signalling events occurring in response to
US or OS (Figure 1B). For example, experimental data gleaned
from a systematic time-series RNA-sequencing dataset was used
for pathway analysis and construction of tissue factor (TF)-
to-gene networks with the results providing insights into the
dynamics of functional response of ECs to shear stress over
time [65]. This included upregulation of many genes in several
pathways involving inflammation, oxidative stress, cell cycle
and angiogenesis, with initiation and termination of pathway
upregulation occurring at different time points. For example,
several early response genes involved in inflammation (IL8, MCP-
1, SELE and VCAM1) showed changes during 2–9 h following the
activation of TF nuclear factor-κB (NF-κB) by upregulation of
genes contributing to reactive oxygen species production by 2 h.
Hence, this combined gene-TF-phenotypic network was able to
identify transcriptional regulation mechanisms for cellular func-
tions that lead to defined endothelial phenotypes. Consequently,
this provided insights into the causality of mechanisms leading
to stress responses.

Further high-throughput, omics-based approaches include
studies of shear stress regulation of the endothelial proteome
[66] and DNA methylome [67]. Interestingly, flow-regulated
proteins included several transforming growth factor-β (TGFβ)
superfamily members, angiopoietin 2 (ANG2), vascular endothe-
lial growth factor (VEGF) [68] and Notch receptors [69]. A previous
PheWAS also found that a single nucleotide polymorphism
in the NOTCH2 gene was associated with increased risk
of hypertension [70]. The regulation of genome-wide DNA
methylation patterns by blood flow has been shown in pig
ECs with differentially methylated regions being associated
with oxidative stress, thus implicating this process in early-
stage atherogenesis [67]. Flow has also been shown to alter the
methylation of homeobox family genes in both mouse and pig
models [67, 71]. To summarize, these different omics studies
have revealed that FSS regulates various molecules that control
diverse physiological processes, hence providing invaluable
clues to the molecular mechanisms underlying atherosclerosis.

The large data sets produced by omics approaches can
also be integrated to increase the power towards discovering
novel molecules and pathways, such as the integration of
microarray flow data with a bisulfite sequencing genome-
wide methylation array, which identified genes downregulated
by OS and containing hypermethylated promoter regions
[71]. Of the identified genes, HOXA5 and KLF3 encode TFs
containing cAMP response elements, supporting the notion
that these loci’s methylation status could be acting as a
mechanosensitive master switch in gene expression. These
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Figure 1. Schematic pathway for systems biology studies that utilize different omics data (genomics, transcriptomics, proteomics and metabolomics) to (A) further

elucidate the complex aetiology and systemic effects arising from different tissues (heart, liver and visceral adipose) that contribute towards the development of

atherosclerosis, and (B) investigate endothelial cell responses to flow and determine how different fluid shear stress states can promote either an ‘atheroprotective’

or ‘atheroprone’ state.

novel findings demonstrated that OS controls epigenomic DNA
methylation patterns, which alters endothelial gene expression
and promotes atherosclerosis. Future studies should explore the
dynamics of proteins from distinctly expressed genes in shear,
which would likely produce novel insights into mechanisms of
atherosclerosis. Current limitations in the field:

Platelet signalling and thrombosis
In addition to ECs and circulating coagulation proteins, platelets
are crucial mediators of thrombosis and vascular haemostasis
with the latter process maintaining regulation of blood flow
and vascular integrity. Pathological factors may overwhelm
normal haemostasis, leading to uncontrolled clot formation and
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blood vessel occlusion [72]. Traditional epidemiological studies
identified several arterial thrombotic risk factors, including
hypertension, high LDL-cholesterol levels and smoking. Family
cohort studies have also identified hereditary thrombophilia as
an additional risk factor associated with an increased risk of
arterial thromboembolism [73].

Furthermore, a meta-analysis of cohort studies revealed that
mean platelet volume (MPV) might be a useful prognostic marker
in patients with CVD with elevated MPV values found in patients
with acute MI or coronary angioplasty [74]. The human platelet
proteome contains ∼4000 unique proteins with the majority of
these defined in a protein interaction network (PlateletWeb) [75]
consisting of 13 652 interactions and 1704 detected phosphory-
lation events. Besides, a platelet GEM [76] has been constructed
to aid further understanding of pathophysiological conditions
through data-driven, systems analysis of platelet metabolism.
Numerous genetically modified mouse models have been
previously developed to explore genotype/phenotype linkages
with regards to clot formation with defects in various platelet
receptors, and membrane proteins (e.g. GPVI [glycoprotein VI]
and P2Y12 [P2Y purinergic receptor, type Y12]) found to slow and
reduce clot growth whilst enhancing embolization [77]. There
have been several applications of transcriptomics approaches
towards understanding platelet responsiveness, including a
previous study which examined individual heterogeneity in
platelet response to ADP and collagen-related peptide with
63 different genes being implicated in influencing platelet
responsiveness [78]. Furthermore, an association study of several
of these genes showed a putative association with myocardial
infarction for COMMD7 (COMM domain-containing protein
7) and a highly significant association for LRRFIP1 (leucine-
rich repeat (in FLII) interacting protein 1). Both genes were
positive regulators of thrombus formation with proteomics
analysis indicating LRRFIP1 functions as a component of the
platelet cytoskeleton and interacts with actin-remodelling
proteins Flighless-1 and Drebrin [78]. A separate population
study [79] assessing platelet hyperresponsiveness to arachidonic
acid, ADP and PAR1/4-activating peptides through integrated
plateletomics revealed many mRNAs and microRNAs (miRNA)
which were differentially expressed by age and gender. Networks
of miRNAs targeting mRNAs were identified for both categories,
and the inverse relationship in these RNA pairs suggested that
miRNAs regulate mRNA levels based on age and sex, hence
implying that future platelet RNA association studies must
account for these variables.

The multiscale and hierarchical nature of thrombosis
requires a systems biology approach that can describe platelet
and plasma function through events including platelet mem-
brane receptor function, intracellular signalling and assembly
of extracellular processes occurring in plasma or on platelet
membranes [80]. There have been successful attempts in silico
to model platelet signalling through kinetic models, including
a full bottom-up model of platelet intracellular metabolism
that incorporated phosphoinositide and calcium regulation
[81]. This model accurately predicted steady-state resting
concentrations and transient increases in intracellular calcium
and inositol trisphosphate in response to ADP. Furthermore,
several kinetic models of protease cascades have been developed
to predict blood coagulation, the most widely used being
the Kuharsky–Fogelson model [82] which considers platelet
activation, deposition and mass transfer of reactive species.
This model was also able to confirm the exceptional sensitivity
of coagulation to initial conditions of tissue factor levels
through experimentally validated [83] predictions of threshold

concentrations of surface tissue factor that triggered clotting in
human blood.

The aforementioned bottom-up signalling approaches were
applied to individual receptor pathways and did not address
signalling through combinatorial and time-dependent activa-
tors. Hence, another approach is required to capture the full
process of platelets forming a core region through interaction
with thrombus and collagen, with subsequent platelets in the
growing thrombus shell being regulated by ADP and throm-
boxane signalling [84]. This integration of these numerous sig-
nals in human platelets (Figure 2A) was captured using a high-
throughput assay that measured intracellular calcium levels
in response to pairwise agonist scanning (PAS) and predicted
cellular signalling responses to combinatorial stimuli through
the training of a neural network (NN) model (Figure 2B) for pre-
diction of entire platelet response space [85] (Figure 2C). This NN
model could then successfully be applied to predict responses
to sequential additions of agonists and ternary stimulation with
experimental validation in a clinical setting confirming predic-
tions such as a high-dimensional thrombotic risk at high throm-
boxane A2/prostaglandin I2 ratio consistent with the known
cardiovascular risks of COX2 inhibitors [86]. The PAS approach
in this study was limited to six agonists and further expansion
of this PAS set would be required to map a major portion of
the entire platelet response space by including agonists such as
epinephrine and nitric oxide donors.

A more complete systems biology analysis of blood clotting
requires comprehensive models which must account for
extreme sensitivity to initial conditions, strong autocatalytic
feedback and non-linearity of kinetic rates in order to success-
fully predict system outcomes that lead to thrombosis [87].
Patient-specific NN models of platelet activation allowed for
larger scale simulations of thrombosis under flow through
embedment of the NN model into a multiscale model [88]
(Figure 2D) which incorporated three further sub-models: lattice
Boltzmann, finite element method and lattice kinetic Monte
Carlo [89]. These sub-models mentioned above accounted for
changes in blood flow with increasing platelet deposition
inside the blood vessel, the release of soluble platelet agonists
(ADP and TXA2) and the platelets’ motion within the blood
flow, respectively. This enabled multiscale prediction of donor-
specific clotting events under different flow and pharmacologic
modulation with a predictive accuracy of the simulations
validated through real-time platelet deposition measurement
using microfluidic devices. These findings offered a crucial
breakthrough in describing how a myocardial infarction would
progress based on a patient’s unique platelet phenotype. It was
the first multiscale model approach that made donor-specific
predictions of platelet function under flow in the presence of
agonists and pharmacologic modulators of clinical relevance. For
example, one of the study donors was insensitive to the COX-1
inhibitors aspirin and indomethacin under flow conditions with
this trait exactly predicted in the multiscale modelling. Future
studies should continue on this focus of developing tools to
define platelet variations between patients and stratify them
according to risk as determined by the relationship of platelet
phenotype to prothrombotic events.

Cardiac remodelling

Mechanical changes in myocardial cells and the myocardial
dysfunction that arises from such changes can activate left ven-
tricular cavity remodelling serving as a prelude towards heart
failure and ultimately multi-organ damage. The application of
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Figure 2. (A) Several signalling pathways in platelets converge on intracellular calcium release. (B) A dynamic neural network is used to train platelet response to

combinatorial agonist activation. An input layer consisting of agonist concentrations is introduced to the 2-layer network at each time point and processing layers

integrate input values with feedback signals for prediction of [Ca2+]i at the next timepoint. (C) Pairwise agonist synergy scores reflect gains or losses in calcium

response due to agonist cross talk and are calculated for both experimental and predicted time-course traces to assess efficiency of the neural network. (D) Multiscale

model of platelet deposition and thrombus formation under flow—this requires simultaneous solution of (1) intracellular platelet state ([Ca2+]i) and release reactions

(R) for ADP and TXA2 calculated by Neural Network, (2) the instantaneous velocity field over a complex evolving platelet boundary �(t) calculated by Lattice Boltzmann,

(3) concentration fields of ADP and TXA2 calculated by Finite Element Method, and (4) all platelet positions and attachment/detachment by Lattice Kinetic Monte Carlo.

systems biology in this area is essential in defining the early
mechanical stresses and relevant functional modules to eluci-
date ventricular remodelling and the complex pathophysiology
of heart failure [90]. The most common type of ventricular
remodelling is dilation of the left ventricle with the associated
disease termed dilated cardiomyopathy (DCM) and origins of
cause not yet known. Hypertrophic cardiomyopathy (HCM) is a
genetic disease that causes the left ventricle walls to become
thicker and contract harder through mutations in contractile
sarcomeric proteins. The established causal genes for HCM,
including MYH7 (myosin heavy chain 7) and MYBPC3 (Myosin
Binding Protein C3), account for ∼=60% of HCM cases meaning
the causal genes have not yet been identified in ∼=40% of HCM
patients [91]. A multitude of systems biology approaches have
been employed to further understand the underlying molecular
mechanisms of these two conditions.

There have been several studies towards explaining the
aetiology of DCM, including a recent transcriptome analysis of
human heart failure that revealed dysregulated cell adhesion in
DCM [92]. Additionally, the use of animal models has provided
new insights into mutations responsible for the onset of
DCM, including a mutation in the Integrin-linked kinase gene
in zebrafish [93] that was later described in patients with
DCM [94]. Another successful application of animal models
in this area includes a time-course mouse model of DCM

which showed perturbations in apoptosis, integrin and MAPK
(mitogen-activated protein kinase) signalling at the early- and
mid-disease stage of DCM through global proteomic profiling
and enrichment maps [95]. Further human-based studies have
employed network-based comparative approaches [96, 97] that
integrated DCM related gene expression profiles with protein–
protein interaction data and biological function annotations to
produce condition-specific co-expression networks (Figure 3A).
A comparative analysis was then employed to extract DCM
exclusive subnetworks that could be used to classify normal and
disease samples (Figure 3B). This approach revealed dynamic
functional modules corresponding to muscle contraction and
organ morphogenesis that are closely related to heart failure
and hence provided new insights into the cause of DCM.

The diverse clinical and pathologic phenotypes in HCM can
be partially explained by the upregulation of various genes
[98]. Population heterogeneity undermines efforts to uncover
significant HCM-associated genes, and this has recently been
addressed using a personalized multi-omics approach that
identified Hes1 (hairy and enhancer of split-1) as a regulator
of cardiac hypertrophy [99]. In an analogous manner to
DCM, the complex phenotype associated with HCM is only
partly explained by individual genetic variants, and more
recent studies have focused on proteomic analysis of human
myocardial tissue to explore the postgenomic phenotype [100].
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Figure 3. The integration of omics data and application of systems biology approaches towards providing mechanistic insights on heart failure. (A) Formation of a

condition-specific co-expression network through integration of gene expression profiles with protein–protein interaction data and biological function annotations

enable the identification of functional modules representative of different biological processes which are relevant towards the progression of heart failure. (B) A

comparative analysis between identified functional modules can reveal dynamic variations in the modules between healthy and disease states which can be used

to classify normal and disease samples, thus implying plausible molecular mechanisms that are involved in the progression of heart failure. (C) Construction of a

cardiomyocyte metabolic model (iCardio) through integration with protein data and manual curation from metabolic tasks. Functional metabolic changes are identified

from gene expression data using metabolic tasks. (D) The application of GPR rules in determining reaction weights based on gene expression data, thereby assigning

the expression of one gene as governing the reaction. The selected genes can differ between different datasets while producing the same net result, as seen here with

a statistically significant decrease in the conversion of arginine to nitric oxide.

The myocardial proteome of HCM revealed dysregulation of
structural and metabolic proteins and raised lumican levels in
HCM hearts, which provides further insight into the myocardial
fibrosis characteristic of this disease. This finding was in
agreement with an earlier study that utilized mouse models to
show increased lumican production altering molecules essential
for cardiac remodelling and fibrosis in cardiac fibroblasts [101].

Metabolic alterations that induce changes in substrate
utilization have also been noted in diseased states associated
with cardiac remodelling, such as the remodelling of glucose
metabolism preceding pressure overload-induced HCM [102].
A recently developed kinetic model, CardioGlyo, was utilized
to study the metabolic control of myocardial glycolysis and
mathematical simulations revealed that reduction of phos-
phoglucose isomerase (PGI) activity directly affects myocyte
growth through glucose-6-phosphate (G6P) accumulation, which
is correlated with increased activation of the mTOR (mammalian
target of rapamycin) signalling pathway that is involved in
structural remodelling of the heart [103]. This association may be
explained by G6P being redirected into the pentose phosphate
pathway upon PGI inhibition, thus generating high amounts
of NADPH (nicotinamide adenine dinucleotide phosphate,
reduced), which has been linked to mTOR activation [104, 105]. A
more comprehensive overview of metabolism in cardiomyocytes
has been captured in models [14, 15] that utilized the global

human metabolic network, termed Recon1, as a template
when building cardiomyocyte-specific models. However, human
models have greatly expanded since Recon1 to enable a more
comprehensive description of human metabolism, and this has
been captured in a recently published human GEM, termed iHsa
[106], which was built in parallel as an expansion of the Human
Metabolic Reaction 2.0 database [107]. This GEM offered the
opportunity to create a more comprehensive cardiomyocyte-
specific metabolic model (Figure 3C), termed iCardio [108], built
using iHsa and data from the Human Protein Atlas (HPA) [16].
The model was integrated with multiple heart failure omics
datasets to identify standard shifts in metabolic functions that
are associated with heart failure, and this approach identified
decreased NO (Figure 3D) and Neu5Ac synthesis as common
metabolic markers of heart failure across transcriptomics
datasets [108]. The GEM approach can also be utilized to identify
causal factors for cardiac remodelling whether it is loss of
function mutations in cardiovascular-related genes altering
metabolic fluxes [109] or different diets leading to profound
changes in the cardiac mitochondria, which may ultimately
result in cell damage and heart failure [110].

Chronic kidney disease
The high comorbidity of CKD and CVD has been well estab-
lished with a substantial number of CKD mortalities having
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registered cardiovascular problems; whilst CVD mortalities in
stage 3 and stage 4 CKD patients are 2-fold and 3-fold higher
than controls, i.e. patients with normal renal function, respec-
tively [111, 112]. Both diseases also share numerous common
risk factors, such as smoking, hypertension, abnormal mineral
metabolism and vascular calcification, increased inflammation,
sympathetic nervous system overactivity, hypertension, obesity
and diabetes mellitus [113–115]. In particular, hypertension may
occur in the early stages of CKD and lead to the onset of more
severe conditions.

Several systems biology studies have shown a system-wide
linkage between the kidney, heart and other internal organs.
For example, an earlier study applied an interactome analysis
approach (Figure 4A) and identified leptin, tumour necrosis fac-
tor, interleukin-6 (IL-6) and parathyroid hormone as candidate
biomarkers for CVDs and bone metabolism disorders in CKD
patients [116]. Besides, collagens (COL1A1, COL1A2), fibronectin,
TGF-β or components of fibrinogen (FG-α, FG-β, FG-γ ) were
components of highly connected subnetworks of proteins asso-
ciated with CKD and CVD. A separate systems biology approach
investigated the role of fibroblastic growth factor (FGF23) in CKD
and on the cardiovascular system, including possible crosstalk
with the renin-angiotensin system (RAS) [117]. This study was
motivated by previous findings that identified increasing cir-
culating levels of fibroblastic growth factor 23 (FGF23), which
regulates phosphate and bone metabolism, as a decisive inde-
pendent risk factor for both CKD and CVD [118]; whilst the RAS
is activated in CKD [119] and contributes to increased cardiovas-
cular mortality and renal failure progression. Ingenuity Pathway
Analysis performed on genes in the FGF23 and RAS endocrine
networks showed that multiple interconnections exist between
the respective networks [117].

The most common cause of CKD is diabetes meaning the
linkages between kidney and heart involving energy metabolism
should be considered [120]. For example, plasma mannose lev-
els have been associated with type 2 diabetes (T2D), CVD, and
the onset and progression of diabetic kidney disease [121, 122].
A comprehensive human kidney metabolic model was built
[123] by integrating proteome data from the HPA [124] with
transcriptome data from the Gene Expression Omnibus [125]
and applying a model-building algorithm [126, 127] that used
Recon1 as a template to select only those genes that are rel-
evant to kidney (Figure 4B). This model showed upregulated
metabolic processes in the kidney that are tightly linked to dia-
betes, including energy metabolism, extracellular transport and
lipid metabolism. Furthermore, flux variability analysis of dif-
ferentially expressed genes for diabetic kidney disease revealed
several essential genes in the disease process. This included
downregulation of lipoprotein lipase, an enzyme that breaks
down triglycerides [128], with the strong possibility of this obser-
vation being partially responsible for elevated levels of circu-
lating triglycerides conferring increased risk of CVD. Besides,
there was upregulation of nicotinamide N-methyltransferase,
an activity change associated with obesity and T2D [129]. More
recently, an alternative molecular process model was devel-
oped to predict the progression of renal function decline in T2D
patients using systems biology-derived biomarkers [130]. This
approach identified a small set of serum protein biomarkers that
enhanced the prediction of renal function loss in such patients.

Future work should continue to focus on gaining further
understanding of the ‘kidney-heart’ axis through a systems biol-
ogy approach that posits circular communication loops amid the
heart and kidney with the notion that perturbation at any level
can propagate dysregulation throughout the circuit. It may also

be beneficial to include the gut microbiome in this axis owing to
the importance of the gut as a potential contributor to CKD and
CVD-related complications [131], the latter of which we discuss
in much more detail in this review.

Role of the gut microbiota in CVD

The gut microbiota has emerged as a novel regulator of cardio-
vascular function and disease. Dysbiosis in the gut microbiome
increases circulating microbial metabolites and bacterial struc-
tural components that may modify the function of metabolically
relevant tissues and facilitate the development of CVD [132].
In particular, gut dysbiosis has been implicated in the pathol-
ogy of numerous disturbances to the cardiovascular system,
including atherosclerosis [133, 134], thrombosis [135], arterial
hypertension and vascular dysfunction [136]. There are a variety
of external factors that affect the composition and function of
the gut microbiome, and these include most of the major risk
factors for CVD, i.e. ageing, obesity, an inactive lifestyle and
certain dietary patterns. From these external factors, the dietary
pattern is widely accepted as one of the most critical factors in
determining gut microbiota composition and function [137–140].
Hence, several studies have investigated the effects of dietary
patterns in altering the gut microbiome and modifying signalling
events that mediate CVD downstream of gut dysbiosis.

There is evidence that dietary interventions may improve
cardiovascular health and this has been confirmed through
the application of multi-omics approaches (Figure 5A). For
example, a diet high in fibre was associated with changes in
the gut microbiota that protected against CVD development,
including a decreased ratio of Firmicutes to Bacteroidetes, and
an increased prevalence of Bacteroides acidifaciens [141]. The
favourable effect of the high-fibre diet was also explained by an
increased generation and distribution of acetate, with this short-
chain fatty acid affecting several molecular changes that are
associated with improved cardiovascular function. Besides, the
cardiac transcriptome revealed that a high-fibre diet or acetate
supplementation resulted in the upregulation of genes (Tcap
[titin-cap] [142] and Timp4 [tissue inhibitor of metalloprotease 4]
[143]) that are strongly considered to have a preventive role for
heart disease; whilst EGR1 (early growth response protein 1), a
master cardiovascular regulator [144–146], was downregulated
in both the heart and kidney. Collectively, this data suggests that
acetate production is an essential mechanism for regulation
of cardiovascular function by the gut microbiota, and provide
mechanistic insight into how dietary fibre protects against the
development of CVD. These findings are supported by increasing
evidence that insufficient consumption of dietary fibre results
in a loss of bacterial species in the gut microbiome [147].

Alternatively, the effects of an animal-based protein diet have
also been examined through multi-omics analyses (Figure 5A).
Here, multiple studies [148–150] revealed that animal-based
protein consumption affected the gut microbiota by increasing
the counts of bile-tolerant anaerobes such as Alistipes and
Bacteroides. There have been links between Alistipes and CVD
risk factors such as hypertension, with a positive correlation
observed between systolic blood pressure and the abundance of
several species belonging to the Alistipes genus [151]. However,
a number of studies have also indicated a protective role for
Alistipes in CVDs with a drastic decrease of this genus in
the intestinal tract of patients with atrial fibrillation [152],
atherosclerotic CVDs [153] and congestive heart failure [154].
Hence, it is still unclear if associations with Alistipes are
protective, beneficial or pathogenic. This exposes a severe
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Figure 4. (A) Overview of a systems biology approach that links singular biomarker candidates towards deriving functional dependencies among chronic kidney disease

(CKD) and cardiovascular disease (CVD). A set of genes associated with CVD in patients with CKD is used to construct a network of interacting proteins using reference

data on known protein interactions. The functional interplay between interacting proteins was estimated by linking properties reflected by gene ontology terms, gene

expression data characterizing CKD and TF binding sites with this methodology enabling detection of highly connected subnetworks associated with CKD and CVD. (B)

The application of a kidney-specific metabolic model in determining metabolic process that are upregulated and downregulated in diabetic kidney disease resulting

in the uptake and secretion of metabolites which may have an effect on the development and progression of CVD. Construction of the model was achieved through

integration of proteome data from the Human Protein Atlas, transcriptome data from the Gene Expression Omnibus and application of a model-building algorithm

that utilized Recon1 as a template to select only genes that were relevant to kidney.

limitation of taxon-based analysis, which overlooks variations
of bacterial strains belonging to the same taxon. A separate
study showed that a high protein/low carbohydrate diet resulted
in reduced levels of Roseburia and Eubacterium rectale in the gut
microbiota of subjects, accompanied by a decreased proportion
of butyrate in their faeces [155]. In addition, several microbial
genera that are promoted by the intake of red meat were
associated with increased levels of TMAO [156], thus increasing
the risk of CVD through upregulation of scavenger receptors
including CD36 (cluster of differentiation 36) [22, 157] and SRA
(scavenger receptor A) [22]. These data support the established
link between red meat consumption and CVD risk attributed to
the high concentration of TMAO-producing nutrients, such as
choline, phosphatidylcholine and L-carnitine, all of which are
present in high concentrations in an animal diet including red
meat, fish, milk and eggs.

Although several correlations have been established between
CVD and the gut microbiota, it is much more challenging to iden-
tify potential causal relationships. An interdisciplinary approach
is required to further understand gut bacterial-mediated

mechanisms. Recent efforts have focussed on establishing
causal relationships between the gut microbiota and CAD
development via interactions with the host metabolic pathways.
One such study revealed several alterations in gut microbial
functional modules in CAD patients representative of amino acid
transporters, LPS biosynthesis, the phosphotransferase system,
vitamin metabolism, and the activities of short-chain fatty acids
and TMA lyases [153]. These findings were in partial agreement
with a separate study [154], which identified an elevation in
microbial genes for LPS biosynthesis, TMAO and tryptophan
generation in patients with chronic heart failure. This is of
particular importance when considering the primary source of
LPSs is the gut/gut microbiome, which provides an explanation
for the greater plasma LPS levels in heart failure [158].

In addition to distinguishing between a CAD and healthy
phenotype, the integration of multi-omics network analyses
revealed that the composition of the gut microbiota and level of
metabolites were significantly associated with CAD severity [25].
It was shown that several bacterial co-abundance groups (CAGs)
might affect atherosclerosis by modulating several metabolic
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Figure 5. (A) The application of different fields of study (metagenomics, metabolomics and transcriptomics) in assessing how the impact of diet can alter the

composition of the gut microbiota, plasma metabolite concentrations and expression of genes which protect against or promote biological processes related to

cardiovascular disease. (B) Investigating the interrelationship between gut microbiota composition, host metabolic profile and main CAD phenotype. The OTU-level

network indicates the abundance of each OTU in a CAG based on node size. Specific CAGs that are mainly composed of certain OTUs correlate with serum metabolite

concentrations which in turn correlate with parameters representing CAD severity. Red connections indicate a positive correlation and blue connections represent

negative correlations according to Spearman correlation test (FDR < 0.05). In the CAG column, the green boxes indicate CAGs that were highly enriched in the control

group and the purple box represents a CAG that was increased in the severe CAD group. In the metabolomics column, the pink boxes represent CAD-negative

metabotypes and the yellow box represents a CAD-positive metabotype.

pathways in the host, which are positively or negatively asso-
ciated with the CAD phenotype (Figure 5B). The basis for this
approach is that key members of a CAG either thrive or decline
together in response to a changing physiological environment
and hence exist as functional groups [159] For example, a CAG
that was enriched in the healthy control group, mainly com-
posed of Faecalibacterium and Roseburia, was positively associated
with ‘CAD-negative associated’ ceramides and negatively associ-
ated with ‘CAD-positive associated’ benzene derivatives. In con-
trast, a CAG mainly composed of operational taxonomic units
from the Ruminoccocaceae family was higher in patients with
CAD, which may partially be explained by the positive associa-
tion between this CAG and the presence of benzene derivatives
in the host metabolic profile. Hence, this CAG-based approach
enabled the identification of functionally essential members of
the gut microbiota in CVD and is recommended to be employed
for further studies in place of the more conventional taxon-
based analysis when investigating the links between the gut
microbiota and the development of CVD. Future studies should
focus on developing predictive systems-level approaches for
each of these CAGs to elucidate causalities and quantify inter-
actions between host, microbes and diet. In addition, this CAG
approach could be used to investigate the influence of the
microbiome on the plasma proteome with particular focus on

signalling and inflammatory proteins pertinent to the cardiovas-
cular system.

Biological network analyses of end-stage
CVD cohorts
Coronary artery disease

CAD is the most common cause of CVD-related death and
is caused by the accumulation of plaques in the coronary
arteries, more widely known as atherosclerosis. Similar to
atherosclerosis, CAD has a wide range of risk factors, including
behavioural, metabolism-related and genetic risk factors.
Patients diagnosed with CAD have also shown to be more
prevalent to other chronic diseases, such as CKDs and end-
stage renal diseases [160]. Statins are the most commonly
used drugs used to treat CAD, especially in the early phase,
due to their property of LDL reduction and their capability to
decelerate the inflammation process [161] as demonstrated
through various clinical trials (Table 1). They have also been
shown to be beneficial in treating post-surgical CAD patients,
both for cardiac stent and artery bypass graft patients [162–164].

Early detection of CAD is required to perform adequate
interventions due to the severity of the disease. Non-invasive
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Table 1. Survey of completed studies investigating different causes and treatments for coronary artery disease

Claim Method Result Ref

Statins reduce LDL and are beneficial for
post-surgical patients

Clinical trial Rosuvastatin reduces LDL level by 50% and hCRP by 37% [189]

Clinical trial Group with pre- and post-operative statins has
significantly lower in-hospital deaths compared to
placebo group (1.9% versus 6.91%, P = 0.002)

[162]

Clinical trial Risk of death rate was lower for statin treated patients
by 54%

[164]

Genomic analysis reveals heritability and
genetic variance of CAD

GWAS Susceptibility to death from the disease was higher in
male twins compared to female twins (0.57, 0.38,
respectively)

[174]

GWAS Identification of 304 genomic variants that explain
21.2% of CAD heritability with ∼80% related to blood
vessel morphogenenis, lipid metabolism, NOS and
inflammation

[175]

Urinary proteomic biomarkers for CAD Proteomics Identification of 15 peptides from urinary proteomics
that showed CAD-specific characteristics

[178]

Network analysis explained the underlying
mechanism of CAD

Network Functional CAD network with genetic variants and
transcriptomic data

[179]

Generation of CAD-specific regulatory
genes and proteins network

Network Integration of gene–gene networks with protein–protein
interactions

[180]

Network analysis revealed shared
regulatory pathways with T2D

Network Genetic regulatory network [181]

CAS, coronary artery disease; GWAS, genome-wide association study; hCRP, human C-reactive protein; LDL, low-density lipoprotein; NOS, nitric oxide synthase; T2D,
type 2 diabetes.

diagnosis methods, such as exercise electrocardiogram (ECG),
have been widely preferred in clinical settings for suspected
CAD patients. These methods have been combined by assessing
sociodemographic data, patient description of the pain [165,
166] such as angina and patient age to diagnose obstructive
CAD, with this being the most common form of CAD. The less
prevalent non-obstructive CAD is also generally diagnosed in
patients with angina, and this type of CAD can be accompanied
by coronary microvascular dysfunction [167]. In this context,
diagnostic tests have been developed to assess this type of
microvascular dysfunction to identify patients at risk of future
abnormal cardiac events [168]. A number of these tests include
the use of ECG for monitoring and interpretation purposes.
Although the ECG’s sensitivity has been questioned [169], several
computational methods employing artificial intelligence have
been developed to significantly increase the sensitivity and
accuracy of the ECG [170, 171]. The development of coronary
computed tomographic angiography has been implemented
to minimize invasive testing whilst improving accuracy of the
testing. However, it was shown not to improve clinical outcomes
over the early stage of CAD compared to functional testing (ECG,
nuclear stress testing or stress echocardiography) [172].

Several studies have amplified the role of genetics in being
one of the main risk factors of CAD with earlier studies showing
that CAD has a high degree of heritability, especially in male
subjects [173, 174]. Recent advances in high-throughput
sequencing technologies have allowed for GWAS studies
(Table 1) finding more than 300 genetic variants associated with
CAD [175, 176]. A further study combined a two-stage GWAS
and targeted metabolomics approach to show an association
between carbamoyl-phosphate synthase 1 (CPS1) and CAD [177].
In addition, the variant localized to CPS1 was associated with
decreased risk of CAD in female subjects. Furthermore, the
application of urinary proteomics has been able to find linkages

between CKD and CAD by identifying 15 signature peptides of
CAD [178].

Several biological networks have been used to explain CAD
(Table 1), including a recently generated functional network that
integrated genetic variants and transcriptomic data from 600
CAD subjects in the STARTNET consortium [179]. This study
successfully uncovered the mechanism of cis- and trans-acting
loci in cardiometabolic disease, a precursor of CAD, and showed a
gene-regulatory site for blood lipids. A separate study integrated
gene-networks with known protein–protein interactions to gen-
erate regulatory-gene and protein networks across multiple tis-
sues related to CAD [180]. The networks were combined with
known GWAS loci associated with CAD to reveal the disease’s
mechanism and propose novel drug targets. An additional study
also generated genetic regulatory networks for CAD [181] and
identified critical regulatory pathways shared between CAD and
T2D. Moreover, this study discovered 15 essential driver genes
that showed a high degree of connectivity with known GWAS
hits in both CAD and T2D.

Ischaemic stroke

Ischaemic strokes account for 84% of all stroke events but only
slightly fewer deaths than the other primary stroke type, haem-
orrhagic stroke [182]. Ischaemic strokes occur when a blood
vessel leading to the brain is blocked. This can be attributed to
several factors and causes include thrombosis, cardioembolism
and stenosis. Carotid artery stenosis (CAS) narrows the carotid
artery and is responsible for around 7% of ischaemic strokes
[183]. A multitude of CAS risk factors, including age, hyper-
tension, diabetes, dyslipidaemia, hypercholesterolaemia and
smoking, account for the observed increase in the global burden
of CAS, particularly in ageing populations. Middle cerebral
artery occlusion (MCAO) refers to the blockage of the middle
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cerebral artery and is another cause of ischaemic stroke. Stan-
dard treatment includes IV thrombolysis, to be administered
within hours of the stroke, and intra-arterial therapy, to be
sustained over years [184]. In addition to these, aggressive
mechanical clot disruption [185] and stenting [186] may be
employed if drug treatments fail. This section summarizes the
findings of completed studies that have identified different
causes and treatments for CAS and MCAO (Table 2).

Current diagnosis and risk stratification techniques for CAS
include duplex ultrasound, computed tomography angiography,
magnetic resonance angiography, digital subtraction angiogra-
phy and transcranial Doppler (TCD) ultrasound [187]. Of these,
TCD is the common technique of choice and has been used
extensively to detect microembolic signals and stratification of
high- and low-risk carotid lesions. Statins are commonly used
to treat CAS by reducing blood LDL levels, thereby decreasing
stroke risk, as demonstrated in clinical trials [188, 189]. More
recently, antibody action against PCSK9 has also shown the
ability to lower LDL levels [190] and have a positive impact
on stroke prevention [191]. Finally, surgical procedures such as
carotid endarterectomy and stenting are also commonly per-
formed in high-grade stenosis cases, and these procedures con-
fer increased benefits compared to therapeutic solutions alone
[192, 193].

Genetic and genomic features in CAS have been markedly
less studied than the contribution of diet, smoking and other
environmental factors. However, a few studies are noteworthy.
For instance, the Strong Heart Family Study, which investigated
the heritability of CAS risk among American Indian tribes, found
significant genetic linkage on chromosome 7q with left carotid
artery lumen diameters in Arizona participants, suggesting can-
didate genes such as KCND and Kv4 as associated with CAS
[194]. GWAS studies have also uncovered susceptibility loci for
the related moyamoya disease, which is characterized by CAS
[195, 196]; and microRNA biomarkers of CAS progression have
been described [197]. Therefore, modelling CAS as an outcome
of a biological network model should be considered. CAS has
also been modelled as a functional network [198] as well as a NN
[199]. In the functional network, fMRI data from 90 pre-specified
regions of interest were processed, and correlations in signal
intensities formed edges in the network. In the NN, parameters
from Doppler sonogram spectroscopy were selected as the input
layer. The two models described significant differences in fMRI
and Doppler signatures between CAS patients and healthy con-
trols. However, the accuracy of the NN diminished when used to
predict CAS severity, and neither of these approaches considers
genetic risk factors to CAS progression.

In contrast to CAS research, MCAO research has focused on
biological effects post-stroke, and many studies have used mice
and rats as a model. MCAO is modelled by anaesthetizing ani-
mals and then transient blocking off the middle cerebral artery
by ligation or the use of a vascular clip, thereby inducing MCAO.
The effects of MCAO on these animals can then be compared
to the sham experiment in which animals undergo the same
procedure of anaesthesia and exposure of the middle cerebral
artery but without occlusion. Recent studies using this method
have uncovered biochemical changes on the RNA, protein, and
metabolic levels. Furthermore, these models have been useful in
characterizing the effects of drugs on mitigating the modifica-
tions induced by MCAO. MCAO models have shown differential
expression of coding and non-coding transcripts compared to
animals undergoing the sham operation. In particular, genes
associated with coagulation, migration, scar formation, inflam-
mation and apoptosis were upregulated in mouse astrocytes,

whereas cell adhesion, signalling and metabolism genes were
downregulated [200]. This suggests a stress response in these
cells, which agrees with studies on lncRNA expression in MCAO
rats [195] and circular RNA expression in MCAO mice [201]. These
studies used microarrays and RNA-seq to find differentially
expressed non-coding RNAs known to regulate genes associated
with reactive oxygen species, oxidative stress, and apoptosis.
A co-expression network of upregulated and downregulated
mRNAs and lncRNAs in the MCAO rat further implicates diverse
pathways, such as chemokine signalling, Parkinson’s disease, the
cell cycle and metabolism [202].

Mass spectrometry and nuclear magnetic resonance studies
on MCAO mice and rats have shown metabolic changes post-
MCAO. In rats, MCAO increased lactose, alanine, glutamine
and GABA compared to the sham procedure rat, whereas
aspartate, glutamate, succinate, and creatine decreased [203].
In mice, MCAO accumulates phosphocreatine and ceramide
in an ischaemic core, whereas creatine levels decreased [204].
Taken together, this suggests that the restriction of blood
flow due to MCAO significantly impacts energy metabolism,
resulting in an increase in glycolytic flux and decrease
in TCA flux, thus bringing about the observed metabolic
changes and gene expression responses to oxidative stress
and neuroinflammation. Quercetin and resveratrol are plant-
based antioxidants drugs frequently used in Alzheimer’s
disease and Parkinson’s disease treatment. Briefly, quercetin
works as an inhibitor of acetylcholinesterase and an inhibitor
of amyloid-beta filbril formation, whereas resveratrol is an
activator of the anti-ageing factor SIRT-1. In experiments with
MCAO mice, quercetin mitigated MCAO-related pyruvate kinase
decreases as well as decreases in isocitrate dehydrogenase and
adenosylhomocysteinase, restoring expression to sham-like
levels [205]. Resveratrol also mitigated declines in the latter two
proteins in experiments with MCAO rats.

Taken together, the insights from whole omics studies in CAS
and MCAO research show that the field would greatly benefit
from further work. As we have illustrated, entire omics research
in CAS is relatively unexplored. Still, new avenues such as inves-
tigating multi-omic responses to drugs and treatments exist and
have been more clearly explored for MCAO. There is also real
potential for the integration of multiple data types as insightful
genomic studies and studies based on imaging and/or physical
data have been carried out separately. Current limitations in
the field include little to no investigation in personalization of
treatment despite the known heterogeneity of symptoms and
risk factors for CAS and MCAO; whereas methods for studying
blockage of these arteries have not significantly advanced in
recent decades.

Conclusion
The complexity and heterogeneity of CVD strongly suggest that
personalized treatments are required depending on the under-
lying cause that is contributing towards the development and
progression of CVD. This includes atherosclerosis, thrombosis,
adverse cardiac remodelling, CKD and the gut microbiota. We
highlight recent systems biology approaches that have anal-
ysed high-throughput omics data to explain these underlying
causes further and give examples of how these approaches have
contributed significantly towards providing a prognosis for CVD
subjects. Such an approach might predict how a myocardial
infarction progresses based on a patient’s unique platelet phe-
notype or predict the development of atherosclerosis through
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Table 2. Survey of completed studies investigating different causes and treatments for carotid artery stenosis and middle cerebral artery
occlusion

Claim Method Result Ref

Carotid artery stenosis (CAS)
Statins lower LDL and stroke risk Clinical trial Atorvastatin lowered LDL compared to placebo (1.9 mmol/L down from

3.3 mmol/L, P < 0.001)
[188]

Atorvastatin reduced stroke risk compared to placebo (11.2% incidence
down from 13.1%, P = 0.03)

Clinical trial Rosuvastatin lowered LDL by 50% (P < 0.001) [189]
Rosuvastatin reduced cardiovascular events by 43% (P < 0.00001)

Surgical procedures lower stroke
risk

Clinical trial In asymptomatics, CEA lowered cardiovascular event risk compared to
deferred CEA (4.1% down from 10.0%)

[192]

Greatest net benefit from CEA was identified in those also on
lipid-lowering therapy

Clinical trial In asymptomatics, CEA + aspirin/medical management lowered
cardiovascular event risk compared to aspirin/medical management
alone (5.1% down from 11.0%)

[193]

Antibody action lowers LDL Clinical trial Evolocumab lowers LDL by 59% (0.78 mmol/L down from 2.4 mmol/L,
P < 0.001)

[190]

Clinical trial Inclisiran lowers PCSK9 and LDL cholesterol levels (reductions of
35.5–52.6% after two doses, P < 0.001) for patients at high
cardiovascular risk

[208]

Genomics predicts carotid artery
lumen diameter

GWAS In the Arizona Strong Heart Family Study, genomic loci on chromosomes
7 and 12 were found to be significantly associated with left carotid
artery diastolic and systolic lumen diameters

[194]

Genomics predicts moyamoya
disease susceptibility

GWAS Ten genomic loci were identified as significantly linked to moyamoya
disease, including previously characterized loci on chromosome 17q25

[195]

GWAS In a Japanese cohort, the RNF213 gene on chromosome 17q25 was found
to be highly associated with moyamoya disease

[196]

miRNA transcriptomics predicts
stroke risk

miRNA asso-
ciation
study

In asymptomatics, five miRNAs were identified as significantly
overexpressed in patients with disease progression compared to those
without

[197]

Biological modelling of CAS is in
its infancy

Network fMRI-based functional network [198]

Network Doppler sonogram-based neural network [199]
Middle cerebral artery occlusion (MCAO)
Brain metabolic activity is altered

post-MCAO
NMR In rats, MCAO resulted in increased lactose, alanine, glutamine and

GABA and decreased aspartate, glutamate, succinate and creatine due
to increased glycolysis and decreased TCA flux

[203]

MS imaging In mice, MCAO resulted in increased phosphocreatine, creatine and
ceramide. Effects were most pronounced in the caudoputamen and
cortex and least pronounced in the hippocampus

[204]

Brain RNA content is altered
post-MCAO

RNA-seq lncRNA-mRNA co-expression network based on rat data, showing
lncRNA regulatory changes post MCAO

[202]

Microarray Circular RNAs, a lesser-studied class of ncRNA, are differentially
expressed in mice post-MCAO

[201]

RNA-seq In mice, astrocytes respond to MCAO by upregulation of genes associated
with complement and coagulation cascades, scar formation,
inflammation, and apoptosis

[200]

Jak/Stat signalling was upregulated; knocking out STAT3 resulted in
increased neuron survival after MCAO

MCAO induces protein aggregation MS In mice, following MCAO, proteins associated with DNA/RNA processing
and signal transduction increased in insolubility, indicating protein
aggregation

[209]

Neuroprotective drugs mitigate
MCAO effects

2DGE/MS In mice, quercetin mitigated the drop in ICDH, adenosylhomocysteinase,
pyruvate kinase, and UCH-L1, and the increase in HSP60 and CRMP-2
protein expression as a result of MCAO

[205]

2DGE/MS In rats, resveratrol mitigated the drop in Prx-5, ICDH, ApoA-1 and
UCH-L1, and the increase in CRMP-2 as a result of MCAO

[210]

ApoA-1, apolipoprotein A1; CAS, carotid artery stenosis; CEA, carotid endarterectomy; CRMP-2, collapsing response mediator protein 2; fMRI, functional magnetic
resonance imaging; GABA, gamma-aminobutyric acid; GWAS, genome-wide association study; HSP60, heat shock protein 60; ICDH, isocitrate dehydrogenase; LDL,
low-density lipoprotein; lncRNA, long non-coding RNA; MCAO, middle cerebral artery occlusion; miRNA, microRNA; MS, mass spectrometry; ncRNA, non-coding RNA;
NMR, nuclear magnetic resonance, PRX-5, peroxisome assembly factor 5; RNF213, Ring Finger Protein 213; STAT3, signal transducer and activator of transcription 3;
TCA, tricarboxylic acid cycle; UCH-L1, ubiquitin carboxy-terminal hydrolase L1; 2DGE, 2D Gel Electrophoresis.
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several factors including genetics, behavioural and metabolism-
related disorders. The latter of these aforementioned factors can
be linked to the composition of the gut microbiome. Hence, we
summarized how several bacterial CAGs may affect atheroscle-
rosis by modulating several metabolic pathways in the host.
We also assessed how GEMs have enabled us to gain a further
understanding of heart-specific metabolic processes through
the construction of the iCardio GEM and subsequent integration
with transcriptomics data to reveal decreased NO and Neu5Ac
synthesis as common metabolic markers of heart failure across
multiple datasets.

In this review, we also focused on the application of biological
networks and association studies in identifying causes and
providing treatments for end-stage CVD, namely CAD and
stroke, with our chosen examples identifying essential genes
for stratifying and treating these two main types of CVD.
Future studies should combine all of the fundamental biological
mechanisms that underlie the complex pathophysiology of
CVD for early prognosis preceding the occurrence of an
atherothrombotic event. This could be achieved by integrating
current systems biology approaches that have been applied
towards explaining the underlying causes of CVD.

We expect future systems biology approaches in cardiovascu-
lar research to integrate disease-spanning data from the cardio-
vascular field with data from other chronic diseases, including
the integration of data from CKD and CVD to identify shared
commonalities of risk factors and further assess the high comor-
bidity of these diseases. There is also the need to further under-
stand tissue-specific metabolic crosstalk through integration of
models of the heart and other human tissues with the gut
microbiota for the simulation of whole-body metabolic functions
in health and CVD, with such roadmaps having already been
designed for the study of liver-associated diseases [206]. This
multi-tissue approach has been limited to date for CVD [207]
and future efforts should focus on the generation of a final pre-
dictive model incorporating essential metabolic interactions or
signalling pathways in each individual tissue/microbiota model
that are known to either protect against or contribute towards
the development and progression of CVD.
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