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Three-dimensional structures of RNA-protein complexes are crucial for understanding their diverse
functions. However, the number of the RNA-protein complex structures solved by experiments is still
limited at present. To solve this problem, some computational protocols have been proposed to predict
three-dimensional RNA-protein complex structures. But the prediction accuracies of these protocols are
lower. The reason may be that these protocols don’t fully incorporate the features of RNA-protein interfaces.
Here we propose a novel computational protocol for three-dimensional RNA-protein complex structure
prediction, 3dRPC, which applies new schemes to the discreteness of molecule and charge in docking
algorithm and the construction of the reference state in scoring function in order to take account of the
features of RNA-protein interfaces. This protocol achieves a high accuracy comparable to the well-developed
algorithms for three-dimensional structure prediction of protein-protein complexes when tested on a
RNA-protein docking benchmark.

T
he recent discovery of various noncoding RNAs requires an understanding of their biological functions by
exploring their three-dimensional (3D) monomer and complex structures1,2. Since the numbers of the solved
3D monomers and complex structures of noncoding RNAs are quite limited at present, many computational

prediction methods have been proposed3,4. For 3D structures of RNA-protein complexes, the accuracies of the
existing prediction methods5,6 are much lower compared with the well-developed ones for protein-protein
complex structure prediction7–12. One of the main reasons is that these methods have been developed based on
those for protein-protein complexes and have not fully incorporated specific features of RNA-protein interfaces,
e.g., they have directly used the docking procedures for protein-protein complexes.

The features of RNA-protein interfaces are significantly different from those of protein-protein interfaces in
several aspects:

(1) The atom packing of RNA-protein interfaces is looser than that of protein-protein interfaces. Fig. 1a shows
that RNA-binding proteins and protein-binding proteins have similar accessible surface areas (ASA) if
they have similar number of atoms. However, protein-binding proteins have larger buried surface areas
(BSA) than RNA-binding proteins on average when they have similar number of interface atoms (Fig. 1b).
Other studies have also indicated that RNA-protein interfaces have poorer atom packing than protein-
protein interfaces by using different measures, like gap volume index1,13 and buried fraction and packing
index14.

(2) Positively charged amino acids prefer to appear at RNA-protein interfaces15, on which the electrostatic
interactions are usually much stronger than that on protein-protein interfaces, due to the large negative
charges of the phosphate groups in RNA backbones at physiological pH. The residue preferences at RNA-
protein interface have been analyzed in several papers1,2,14–19. These studies have shown that the most
preferred residues at the interface are the positively charged residues arginine (R) and lysine (K) and the
least residues are the negatively charged residues aspartic acid (D) and glutamic acid (E).

(3) Stacking interactions of the bases of nucleotides with aromatic rings of charged amino acids occur at RNA-
protein interfaces. It has been shown that the three residues H, Y and W can participate in p-p stacking
interactions with the bases of nucleotides through their aromatic rings at RNA-protein interfaces20.
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(4) The secondary structure states of amino acid residues and
nucleotides are important in RNA-protein interactions21,22,5.
For examples, Iwakiri et al.21 found that the dented protein
surfaces prefer unpaired bases to paired ones at protein-RNA
interfaces.

These features of RNA-protein interfaces are indispensable to
accurate prediction of 3D RNA-protein complex structures.

Computational prediction of complex structures can be divided
into two steps: the first step is decoy (or candidate) generation using
docking procedures and the second is decoy evaluation using scoring
functions. So far, some scoring functions for 3D structure predictions
of RNA-protein complexes have been proposed but the docking
procedures are borrowed directly from those for protein-protein
complexes. Besides, these scoring functions have not fully incorpo-
rated the features of RNA-protein interfaces. For examples,
Tuszynska et al.6 have proposed a knowledge-based potential
DARS-RNP by considering only distance- and angle-dependence
between amino acid residues and nucleotides but without secondary
structure information of RNA. Li et al.5 have proposed a propensity-
based statistical potential by considering secondary structure states
of amino acid residues and nucleotides explicitly but using a contact
potential instead of more accurate distance- and angle-dependent
one. Furthermore, both of them generate the decoys by using the
docking procedures (GRAMM8 or FTDock9) developed previously
for protein-protein complexes.

In this paper we present a novel protocol for predicting 3D RNA-
protein complex structures, named as 3dRPC, which includes a
docking procedure--RPDOCK, and a scoring function--DECK-RP.
RPDOCK is specific to RNA-protein complexes and it uses new
schemes for discretizing molecules and charges in order to take into
account geometric and electrostatic complementarities of RNA-pro-
tein interfaces as well as stacking interactions of the bases of nucleo-
tides with the aromatic rings of charged amino acids; DECK-RP is a
novel distance- and environment-dependent, coarse-grained and
knowledge-based potential for RNA-protein complexes that uses
an improved reference state to incorporate propensities, secondary
structure states and interface preferences of amino-acid residues and
nucleotides. The success rate of 3dRPC is comparable to those of the
best algorithms for protein-protein complex structure prediction10,12

when tested on a RNA-protein docking benchmark.

Results
RPDOCK. RPDOCK is a novel docking procedure specific to RNA-
protein complexes. In previous studies, Li et al.5 and Perez-Cano
et al.15 used FTDock and Tuszynska et al.6 applied GRAMM to
generate decoys of protein-RNA complexes. These docking proce-
dures were originally designed for protein-protein complexes and are
not suitable for RNA-protein complexes for the reasons mentioned
above. RPDOCK incorporates the features specific to RNA-protein
interfaces (including looser atom packing at interface, preference of
positively charged amino acid residues at RNA-protein interfaces
and stacking interactions between the bases of nucleotides and
aromatic rings of charged amino acids). We have benchmarked the
performance of RPDOCK, GRAMM and FTDock on two unbound
testing sets: one was provided by Perez-Cano et al.23 (Testing Set I,
Supplementary Table S1) and the other by Huang and Zou24 (Testing
Set II, Supplementary Table S2). For FTDock, docking is performed
with default parameters, 1Å grid step and electrostatics. The angle
interval of rotation searching is 12 degrees and top 3 poses are kept
per rotation. Since original FTDock procedure does not include
atomic charges for RNA, we assign the partial atomic charges from
AMBER ff03 force field25 to the corresponding atoms of nucleotides.
For GRAMM, the value of grid step is set to be the minimal value
allowed by the program, repulsion parameter to 15 and angle interval
to 10 degrees. Protein chains are regarded as receptors and RNA
chains as ligands for all these methods.

The performances of RPDOCK, GRAMM and FTDock over the
two testing sets are shown in Fig. 2a and 2b. Clearly RPDOCK has
much higher (about 20%) success rate than the other two docking
procedures on both testing sets, where the success rate refers to the
percentage of complexes in testing set with successful predictions of
at least one near-native structure by a given prediction number. For
examples, at prediction number NP 5 100, the success rates of
FTDock, GRAMM and RPDOCK are 19.7%, 30.3% and 50% on
Testing Set I (Fig. 2a) and are 25%, 36% and 56% on Testing Set II
(Fig. 2b), respectively. A good docking procedure can produce more
near-native structures for a given prediction number, which is usu-
ally taken as 1000 or less. The benchmarking results indicate that
RPDOCK can produce at least one near-native structure for 10%–
20% more complexes than GRAMM. Besides, the hit counts of
RPDOCK and GRAMM are similar, and are much higher than
FTDock for all prediction numbers (Fig. 3a and 3b).

DECK-RP. As the docking procedure above generates a large
number of decoys as the candidates of 3D RNA-protein complex
structures, it requires an effective scoring function to evaluate
these candidates and pick out the correct one. Based on our previ-
ous work on protein-protein scoring function DECK (Distance- and
Environment-dependent, Coarse-grained and Knowledge-based)26,
we have developed a DECK potential for RNA-protein complexes,
named as DECK-RP, which has combined the advantages of the best

Figure 1 | Differences between RNA-protein interface and protein-
protein interface. (a) Accessible surface area (ASA) versus number of

atoms; (b) Buried surface area (BSA) versus number of interface atoms.

The statistical data come from 118 RNA-binding proteins from our

training set and 124 protein-binding proteins from benchmark 3.0.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1887 | DOI: 10.1038/srep01887 2



two existing potentials, Li’s potential5 and DARS-RNP6 (see the
section Methods for the details).

In order to evaluate the performance of DECK-RP, we compare it
with Li’s potential and DARS-RNP on RPDOCK decoys. The decoys
are generated as follows: we generate top 1000 decoys for each case in
the testing set by RPDOCK and the cases with at least one near-native
pose are retained for further scoring evaluation. The evaluation
results on the two testing sets are shown in Fig. 2c and 2d. For
Testing Set I (Fig. 2c), the success rates at Np 5 1, 10 and 100 are
about 23%, 48% and 75% for DECK-RP, 14%, 36% and 82% for
DARS-RNP, and 16%, 30% and 61% for Li’s potential, respectively.
DECK-RP is about 10% better at lower prediction number (Np , 30)
and DARS-RNP outstands at larger prediction number (Np . 30).
On Testing Set II (Fig. 2d), the success rates at Np 5 1, 10 and 100 are
32%, 52% and 86% for DECK-RP, 38%, 56% and 76% for DARS-
RNP, and 10%, 32% and 60% for Li’s potential, respectively. In this
case DARS-RNP is slightly better when Np , 10 but DECK-RP excels
when Np . 10. It is clear that the success rates of DECK-RP and
DARS-RNP are higher than that of Li’s potential for almost all
prediction numbers. On average, DECK-RP can achieve higher

prediction accuracy, especially in small prediction numbers, which
is the aim of an effective scoring function and the expectation of
practical applications. In addition, on both testing sets the hit counts
of the DARS-RNP and DECK-RP are similar while those of Li’s
potential are lower (Fig. 3c and 3d).

The protocol 3dRPC: RPDOCK&DECK-RP. In the above we have
tested and compared the performances of the three docking
procedures (FTDock, GRAMM, RPDOCK) and three scoring
functions (DARS-RNP, Li potential, DECK-RP) separately. In the
following we investigate the combined behaviors of docking
procedures and scoring functions. Originally, Li et al.5 used their
potential to discriminate FTDock decoys while Tuszynska et al.6

applied their DARS-RNP potential to evaluate GRAMM decoys.
Therefore, we compare our docking protocol, RPDOCK&DECK-
RP, with the protocols FTDock&Li and GRAMM&DARS-RNP on
the two unbound testing sets. For all three protocols, top 1000 poses
are generated by their docking methods and then evaluated by their
scoring functions. For Testing Set I (Fig. 2e), RPDOCK&DECK-RP
has successfully predicted 15%, 30% and 50% of the cases within top

Figure 2 | Success rate comparisons over Testing Set I (a, c, e) and Testing Set II (b, d, f). (a) and (b) are docking success rates of FTDock,

GRAMM and RPDOCK. (c) and (d) are scoring success rates over RPDOCK decoys. Li, DARS-RNP and DECK-RP are compared. For each case, top 1000

structures are generated by RPDOCK and are evaluated by corresponding scoring functions. The ranking result directly by RPDOCK is also shown as a

reference. (e) and (f) are protocol success rates of FTDock&Li, GRAMM&DARS-RNP and RPDOCK&DECK_RP. For each case, top 1000 structures are

generated by the corresponding docking procedures and are evaluated by the scoring functions.

www.nature.com/scientificreports
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1, 10 and 100 predictions, FTDock&Li 5%,17%and 32%, and
GRAMM&DARS-RNP 14%, 21% and 42%, respectively. For
Testing Set II (Fig. 2f), RPDOCK&DECK-RP has successfully
predicted 22%, 36% and 60% of the cases within top 1, 10 and 100
predictions, FTDock&Li 4%, 11% and 26%, and GRAMM&DARS-
RNP 21%, 26% and 36%, respectively. These results indicate that the
success rate of RPDOCK&DECK-RP is significantly higher than
those of the other two protocols and is already comparable to
those of the best protocols for protein-protein complex structure
prediction10,12, e.g., the success rate of ZDOCK is about 20% for
top 10 predictions and that of 3dRPC is more than 30%12 (see
Fig. 2 in ref. 12). Fig. 4 shows two (one easy and one medium)
cases in Testing Set II predicted successfully by our protocol.
Besides, the hit counts of RPDOCK&DECK-RP and GRAMM&
DARS-RNP are similar, and are much higher than FTDock&Li for
all prediction numbers (Fig. 3e and 3f). Further improvement of the
proposed 3dRPC is also needed as the hard cases in Testing Set II is
yet to be predicted (Supplementary Table S3) because of the large
conformational changes in bound and unbound states.

Discussion
The results above indicate that the specific features of RNA-protein
interface are very important in accurate prediction of 3D RNA-pro-
tein complex structures. In RPDOCK, we have considered the fact
that the atom packing of RNA-protein interface is looser than that of
protein-protein interface. For example, FTDock for protein-protein
docking uses a FFT-based geometric docking algorithm that is the
basis of all popular FFT-based docking methods7 and, among the
default FTDock parameters, surface thickness is set as 1.5 Å and the
value of surface grid point as 1. The parameter ‘‘surface thickness’’
accounts for the degree of penetration and the ‘‘value of surface grid
point’’ for the degree of clash. RPDOCK also uses the FFT-based
geometric docking algorithm but, in order to characterize looser
packing of the RNA-protein interfaces, surface thickness is set as
1.3 Å and the value of surface grid point as 3, respectively,according
to the test on the bound training set. Fig. S1 shows the comparison of
the fractions of the fully buried atoms in the interface atoms for the
top-one complex structures predicted by FTDock and RPDOCK
with those for the measured ones in the bound training set. It

Figure 3 | Hit count comparisons over Testing Set I (a, c, e) and Testing Set II (b, d, f). (a) and (b) are docking hit counts of FTDock, GRAMM and

RPDOCK. (c) and (d) are scoring hit counts over RPDOCK decoys. Li, DARS-RNP and DECK-RP are compared. For each case, top 1000 structures are

generated by RPDOCK and are evaluated by corresponding scoring functions. Ranking result by RPDOCK is also shown as a reference. (e) and (f) are

protocol hit counts of FTDock & Li, GRAMM & DARS-RNP and RPDOCK & DECK_RP. For each case, top 1000 structures are generated by the

corresponding docking procedures and are evaluated by the scoring functions.

www.nature.com/scientificreports
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indicates that the packing of the complex structures predicted by
FTDock is denser than that of the measured ones while that by
RPDOCK is looser. In other words, the packing of the complex
structures predicted by RPDOCK is indeed looser than that by
FTDock.

Our statistical potential for RNA-protein complexes, DECK-RP,
uses a novel reference state, which includes a decoy-based compon-
ent and a mol-fraction corrected component. The decoy-based com-
ponent takes account of all decoys in the training set as the reference
state as usually while its novel point is integrating the advantages of
the best two existing potentials (Li’s potential5 and DARS-RNP6), i.e.,
classifying amino acids and nucleotides into different types accord-
ing to their propensities and secondary structure states, The mol-
fraction corrected component takes account of the interface concen-
tration or preferences of amino-acid residues and nucleotides, which
has not been considered by existing potentials. The benchmark
shows that DECK-RP indeed has higher prediction accuracy than
existing potentials on average, especially in small prediction numbers
(Fig. 2c and Fig. 2d).

In summary, 3dRPC—the proposed protocol for the prediction of
3D structure of RNA-protein complexes incorporated unique fea-
tures of RNA-protein interfaces and achieved an accuracy signifi-
cantly higher than the existing protocols. The ideas of our methods
may be extended to the prediction of 3D DNA-protein complex
structures.

Methods
RPDOCK. RPDOCK includes both geometric complementarity (GC) and
electrostatics (ELEC):

SRPDOCK~SGCzv|SELEC ð1Þ

where SRPDOCK is the score of RPDOCK, SGC and SELEC are the scores of geometric and
electrostatic complementarities, respectively. The weighted factor v is set to 1000,
which is to make the two scores contribute equally since the order of magnitude of SGC

is about 102 and SELEC 1021.
We apply the procedures proposed by Gabb et al.9 to calculate SGC and SELEC but

with a new scheme for discretizing molecules and charges in order to take into
account of the specific features of RNA-protein interfaces. In detail, SGC is calculated
as9

SGC~
XN

l~1

XN

m~1

XN

n~1

RGC
l,m,n|LGC

l,m,n ð2Þ

where RGC
l,m,n and LGC

l,m,n are the values of each grid node assigned when the receptor and
ligand molecules are discretized into three-dimensional (3D) grids with a size of
N|N|N and they are set as follows:

RGC
l,m,n~

a suface of receptor

{15 core of receptor

0 open space

8><
>:

LGC
l,m,n~

a inside of ligand

0 open space

� ð3Þ

Any grid node located within 1.8Å of a heavy atom is considered to be inside of the
molecule9. In order to discriminate grid nodes at the surface of receptor from those at
the core, a 1.3Å surface layer is used. Furthermore, in order to consider stacking
interactions between aromatic residues and bases, we assign different values to a in
eq.(3) according to:

a~
4 aromatic side chain or unpaired base

3 otherwise

�
ð4Þ

The electrostatic score is calculated as the electrostatic interactions between receptor
and ligand:

SELEC~
XN

l~1

XN

m~1

XN

n~1

RELEC
l,m,n |LELEC

l,m,n

RELEC
l,m,n ~

wl,m,n entire grid excluding core of receptor

0 core of receptor

(

LELEC
l,m,n ~ql,m,n

ð5Þ

where wl,m,n is the electrostatic potential on grid node exerted by all charges on
receptor and ql,m,n is the charge on ligand. Similar to Gabb et al.9, wl,m,n is calculated by
Coulombic model with distance-dependent dielectric:

wl,m,n~

P
j

qj

e rjð Þrj
rj§2

P
j

qj

2e rjð Þ rj~2

8>><
>>:

e rj
� �

~

4 : 2vrjƒ6

38rj{224 : 6vrjv8

80 : rj§8

8>><
>>:

ð6Þ

where qj is the charge on atom j and rj is the distance between grid node and atom j.
Different from Gabb et al.9, the charge of each atom on ligand is discretized on eight
nearest grid nodes by:

ql,m,n~
X

j

g-dxð Þ g-dy
� �

g-dzð Þ
g3

|qj dx ,dy ,dzƒg
� �

ð7Þ

where qj is the charge of atom j, dx, dy, dz are the distance between atom j and grid node
along each dimension, respectively, and g is the grid length. Furthermore, the charges
used in this study are partial atomic charges extracted from AMBER ff03 force field25.

In our sampling procedure, the receptor is fixed on the origin and the ligand is
rotated by 12 degree after a translational scan. Non-redundant rotation angles are
considered. For each rotation, we keep top 3 poses according to the RPDOCK score

Figure 4 | Two (one easy and one medium) cases in Testing Set II successfully predicted by our protocol (RPDOCK & DECKRP). The dark color

represents native structures and the light color represents predicted ones. Proteins of predicted structures are superimposed onto native structures.

(a) Complex of tRNA delta(2)-isopentenylpyrophosphate transferase (PDB code 2ZM5, easy case). Our protocol predicted the first near-native structure

(RMSD 5 8.2Å) at NP 5 1. (b) Complex of L-seryl-tRNA(Sec) kinase and selenocysteine tRNA (3ADD, medium case). Our protocol predicted the first

near-native structure (RMSD 5 6.8 Å) at NP 5 3.

www.nature.com/scientificreports
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SRPDOCK. In order to accelerate the calculation of SGC and SELEC, Fast Fourier
Transform (FFT) is used7.

Scoring function. Based on our previous work on protein-protein docking scoring
function DECK (Distance- and Environment-dependent, Coarse-grained and
Knowledge-based)26, we have developed a DECK potential for RNA-protein
complexes, DECK-RP. The key part of DECK-RP is a novel reference state, which
includes a decoy-based component and a mol-fraction corrected component. The
decoy-based component takes account of all decoys in the training set as the reference
state as usually and the types of amino acids and nucleotides according to their
propensities and secondary structure states. The mol-fraction corrected component
takes the interface concentration or preferences of amino-acid residues and
nucleotides into consideration. The 20 kinds of amino acids are clustered into 7 types
based on the dipoles and volumes of the side chains27 (Supplementary Table S5) and
their secondary structure states are categorized into 3 types based on the their
propensity at interface5. The secondary structure state of an amino acid is calculated
by DSSP28. The 3 types are denoted as X (with DSSP notations ‘‘I’’, ‘‘G’’ and ‘‘S’’), Y
(‘‘E’’, ‘‘B’’, ‘‘T’’ and ‘‘ ’’), Z (‘‘H’’). For nucleotides, four types of nucleotides and two
types of secondary structure states (paired and unpaired (including non-Crick-
Watson pairs)) are considered5. The secondary structure state of a nucleotide is
calculated by X3DNA29. Therefore, the total number of amino acid-nucleotide pair is
168 (7 types of amino acids in three secondary structure states and 4 types of
nucleotides in two secondary structure states). Furthermore, amino acids and
nucleotides are represented by coarse-grained models: amino acid is represented as
one pseudo-atom located at the centroid of the side chain and nucleotide at the
centroid of the base.

Based on the definitions above, the energy e(i, j, r) of an amino acid-nucleotide pair
(i, j) at a distance r is estimated as:

e i,j,rð Þ~-RTln
Pobs i,j,rð Þ
Pexp i,j,rð Þ

� �
ð8Þ

where Pobs(i, j, r) and Pexp(i, j, r) are observed and expected probabilities of amino
acid-nucleotide pair (i, j) at a distance r, respectively; R is the Boltzmann factor, T is
temperature and RT is set to 1.The interaction distance r is divided into 20 bins with a
bin-size of 1Å.

The observed probability of amino acid-nucleotide pair (i,j) at a distance r is
calculated as:

Pobs i,j,rð Þ~ Nm i,j,rð ÞP
i,j

Nm i,j,rð Þ ð9Þ

where Nm(i,j,r) is the number of amino acid-nucleotide pair (i,j) at a distance r in
near-native structures of the training set.

The expected (or reference-state) probability of amino acid-nucleotide pair (i,j) at a
distance r is calculated as:

Pexp i,j,rð Þ~ Nd i,j,rð Þ
fi rcutð Þfj rcutð Þ

fi rð Þfj rð Þ

� �aP
i,j

Nd i,j,rð Þ
ð10Þ

where Nd(i,j,r) is the number of amino acid-nucleotide pair (i,j) at a distance r in all
decoys, fi/j(r) is the mol-fraction of amino acid type i or nucleotide type j and
calculated as:

fi rð Þ~
X

j

Nd i,j,rð Þ
,X

j,r

Nd i,j,rð Þ

fj rð Þ~
X

i

Nd i,j,rð Þ
,X

i,r

Nd i,j,rð Þ

ð11Þ

The cutoff rcut is set to 15Å, a is a parameter to be optimized, which is done on our
training set as follows: Assuming that at distance r . rcut, the interaction between
amino acid-nucleotide pair (i,j) approaches to zero, we construct the objective
function f(a) as:

f að Þ ¼
X

i,j

Xr~20

r~rcut

Nm i,j,rð ÞP
i,j

Nm i,j,rð Þ

Nd i,j,rð Þ
fi rcutð Þfj rcutð Þ

fi rð Þfj rð Þ

� �aP
i,j

Nd i,j,rð Þ

{1

8>>>>>>><
>>>>>>>:

9>>>>>>>=
>>>>>>>;

2

ð12Þ

For a given rcut, we can find a to minimize f(a). For rcut 5 15Å, we get a 5 20.4 after
optimization.

Datasets. Three datasets are used in this work. One is a bound training set, which is
used to optimize docking parameters and generate scoring function. The other two
are unbound testing set, which is used to test our method. The bound training set is
built by us from all the RNA-protein complex structures in PDB database30. When we
derive the training set, redundancy between the testing set and training set has been
considered. First, we extract all protein-RNA complexes that meet the following
criterions: not from ribosome, resolution better than 3 Å or NMR structures, protein

chain size larger than 50 amino acids and RNA chain size larger than 6 nt. Then, we
remove the cases that share sequence identity of 30% or higher with those from
Testing Set I. Finally, we cluster the cases by sequence identity to get the non-
redundant training set. Two complexes with protein sequence identity larger than
70% are grouped into the same cluster. Our training set is composed of 118 bound
protein-RNA complexes (Supplementary Table S4). One of the testing sets (Testing
Set I) is taken from the protein-RNA docking benchmark II developed by Perez-Cano
et al.23 (except homology modeling cases and five cases with biological assembly). It is
composed of 66 X-ray or NMR experimental structures, including five unbound-
unbound cases, four unbound-pseudo-unbound cases and 57 unbound-bound cases
(Supplementary Table S1). The other testing set (Testing Set II) is a non-redundant
dataset for benchmarking protein-RNA computational docking published by Huang
and Zou recently24 (Supplementary Table S2). The redundancy is removed by 30%
sequence identity and the unbound structures are obtained by using BLAST, with a
criterion of sequence identity large than 90% and sequence alignment coverage large
than 90%. The case with at least one unbound structure is retained. The final dataset
consists of 72 protein-RNA complexes, including 52 unbound-unbound cases and 20
unbound-bound cases. Furthermore, according to the conformational change
between bound and unbound structures, the dataset is classified into three categories:
49 easy, 16 medium and 7 difficult.

Performance evaluation. The performance of different methods is evaluated by
success rate and hit count, which are used commonly in protein-protein docking.
Given the number of predictions NP, success rate is the percentage of complexes in the
benchmark, for which at least one hit can be found within NP. Hit count is the average
number of hits per complex within NP. And the hit is defined as near-native
prediction with RMSD (Root Mean Square Deviation) of RNA below 10 Å after
superposition of the proteins. The superposition involves the Ca atoms of proteins
and the RMSD calculation accounts the backbone atoms of RNA except the
phosphate group.

BSA and interface atoms. We have calculated the relations between buried surface
area (BSA) and number of interface atoms for 118 RNA-binding proteins in our
training set. For comparison, the same has also been done for 124 protein-binding
proteins from benchmark 3.031. Buried surface area (BSA) is defined as the difference
between the accessible surface area (ASA) in apo structure and in complex structure.
In our calculation, we take the bound structure (without binding partner) as apo
structure. The accessible surface area (ASA) is calculated using NACCESS. An atom
with BSA . 0 (and ASA in apo structure being not equal to 0) is considered as an
interface atom. And an interface atom is defined as a buried interface atom if ASA of
the atom in complex structure is equal to 0.

Software availability. The programs of the protocol 3dRPC can be downloaded from
our web site http://biophy.hust.edu.cn/download.html.
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