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Abstract

The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in
members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility,
a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected
with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-
specific control approach in which field females are sterilized by inundative releases of incompatible males. We show that
the Wolbachia wPip(Is) strain, naturally infecting Cx. p. pipiens mosquitoes from Turkey, is a good candidate to control Cx. p.
quinquefasciatus populations on four islands of the south-western Indian Ocean (La Réunion, Mauritius, Grande Glorieuse
and Mayotte). The wPip(Is) strain was introduced into the nuclear background of Cx. p. quinquefasciatus mosquitoes from La
Réunion, leading to the LR[wPip(Is)] line. Total embryonic lethality was observed in crosses between LR[wPip(Is)] males and
all tested field females from the four islands. Interestingly, most crosses involving LR[wPip(Is)] females and field males were
also incompatible, which is expected to reduce the impact of any accidental release of LR[wPip(Is)] females. Cage
experiments demonstrate that LR[wPip(Is)] males are equally competitive with La Réunion males resulting in demographic
crash when LR[wPip(Is)] males were introduced into La Réunion laboratory cages. These results, together with the
geographic isolation of the four south-western Indian Ocean islands and their limited land area, support the feasibility of an
IIT program using LR[wPip(Is)] males and stimulate the implementation of field tests for a Cx. p. quinquefasciatus control
strategy on these islands.
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Éparses’’ program of the Terres Australes et Antarctiques Françaises (TAAF), the Institut Écologie et Environnement (CNRS-INEE), the Institut National des Sciences
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Muséum National d’Histoire Naturelle (MNHN), the Institut Polaire Paul-Emile Victor (IPEV), the Agence des Aires Marines Protégées and the Fondation pour la
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Introduction

The last few years have witnessed an increasing interest in

the alpha-proteobacterium Wolbachia (Rickettsiales) for the

biological control of insect pest populations [for reviews see

[1–5]. Wolbachia is the most common intracellular bacterium

yet described [6,7], present in more than 65% of insect species

and found in all major insect families [8]. Some medically

important mosquitoes are naturally infected by Wolbachia, such

as the common house mosquito Culex pipiens [9,10] and the

Asian tiger mosquito Aedes albopictus [11], or can otherwise be

artificially infected, such as the yellow fever mosquito Ae. aegypti

[12–14].

Wolbachia is vertically inherited from a female host to its progeny

through the egg cytoplasm, males being a dead end in terms of

transmission [4,15]. Wolbachia is usually termed a ‘reproductive

parasite’ in the sense that it optimizes its transmission by

manipulating its host’s reproductive biology [15,16]. In mosqui-

toes, Wolbachia induces a form of embryonic death called

cytoplasmic incompatibility (CI) [9]. This phenomenon results

from sperm-egg incompatibility occurring when Wolbachia-infected

males mate with uninfected females or females infected with an

incompatible Wolbachia strain [17]. Therefore, CI has been

investigated as a mechanism to control field populations

[1,18,19,20–22], or to drive transgenes into field populations

[2,3,10,23]. In addition, recent investigations showed that
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Wolbachia can affect virus transmission both by reducing the

lifespan of the infected vector and by interfering with the

arthropod-borne parasite [14,24–26].

Mosquitoes of the Cx. pipiens complex are of special interest for

Wolbachia-based control strategies. The most common members of

the complex are the subspecies Cx. p. quinquefasciatus (Say) and Cx.

p. pipiens (Linnaeus) (also considered as true species, depending on

the authors), representing the southern and northern mosquito

populations, which are ubiquitous in tropical and temperate

regions, respectively [27]. This mosquito is the main vector of

lymphatic filarial in Comoros and Madagascar [28] as well as a

known vector for many arboviruses worldwide [29]. This is the

case, for example, of the West Nile Virus (WNV), recrudescent in

Mediterranean countries [30,31] and in the United States where

thousands of cases have been identified in the last decade [32,33].

This species also transmits the Rift Valley Fever (RVF) virus,

currently expanding in the Indian Ocean [34,35].

Members of the Cx. pipiens complex are naturally infected with

different Wolbachia strains, referred as wPip strains. The prevalence

is high in natural populations with wPip infections near to fixation

[10,36,37]. Recent multi-loci typing approaches revealed that the

wPip strains cluster into five distinct phylogenetic groups (referred

as wPip-I to V) which form a robust monophyletic clade within the

B group of Wolbachia [38]. The Cx. pipiens complex exhibits the

largest variation of CI crossing types observed in arthropods thus

far [39–43]. When Cx. pipiens individuals are infected by different

Wolbachia strains (here arbitrarily named wPip(1) and wPip(2)),

their crosses can be (a) compatible and produce viable offspring;

(b) incompatible in both directions and produce infertile eggs (a

phenomenon called bidirectional CI); or (c) incompatible in one

direction only (unidirectional CI, e.g. the cross between wPip(1)

males and wPip(2) females is incompatible, while the reciprocal

cross is compatible). The presence of incompatible wPip infections

in the Cx. pipiens system makes unnecessary the artificial

introduction of exogenous Wolbachia strains, and encourages the

development of a Wolbachia-based control strategy.

Here, we examined the feasibility of an ‘Incompatible Insect

Technique’ (IIT) strategy targeting Cx. pipiens natural populations.

IIT derives from the ‘Sterile Insect technique’ (SIT) notably used

in the control of the New World screwworm Cochliomyia hominivorax

[44]. In both SIT and IIT, mating of released sterilizing males

with native females leads to a decrease in the females’ reproductive

potential and ultimately, if males are released in sufficient numbers

over a sufficient period of time, to the local elimination or

eradication of the pest population [3,20,22,45]. In the SIT

program, males are sterilized with irradiation or chemicals, which

might weaken the fitness of sterilized insects, making them less

competitive than field males for mating [46,47]. In the IIT

strategy, Cx. pipiens males are infected by a wPip strain

incompatible with the wPip strain(s) infecting field females. In this

case, the released incompatible males are not expected to suffer

any reduction in mating when competing with field males. The

IIT strategy has been successfully applied in a field trial assay

targeting Cx. pipiens populations in Burma [48] as well as in cage

experiments with the Polynesian tiger mosquito Ae. polynesiensis [49]

and the medfly Ceratitis capitata [19].

We focused on natural populations of Cx. p. quinquefasciatus

collected on five islands in the south-western Indian Ocean

(SWIO): La Réunion, Mauritius, Mayotte, Madagascar and

Grande Glorieuse. Prior studies have demonstrated that Cx. p.

quinquefasciatus lines from La Réunion are infected with closely

related wPip strains which express complete CI (ca. 100% embryo

mortality) with Cx. pipiens lines from distant geographic areas and

infected by genetically different wPip strains [43]. The Cx. p. pipiens

Is line from Turkey, infected by the wPip(Is) strain, is of particular

interest: all crosses between Is males and females from La Réunion

are incompatible and almost all reciprocal crosses are incompat-

ible as well [43]. This complete bidirectional CI makes the wPip(Is)

strain a good candidate for an IIT program.

In this study, we obtained robust data that encourage the use of

wPip(Is)-infected Cx. p. quinquefasciatus males in an IIT program

which could be implemented on the SWIO islands. First, the

regional genetic diversity of wPip infections is low as all identified

wPip strains belong to the wPip-I group; this indicates that

immigration of mosquitoes into the controlled area is unlikely to

introduce a new wPip strain compatible with wPip(Is)-infected

males. Second, the wPip(Is) strain, from the wPip- IV group, was

introduced into the nuclear background of Cx. p. quinquefasciatus

mosquitoes, leading to a line (LR[wPip(Is)]) expressing complete

CI with wild females sampled from all 5 SWIO Islands. Last, CI

properties expressed by this line are optimal as (i) there is no

effect of males ageing on CI expression, (ii) LR[wPip(Is)] males

show similar body size and longevity as males from La Réunion

Island, suggesting good competitiveness of incompatible males vs.

wild males, which was further confirmed in cage confrontations

and (iii) LR[wPip(Is)] mosquitoes are mainly bidirectionally

incompatible with La Réunion, Mauritius, Mayotte and Grande

Glorieuse field mosquitoes: this lowers the risk of Wolbachia

replacement possibly induced by accidental releases of LR[wPi-

p(Is)] females.

Materials and Methods

Mosquito collections
Two laboratory lines of Cx. pipiens mosquitoes naturally infected

by Wolbachia were used in the experiments: the isofemale line Is, a

Cx. p. pipiens line from Turkey infected by the wPip(Is) strain, and

the Cx. p. quinquefasciatus LR line, infected by the wPip(LR) strain,

and established from several hundred field-caught larvae in La

Réunion island (Table 1 and Figure 1). In addition, one uninfected

line, LR-TC, was generated by curing Wolbachia of mosquitoes

from the LR line with antibiotic, following the protocol described

in [50]. Briefly, ca. 5,000 LR larvae were reared for three

Author Summary

Mosquitoes of the Culex pipiens complex are important
vectors of human pathogens including filarial parasites
and many currently expanding arboviruses. The absence of
effective vaccines and the evolution of insecticide resis-
tance stress the urgent need for the development of novel
control strategies. One strategy that is receiving increasing
attention is based upon the use of the intracellular bacteria
Wolbachia, which induce a form of sterility known as
cytoplasmic incompatibility in mosquitoes. Here, we show
that a Wolbachia strain, named wPip(Is) and naturally
infecting Cx. p. pipiens from Turkey, can be used in the
Incompatible Insect Technique (IIT) to sterilize Cx. p.
quinquefasciatus females from several islands of the
southwestern Indian Ocean (SWIO). The wPip(Is) strain
was introduced into SWIO Cx. p. quinquefasciatus nuclear
background leading to the LR[wPip(Is)] line. Males from
this latter line were found to sterilize all wild females
tested, and no difference in mating competition was
observed between LR[wPip(Is)] and wild males. These
results encourage the development of an IIT program
based on the wPip(Is) strain to control mosquito popula-
tions in the SWIO.
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generations in a solution containing tetracycline hydrochloride at

concentrations of 1024, 261024 and 461024 M for the first,

second and third-instar larvae, respectively. Mosquitoes from LR-

TC were next reared for at least two generations in the absence of

tetracycline before experiments, to prevent any possible side-

effects of the treatment.

Field Cx. p. quinquefasciatus larvae and pupae were collected

during the summers 2007–2011 in 29 natural breeding sites on five

islands of the Indian Ocean: La Réunion (16 populations),

Mauritius (four populations), Mayotte (three populations) Mada-

gascar (five populations) and Grande Glorieuse (one population)

(Table 1 and Figure 1). Specimens were brought to the laboratory

for emergence and identification. Individuals were either directly

stored in 70% EtOH for molecular analyses or kept alive for

crossing experiments. All mosquitoes were reared in 65 dm3 cages

kept at ca. 2562uC with 12 h/12 h light/dark cycle. Larvae were

fed ad libitum with a mixture of shrimp powder and rabbit pellets,

and adults with a honey solution.

Table 1. Mosquito collections.

Mosquito collections
Culex pipiens
taxon Origin

Number of
screened field
specimensd

Year of
collection Reference

Laboratory lines

Istanbul (Is) pipiens Istanbul (Turkey) _ 2003 [34]

LR quinquefasciatus Etang Salé, Saint Pierre and Saint Louis (La
Réunion)a

_ 2009 This study

LR-TC quinquefasciatus derived from LRb _ _ This study

LR[wPip(Is)] _ derived from LR and Isc _ _ This study

Natural populations

#1, Tana1 quinquefasciatus Antananarivo (Madagascar) 23 2010 This study

#2, Tana2 quinquefasciatus Antananarivo (Madagascar) 22 2010 This study

#3, Itaosy1 quinquefasciatus Antananarivo (Madagascar) 20 2010 This study

#4, Itaosy2 quinquefasciatus Antananarivo (Madagascar) 20 2010 This study

#5, Mada quinquefasciatus Antananarivo (Madagascar) 20 2011 This study

#6, Grande Glorieuse quinquefasciatus Grande Glorieuse 24 2011 This study

#7, Acoua quinquefasciatus Acoua (Mayotte) 24 2011 This study

#8, Tsoundzou quinquefasciatus Tsoundzou (Mayotte) 21 2010 This study

#9, M’Tsamoudou quinquefasciatus M’Tsamoudou (Mayotte) 24 2011 This study

#10, Saint Leu quinquefasciatus Saint Leu (La Réunion) 24 2007 [41]

#11, Etang Salé quinquefasciatus Etang Salé (La Réunion) 24 2009 [41]

#12, Saint Louis quinquefasciatus Saint Louis (La Réunion) 23 2009 [41]

#13, Saint Pierre quinquefasciatus Saint Pierre (La Réunion) 24 2009 [41]

#14, Saint Joseph quinquefasciatus Saint Joseph (La Réunion) 19 2007 [41]

#15, Plaine des Cafres quinquefasciatus Plaine des Cafres (La Réunion) 24 2009 [41]

#16, Plaine des Palmistes quinquefasciatus Plaine des Palmistes (La Réunion) 22 2007 [41]

#17, Sainte Rose quinquefasciatus Sainte Rose (La Réunion) 24 2007 [41]

#18, Saint Benoı̂t quinquefasciatus Saint Benoı̂t (La Réunion) 24 2007 [41]

#19, Bras Panon quinquefasciatus Bras Panon (La Réunion) 32 2007 [41]

#20, Saint André quinquefasciatus Saint André (La Réunion) 24 2007 [41]

#21, Sainte Suzanne quinquefasciatus Sainte Suzanne (La Réunion) 24 2007 [41]

#22, Sainte Marie quinquefasciatus Sainte Marie (La Réunion) 24 2009 [41]

#23, Saint Denis quinquefasciatus Saint Denis (La Réunion) 24 2007 [41]

#24, Samuel quinquefasciatus Saint Denis (La Réunion) 24 2010 [41]

#25, La Possession quinquefasciatus La Possession (La Réunion) 24 2007 [41]

#26, Beau Bassin quinquefasciatus Beau Bassin – Rose Hill (Mauritius) 42 2010 This study

#27, Salines quinquefasciatus Les Salines (Mauritius) 7 2010 This study

#28, Port Louis quinquefasciatus Port Louis (Mauritius) 19 2010 This study

#29, Cap Malheureux quinquefasciatus Cap Malheureux (Mauritius) 23 2010 This study

a, the LR line was established from several hundred of field-caught larvae from three natural populations, i.e. Etang Salé, Saint Pierre and Saint Louis.
b, LR-TC is Wolbachia-uninfected line generated by antibiotic exposure of specimens from the LR line.
c, the LR[wPip(Is)] line combined the Is cytoplasm, including the wPip(Is) strain, and the LR nuclear genome.
d, number of field specimens examined for wPip genetic diversity.
doi:10.1371/journal.pntd.0001440.t001
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Molecular typing
Mosquito DNA was extracted using a CetylTrimethylAmmo-

nium Bromide (CTAB) protocol [51]. The wPip infections were

characterized through the analysis of one Wolbachia marker, the

ankyrin domains encoding gene, ank2 [52] (primers are listed in

Table S1). This marker differentiated wPip strains from groups I

and IV on the basis of the size of the PCR amplified fragments:

313 bp and 511 bp fragment for group I and IV, respectively. For

field samples, the ank2 PCR products from two specimens per

sample site were sequenced to confirm their identity with La

Réunion ank2 allele [Genbank AM397068; [43]].

The examination of the mosquito nuclear genome was assessed

by PCR/RFLP tests based on Cx. pipiens ace-2 and Ester2 genes

(primers are in Table S1). The ace-2 gene is located on

chromosome I and encodes acetylcholinesterase 2 (AChE2) [53].

The Ester2 gene is located on chromosome II and encodes a

carboxylester hydrolase [54]. A PCR/RFLP test on ace-2 using the

ScaI restriction enzyme (37uC, 3 hours; see [55]) allows the

discrimination between the Is (two fragments: 230 and 470 bp)

and the LR (three fragments: 120, 230 and 350 bp) nuclear

genomes. We developed a PCR/RFLP test on Ester2 using the

AvaII enzyme (37uC, 3 hours) that also generated different

restriction fragments for the Is (three fragments: 37, 519 and

544 bp) and LR (four fragments: 91, 176, 313 and 520 bp) nuclear

genomes.

All PCRs were performed with ca. 20 ng of genomic DNA

solution in a 40 ml final volume reaction for 35 cycles (94uC,

5 min; 94uC, 30 sec; 52uC, 30 sec; 72uC, 1 min). Direct

sequencing of PCR products was performed on an ABI Prism

3130 sequencer using the BigDye Terminator Kit (Applied

Biosystems) after purification with the QIAquick gel extraction

kit (QIAGEN, Valencia, CA). Sequence alignment and analyses

were done using MEGA software [56].

Backcrossing
The cytoplasm of the Is line, including the wPip(Is) strain, was

introduced into the LR nuclear background through eight

generations of backcrossing, a procedure that should result in at

least 99% genome replacement of the Is line by the LR nuclear

genome. A first cross was performed using 200 virgin Is females

and 250 LR-TC males. For the following generations, 200 hybrid

females were backcrossed with 250 LR-TC males. Using this

protocol, we obtained the LR[wPip(Is)] line which carries the LR

nuclear genome and the wPip(Is) strain.

Crossing experiments
We examined the crossing relationships between mosquito lines

through crossing experiments. Mass crosses were carried out using

35–200 two-day-old males and an equivalent number of females

Figure 1. Sample site locations. A: location of the study area; B, Madagascar and surrounding islands, including Grande Glorieuse; C, Mayotte; D,
La Réunion; E, Mauritius. Populations are numbered from 1 to 29. Numbers correspond to those in Table 1.
doi:10.1371/journal.pntd.0001440.g001
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that had been individually separated at the pupal stage (age was

assessed from the emergence of adults; day 0 = emergence). We

also tested the effect of male aging on CI by comparing crossing

relationships of young males (two-day-old) to that of older males

(24-day-old). For all crosses, females were allowed to blood feed 5

days after caging. Egg-rafts were collected and stored separately

until hatching at 25uC62uC. Hatching rates (HR) were scored

72 h after egg-raft collection to determine the CI phenotype. All

unhatched egg-rafts were checked for fertilization through

observation of embryonic development following the procedure

of [57].

Male performance
The longevity of the LR[wPip(Is)] and LR males was compared.

We obtained males from larvae reared in standardized laboratory

conditions at ca. 25uC62uC. For each line, three containers

containing 300 first-instar larvae with 1 L of water were set up.

The water of each container was changed every two days and food

provided ad libitum. Pupae were randomly sampled from the three

containers to minimize possible rearing bias. Pupae were placed

separately in 5 mL vials for emergence. Freshly-emerged males

were kept in their vials until they died, and mortality was checked

twice a day. No food was provided to the adults but they had

access to the water in their tube. Survival data were fitted to the

Cox proportional hazards models (coxph, survival package) [58]

and a ratio for each line was estimated as their instantaneous risk

of death relative to each other. These analyses were performed

using R software (www.r-project.org). One posterior leg was

removed on dead specimens and the tibia was measured with a

micrometer (NIKON Digital Counter CM-6S).

Four cages were set up to compare the mating performance of

both LR[wPip(Is)] and LR males. Each cage contained an equal

number of two-day-old virgin LR females and LR males (1:1), as

well as different numbers of two-day-old virgin LR[wPip(Is)] males

so that different ratios of the three types of mosquitoes could be

tested (1:1:0, 1:1:1, 1:1:5 and 1:1:10). Thus the total number of

adults for each of these confrontations was 200, 300, 350 and 600,

respectively. For each confrontation, all the mosquitoes were

introduced into the cage at the same time. Females were allowed

to blood feed five days after caging and their egg-rafts were

collected daily to score HR. To assess the stability of the

expression of CI over the mosquito lifespan, a second blood meal

was given to females 15 days after the first one, and new collections

of egg-rafts were then made.

Results

Only one wPip group is present in the south-western
Indian Ocean islands

We first examined the genetic diversity of wPip strains found in

natural populations of Cx. p. quinquefasciatus from La Réunion,

Mauritius, Mayotte, Madagascar and Grande Glorieuse. The

main purpose of this investigation was to assess the possibility of

controlling mosquito populations in each of these four islands with

wPip(Is)-infected males.

We examined 650 Cx. p. quinquefasciatus field specimens from 29

populations: La Réunion (16 populations, n = 384 individuals),

Mauritius (4 populations, n = 91 individuals), Mayotte (3 popula-

tions, n = 69 individuals), Madagascar (5 populations, n = 105

individuals) and Grande Glorieuse (1 population, n = 24) (Table 1

and Figure 1). The genotyping of wPip infections in these samples

was performed using only the ank2 gene which was recently shown

to discriminate wPip strains into five distinct phylogenetic groups

(referred as wPip-I to wPip-V) [38].

PCR assays using ank2 indicated the occurrence of wPip

infection in all Cx. p. quinquefasciatus field specimens, as observed in

other geographic areas for this species [10,36,37], and all shared

the same ank2 allele as indicated by the length of ank2 PCR

products (313 bp). This similarity was further confirmed by

sequencing the ank2 gene of two individuals per population from

Mauritius, Mayotte, Madagascar and Grande Glorieuse.

All sequences were found to be strictly identical to that found in

the wPip strains infecting all 10 laboratory isofemale lines from La

Réunion and to other wPip strains belonging to the wPip-I group

[38]. This result shows that wPip strains from La Réunion,

Mauritius, Mayotte, Madagascar and Grande Glorieuse are

genetically closely related and are genetically different from the

wPip(Is) strain belonging to the wPip-IV group.

Establishment of the LR[wPip(Is)] line
Males from the Is line belong to Cx. p. pipiens subspecies and may

not be optimally adapted to the tropical environment of the Indian

Ocean where Cx. p. quinquefasciatus is found. More specifically the

two subspecies are known to differ by behavioral and physiological

characters including mating behavior [27]. To circumvent this

problem, we introduced the wPip(Is) strain into the Cx. p.

quinquefasciatus nuclear background from La Réunion. First a LR

line was established from a large number (.5,000) of field-caught

Cx. p. quinquefasciatus from three localities of La Réunion in order to

have a good representation of the local genetic diversity. This line

was then cured of its Wolbachia by tetracycline treatment of larvae

during three generations (LR-TC line). Finally wPip(Is) from the Is

line was introduced into the nuclear background of the LR-TC

line by successive backcrossing. The LR[wPip(Is)] line thus created

shares the same nuclear genetic background as the LR line but is

infected by the wPip(Is) strain (Figure S1). This was verified by

PCR/RFLP tests on ace-2 and Ester2 Cx. pipiens nuclear genes

(Figure S2A and S2B) and by analyzing the allelic profiles of the

ank2 gene of the infecting Wolbachia (Figure S2C).

Crossing experiments between LR[wPip(Is)] and Is lines were

conducted to check that Cx. p. quinquefasciatus nuclear background

has not altered the CI phenotype of the wPip(Is) strain. This aspect

needs to be investigated since the host nuclear genome has been

reported to affect the penetration of the CI phenotype induced by

a Wolbachia strain [59–61]. Our data show that both lines behave

similarly: LR[wPip(Is)] and Is showed bidirectional CI with LR

while LR[wPip(Is)] and Is were mutually compatible (Table 2).

The intensity of CI was very high, with 98–100% of the embryos

that did not hatch in incompatible crosses. In addition, crosses

between infected and uninfected lines showed unidirectional CI:

males from all infected lines (LR[wPip(Is)], Is and LR ) induced

complete CI (100% embryo mortality) when crossed with

uninfected females (LR-TC), the reverse crosses (i.e. uninfected

males and infected females) being always compatible. Overall, no

significant difference of hatching rate (HR) was found when the

LR[wPip(Is)] and Is lines were compared (Wilcoxon test; all

P.0.14). This shows that the CI phenotype of the wPip(Is) strain

was not altered by the LR genetic background, and that the CI

phenotype is controlled by the wPip infection rather than by

nuclear genes, which is in accordance with most studies involving

species of the Cx. pipiens complex [43,62].

The effect of male ageing on CI intensity was also tested as, in a

few host species including some mosquitoes, CI intensity has been

shown to decrease with male aging [63–67]. Such an effect could

impede the use of LR[wPip(Is)] males to sterilize field females. To

investigate this aspect, we crossed two-day and 24-day old

LR[wPip(Is)] males with two-day old LR females. No viable

embryo was obtained in incompatible crosses with both young and
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old LR[wPip(Is)] males (Table 3). Thus CI is expressed with the

same intensity throughout the LR[wPip(Is)] males’ lifespan, a

result also observed in diverse Cx. pipiens laboratory lines [10,68].

LR[wPip(Is)] males sterilize field females from islands of
the SWIO

LR[wPip(Is)] males were crossed with field females from five

populations: Samuel (La Réunion; n = 75 females), Salines

(Mauritius; n = 37), Tsoundzou (Mayotte; n = 75) Mada (Mada-

gascar; n = 44) and Grande Glorieuse (Grande Glorieuse; n = 97

females). All crosses were incompatible, displaying .99% embryo

mortality (Table 4).Thus, LR[wPip(Is)] males express high CI

intensity with field females from the four islands, as observed with

females of the LR line.

Crossing relationships between LR[wPip(Is)] females and field

males were also investigated to determine how the LR[wPip(Is)]

line may evolve in Cx. p. quinquefasciatus field populations in the case

of accidental release of LR[wPip(Is)] females. LR[wPip(Is)] females

were incompatible with all males from Samuel (n = 36 males),

Salines (n = 37) and Grande Glorieuse (n = 40) (Table 4). This

shows that LR[wPip(Is)] expresses bidirectional CI with field

specimens from these populations. However, males from Tsound-

zou (n = 16) were polymorphic for their CI properties, the majority

(n = 14) expressing complete CI with LR[wPip(Is)] females and a

few (n = 2) being compatible (HR = 0.89560.035) (Table 4). This

shows that LR[wPip(Is)] expresses either bidirectional CI or

unidirectional CI with field specimens from Tsoundzou. Thus, two

crossing types coexist in Mayotte, but it is likely that the

bidirectional CI crossing type is the most frequent one. Males

from Mada were also polymorphic for their CI properties but, in

contrast to Tsoundzou males, most Mada males were compatible

with LR[wPip(Is)] females (n = 18, HR = 0.80460.283) while only

two males expressed CI. So the unidirectional CI type was the

most frequent in the Mada population.

LR[wPip(Is)] and LR males show similar mating
performances

Inferior competitive ability of LR[wPip(Is)] males compared

with field males may limit the efficiency of an IIT program.

Thus, the performances of LR[wPip(Is)] and LR males, reared

in standardized conditions, were examined for different life

history traits. Longevity of LR[wPip(Is)] and LR males (n = 154

and n = 238, respectively) was investigated in conditions where

males had to survive by metabolizing nutritional reserves

accumulated during their larval life (see material and methods)

[69]. No significant difference was found (x2 = 0.04, P = 0.84;

Figure 2), suggesting that the infection by wPip(Is) did not alter

mosquito metabolism. There was also no significant difference

between LR[wPip(Is)] and LR male tibia length (n = 30 and

n = 30; Wilcoxon two-sided test, P = 0.34; Figure 3), a

parameter known to be positively correlated with mosquitoes’

adult size and reproductive success [70]. This suggests that

LR[wPip(Is)] and LR males most probably exhibit similar

mating performance.

To further test this assumption, mating competition between

LR[wPip(Is)] and LR males was investigated in laboratory cages.

Four cages containing different ratios of LR females to LR males

to LR[wPip(Is)] males (1:1:0, 1:1:1, 1:1:5 and 1:1:10) were set up.

Note that as CI occurring between LR[wPip(Is)] males and LR

females is complete, it was easy to distinguish egg-rafts produced

from compatible (LR males6LR females) or incompatible

(LR[wPip(Is)] males6LR females) crosses. Two successive

collections of egg-rafts were obtained for each cage by giving

females two distinct blood meals. There was no significant

variation in the proportion of incompatible egg-rafts between the

first and the second series of egg-rafts (Fisher exact test, all

P.0.57).

As expected, when only LR males were present, all the egg-rafts

were compatible (Table 5). In the other cages, no significant

Table 2. Comparisons of CI properties of different mosquito lines.

Females Males

LR[wPip(Is)] Is LR LR-TC

LR[wPip(Is)] 0.91960.027 (2298; 14)a 0.96760.010 (1405; 12)a 0.00060.000 (.6000; 47)b 0.91560.070 (2953; 19)a

Is 0.95860.016 (1414; 12)a 0.95160.061 (1402; 10)a 0.02160.021 (.6000; 47)b n.d.

LR 0.00060.000 (.3500; 31)b 0.00060.000 (.8000; 68)b 0.93060.031 (1423; 10)a n.d.

LR-TC 0.00060.000 (.2000; 21)b 0.00060.000 (.1200; 15)b 0.00060.000 (.3500; 31)b 0.90560.028 (1423; 10)a

LR[wPip(Is)] and Is lines were both infected by the wPip(Is) strain but had different nuclear genomes. LR-TC is a Wolbachia-uninfected line derived from the LR line. For
each cross, mean hatching rate 6 standard error, number of eggs and egg-rafts are reported.
a and brepresent statistical groups (Wilcoxon two sided-test with Bonferonni’s adjustment for multiple comparisons); n.d., not determined.
doi:10.1371/journal.pntd.0001440.t002

Table 3. Effect of LR[wPip(Is)] males ageing on CI phenotype.

Crosses Hatching rate

2-day old males 24-day old males

=LR[wPip(Is)]6R LR[wPip(Is)] 0.91960.027 (2298; 14)a{ 0.94060.030 (900; 8)a

=LR[wPip(Is)]6R LR 0.00060.000 (.3500; 31)b{ 0.00060.000 (.1000; 9)b

For each cross, mean hatching rate 6 standard error, number of eggs and egg-rafts are reported.
a and brepresent statistical groups (Wilcoxon two sided-test with Bonferonni’s adjustment for multiple comparisons).
{This cross is the same as shown in Table 2.
doi:10.1371/journal.pntd.0001440.t003
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difference between LR[wPip(Is)] and LR males’ mating capacity

was found. Indeed, the number of incompatible egg-rafts observed

was not significantly different from expected values assuming an

equal competitiveness of LR[wPip(Is)] and LR males and random

mating (Binomial test, all P.0.18; Table 5). For instance, with an

identical ratio of LR[wPip(Is)] and LR males (1:1), ca. 50% of the

egg-rafts produced by LR females were incompatible. When the

LR[wPip(Is)] males’ ratio was higher than that of LR males, i.e. at

1:5 and at 1:10, we observed ca. five and ten times more

incompatible egg-rafts than compatible ones. Taken together,

these results showed that LR[wPip(Is)] males are as fit as LR

males, at least in our laboratory conditions. These experiments

also established that LR females cannot discriminate between

compatible LR males and incompatible LR[wPip(Is)] males, a

result consistent with previous observations of random mating

between Cx. pipiens mosquitoes infected by incompatible Wolbachia

strains [37,48,71].

Discussion

The recent expansion of the Rift Valley Fever (RVF) virus

[34,35] combined with high frequencies of insecticide resistance

genes in Cx. p. quinquefasciatus populations in the SWIO [72]

encourage the development of new research to reduce mosquito

population densities. Among these approaches, the most promising

is the use of Wolbachia in an ‘Incompatible Insect Technique’ (IIT),

a species-specific control approach in which inundative releases of

incompatible males sterilize field Cx. p. quinquefasciatus females and

possibly lead to the reduction of mosquito population densities.

The present study was undertaken to explore the feasibility of

the IIT strategy on the islands of SWIO. We first acquired genetic

diversity of wPip strains infecting Cx. p. quinquefasciatus mosquitoes

from five islands including La Réunion, Mauritius, Mayotte,

Madagascar and Grande Glorieuse. All wPip strains from these

islands are genetically closely related, belonging to the wPip-I

Table 4. Reciprocal crosses between LR[wPip(Is)] line and field specimens.

Crosses Hatching rate Outcomes

= LR[wPip(Is)]6R Samuel 0.01160.006 (.9000; 75)a bidirectional CI

= Samuel6R LR[wPip(Is)] 0.00060.000 (.4400; 36)a

=LR[wPip(Is)]6R Salines 0.00760.005 (.6000; 51)a bidirectional CI

= Salines6R LR[wPip(Is)] 0.00060.000 (.4500; 37)a

=LR[wPip(Is)]6R Grande Glorieuse 0.00060.000 (.12000; 97)a bidirectional CI

= Grande Glorieuse6R LR[wPip(Is)] 0.00060.000 (.500; 40)a

=LR[wPip(Is)]6R Tsoundzou 0.00060.000 (.9000; 75)a uni- and bidirectional CI

= Tsoundzou6R LR[wPip(Is)] 0.11260.092 (.2000; 16)b

=LR[wPip(Is)]6R Mada 0.00060.000 (.5000; 44)a uni- and bidirectional CI

= Mada6R LR[wPip(Is)] 0.80460.283 (.2500; 20)c

Field specimens are from Samuel (La Réunion), Salines (Mauritius), Grande Glorieuse, Tsoundzou (Mayotte) and Mada (Madagascar). For each cross, mean hatching rate
6 standard error, number of eggs and egg-rafts are reported.
a, b and crepresent statistical groups (Wilcoxon two sided-test with Bonferonni’s adjustment for multiple comparisons). Note that, in the cross = Tsoundzou6R

LR[wPip(Is)], 14 males induced complete CI while 2 were compatible; in the cross = Mada6R LR[wPip(Is)], 2 males induced complete CI and 18 were compatible
(see text for more details).

doi:10.1371/journal.pntd.0001440.t004

Figure 2. Survival curves for LR (n = 238; dotted line) and LR[wPip(Is)] males (n = 154; solid line).
doi:10.1371/journal.pntd.0001440.g002
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group, which indicates that the wPip diversity is relatively low over

this region. However, the variability of crossing types found in

Mayotte and Madagascar shows that genetically close Wolbachia

strains can exhibit distinct CI properties, as observed in some Cx.

pipiens populations [43,52] and also in Drosophila spp. [73].

Next, we constructed a Cx. p. quinquefasciatus LR[wPip(Is)] line

that is stably infected with the wPip(Is) strain – a wPip strain

previously known to induce bi-directional CI with most La

Réunion wPip strains [43]. Care was taken to have a nuclear

genetic variability of this line as representative of La Réunion

populations as possible. LR[wPip(Is)] males were shown to be as

competitive as LR males infected by the native wPip strain, and

aging did not affect their CI properties. Finally, the sterilizing

capacity of LR[wPip(Is)] males was tested with field females from

each of the five islands: LR[wPip(Is)] males were incompatible

with all tested field females with very high embryonic mortality

(.99%). Overall, these findings demonstrate the feasibility of an

IIT program using LR[wPip(Is)] males and encourage field tests

for a Cx. p. quinquefasciatus elimination strategy in islands of the

Indian Ocean.

The geographical isolation of the four islands is an attractive

situation for developing an IIT strategy: they are at least 170 km

apart from one another and more than 400 km from continental

Africa. Thus natural migration is quite unlikely to occur, which

should facilitate a local control approach, and minimize the

reestablishment of mosquito populations as long as suitable

measures are taken for controlling introductions through com-

mercial transport (ships and airplanes, see [74]). Another positive

aspect is the small size of La Réunion (2,511 km2), Mauritius

(2,040 km2), Mayotte (374 km2) and Grande Glorieuse (7 km2),

facilitating an exhaustive follow-up of an IIT strategy; this will

obviously not be possible on Madagascar because of its size

(587,000 km2).

However, it must be noted that the success of an IIT strategy

could be affected by the accidental release of LR[wPip(Is)] females

which might lead to wPip(Is) fixation in natural populations

[1,3,75]. An efficient sexing system producing only LR[wPip(Is)]

males is thus required. Several methods including biological,

genetic and transgenic methods have been developed for sex

separation of insects [20,76]. For instance, a biological method

consisting of visual separation has been used to hand-select Cx. p.

quinquefasciatus males [48], but this method is of very limited

interest in the context of the large numbers of males needed.

Concerning genetic methods, a sex ratio distorter allele, linked to

the dominant male-determining gene, has been described in Cx.

pipiens [77] leading to .80% males in broods. For transgenic

methods, a sexing strategy based on the use of Y-linked transgenes

expressing fluorescent proteins may be considered, as shown for

sexing larvae and pupae in the medfly Ceratitis capitata [78].

However, while distorter alleles or transgenes should maximize the

production of males for releases, it remains to verify that they do

not alter male fitness. An alternative method is the combination of

irradiation with CI. Although several studies showed that

irradiation can affect male fitness, this scheme was recently tested

on Ae. polynesiensis by [79] who determined an irradiation dose

sufficient to cause sterility of females without sterilising the males

or harming their fitness.

In this paper, we present a simple diagnostic PCR based test to

genotype wPip infections using the ank2 marker that could be used

Figure 3. Tibia size of the LR and LR[wPip(Is)] males. Thirty
individuals have been measured for each line. a represents statistical
group (Wilcoxon two sided-test).
doi:10.1371/journal.pntd.0001440.g003

Table 5. Competition cages with different ratio of LR[wPip(Is)] males.

LRR:LR=: LR[wPip(Is)]= ratio
Number of adults (number
of LRR, LR=, LR[wPip(Is)]=)

Number of egg-rafts
(number of eggs)

Observed frequency of
infertile egg-rafts (n)

Expected frequency
of infertile egg-rafts P-value*

First blood meal

1:1:0 200 (100, 100, 0) 72 (.7500) 0.00 (72) 0.00 0.99

1:1:1 300 (100, 100, 100) 90 (.9000) 0.52 (47) 0.50 0.75

1:1:5 350 (50, 50, 250) 43 (.4500) 0.91 (39) 0.83 0.22

1:1:10 600 (50, 50, 500) 45 (.4600) 0.98 (44) 0.91 0.18

Second blood meal

1:1:0 _ 38 (.7500) 0.00 (38) 0.00 0.99

1:1:1 _ 42 (.9000) 0.45 (19) 0.50 0.64

1:1:5 _ 12 (.4500) 0.92 (11) 0.83 0.70

1:1:10 _ 14 (.4600) 1.00 (14) 0.91 0.63

*, comparisons between the observed and expected frequencies of infertile egg-rafts through exact binomial test.
doi:10.1371/journal.pntd.0001440.t005
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to regularly monitor the accidental introduction of the wPip(Is)

strain in wild populations. Such a presence would be monitored by

analysing wPip strain diversity in mixtures of larvae from natural

breeding sites. In the case of the presence of field wPip(Is)-infected

individuals, LR[wPip(Is)] male releases would have to be

suspended until the elimination of wPip(Is) individuals in the

controlled area. Indeed, the bidirectional CI between LR[wPip(Is)]

line and field mosquitoes will prevent the establishment of wPip(Is)

infected individuals in these islands.

Conclusion
The study presented here supports the feasibility of an IIT

strategy using the LR[wPip(Is)] males and targeting field Cx. p.

quinquefasciatus populations, a species of medical and veterinary

concern in the SWIO islands. This method now needs to be

further tested in semi-field conditions in order to optimize several

key parameters, i.e. the number of males to be released as well as

the timing of releases. Recently, new semi-field cages were

developed to measure the impact of the life-shortening Wolbachia

wMelPop strain on populations of Aedes aegypti [80]. Such cages

provide a realistic transitional platform between laboratory and

field conditions. The risk of accidental releases of females needs

also to be limited by developing an efficient sexing method to

prevent any unintentional Wolbachia replacement.

Supporting Information

Figure S1 Backcrossing procedure. Mosquito nuclear

backgrounds are indicated by colours: black represents Cx. p.

quinquefasciatus nuclear background (LR and LR-TC lines) and red

represents Cx. p. pipiens nuclear background (Is line). Wolbachia

infection types are indicated by w-labelled symbols: black-filled

symbols represent the wPip(LR) strain and red-filled symbols the

wPip(Is) strain. Note that the LR[wPip(Is)] line carries the LR

nuclear background and the wPip(Is) infection and could be used

to produce incompatible males for field release; LR-TC is an

uninfected mosquito line.

(TIF)

Figure S2 Genetic patterns of Culex pipiens lines and
their Wolbachia strains. A, PCR-RFLP of the Cx. pipiens ace-2

gene digested by ScaI enzyme; B, PCR-RFLP of the Cx. pipiens

Ester2 gene digested by AvaII enzyme; C, PCR products of the

Wolbachia ank2 gene. The LR[wPip(Is)] line carries the LR nuclear

background and the wPip(Is) infection; LR-TC is an uninfected

mosquito line. M, molecular weight markers; kb, kilo bases.

(TIF)

Table S1 Genes and primers of Wolbachia and Culex
pipiens.

(DOC)
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