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Graphical Abstract

1. A series of advanced maternal age (AMA)-related changes are identified in
the parental and offspring’s DNA methylome, as well as the maternal and
offspring’s transcriptome.

2. Specific DNA methylome and transcriptional changes present intergenera-
tionally correlation.

3. Part of the AMA-related differentially expressed genes shared by mother and
offspring groups, such as HTRA3, were already significantly changed in MII
oocyte or blastocyst.
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Abstract
Background: The number of women delivering at advanced maternal age
(AMA; > = 35) continuously increases in developed and high-income coun-
tries. Large cohort studies have associated AMA with increased risks of various
pregnancy complications and adverse pregnancy outcomes, which raises great
concerns about the adverse effect of AMA on the long-term health of offspring.
Specific acquired characteristics of parents can be passed on to descendants
through certain molecular mechanisms, yet the underlying connection between
AMA-related alterations in parents and that in offspring remains largely
uncharted.
Methods:Weprofiled theDNAmethylomes of paired parental peripheral bloods
and cord bloods from 20 nuclear families, including 10 AMA and 10 Young,
and additional transcriptomes of 10 paired maternal peripheral bloods and cord
bloods.
Results: We revealed that AMA induced aging-like changes in DNA methy-
lome and gene expression in both parents and offspring. The expression
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changes in several genes, such as SLC28A3, were highly relevant to the dis-
order in DNA methylation. In addition, AMA-related differentially methylated
regions (DMRs) identified in mother and offspring groups showed remarkable
similarities in both genomic locations and biological functions, mainly involv-
ing neuron differentiation, metabolism, and histone modification pathways.
AMA-related differentially expressed genes (DEGs) shared by mother and off-
spring groups were highly enriched in the processes of immune cell activation
and mitotic nuclear division. We further uncovered developmental-dependent
dynamics for the DNAmethylation of intergenerationally correlated DMRs dur-
ing pre-implantation embryonic development, as well as diverse gene expression
patterns during gametogenesis and early embryonic development for those com-
monAMA-relatedDEGs presenting intergenerational correlation, such asCD24.
Moreover, some intergenerational DEGs, typified by HTRA3, also showed the
same significant alterations in AMAMII oocyte or blastocyst.
Conclusions: Our results reveal potential intergenerational inheritance of both
AMA-related DNA methylome and transcriptome and provide new insights to
understand health problems in AMA offspring.

KEYWORDS
advanced maternal age, DNA methylation, intergenerational inheritance, transcriptome

1 INTRODUCTION

Advanced maternal age (AMA) is defined as a mater-
nal age of 35 years or older at the time of delivery.1
During the past three decades, the percentage of AMA
mothers has rapidly increased in many developed and
high-income countries, reaching 23% in the United States
in 2014 and as high as 33.4% in Korea in 2019.1,2 How-
ever, aging, as an inevitable biological progress, comes
with the accumulation of organ functional decline and
cell damage, such as cardiovascular homeostasis disrup-
tion, systemic inflammation, mitochondrial dysfunction
and so on.3,4 Human plasma proteome research further
revealed nonlinear changes during the aging process, with
one noticeable crest of protein expression changes around
age 34.5 In fact, AMA is well recognized as a major risk
factor for various pregnancy complications and adverse
pregnancy outcomes including preeclampsia, gestational
diabetes mellitus, miscarriage and preterm delivery.6,7
Numerous studies have indicated that specific parental

environmental experiences and physiological changes,
such as stress and starvation, could be engraved in non-
genetic mechanisms and transmitted to progeny, thereby
influencing their phenotypes.8 Aging-related alterations
are also reflected by various molecular hallmarks, includ-
ing genomic instability and increased aberrant transcrip-
tional andDNAmethylation. TheDNAmethylomepattern

of a specific set of CpGs is even referred to as the “epi-
genetic clock” for its accuracy in estimating biological
age.9 Previous studies have revealed that global epigenetic
reprogramming during gametogenesis and embryo devel-
opment remodel epigenetic patterns.10,11 However, 20%–
30% of DNA methylation can escape from the first epi-
genetic reprogramming during preimplantation embryo
development, which is regarded as one important mech-
anism of epigenetic intergenerational inheritance to pass
on the specific parental features to the offspring.12,13 Only
a few parental DNA methylation patterns are able to
avoid themuch stronger second round of epigenetic repro-
gramming that occurs during gametogenesis.11 This may
mediate the inheritance of some special phenotypes over
multiple generations, a process defined as the epigenetic
transgenerational inheritance.13 Consistent with this, pre-
vious studies have pointed out that parental age might
disturb different characteristics of offspring,14 such as the
famous “Lansing effect,” which describes the shorter lifes-
pan of the offspring of older parents,15 and abnormal
offspring behavioural phenotypes associated with DNA
methylation abnormalities in sperm from older fathers.16
In particular, women over the age of 35 generally suf-
fer from a dramatic decrease in fecundity.17 Apart from a
well-documented increase in aneuploid,18 AMA has been
reported to be accompanied by dysregulation of both the
DNAmethylome and transcriptome in oocytes,19–25 as well
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as an overall decrease in gene expression in blastocysts.26
Meanwhile, researchers have also claimed that offspring
delivered by AMA mothers would face higher risks of
autism and impaired cardiometabolic health.27,28
Unexpectedly, studies on the epigenomic and transcrip-

tomic impacts of AMA on either pregnant women or
offspring are very scarce,29,30 and discussions about the
concrete relationships of molecular alterations in par-
ents and offspring are even less well studied. In fact,
to date, only three research groups have identified CpG
sites that were correlated with maternal age, in neona-
tal heel blood, cord blood and the peripheral blood of
adult daughters, separately.31–33 Hereby, we performed
integrated analysis of the transcriptome and DNA methy-
lome of nuclear families and revealed the potential phe-
nomenon of intergenerational inheritance of AMA-related
alterations in both the DNA methylome and transcrip-
tome.We also confirmed that specific abnormal changes in
offspring might originate from the disturbance of oocytes
or embryos by AMA. Hence, our data provide valuable
resources and new insights for understanding the molec-
ular mechanisms underlying the influence of AMA and
interpreting the health problems in the later life of AMA
offspring.

2 RESULTS

2.1 AMA-related abnormal changes in
the parental DNAmethylome

To investigate the influence of AMA on the DNA methy-
lome of parents and offspring, we applied reduced-
representation bisulphite sequencing (RRBS) to umbilical
cord blood (UCB) samples and corresponding parental
peripheral blood (PPB) samples from nuclear families.
Those samples were further classified into AMA and
Young groups based on maternal age (AMA: maternal
age of 36–43 years; Young: maternal age of 22–29 years)
(Figure 1A). Therewere no significant differences inmater-
nal BMI or any clinical features of offspring between the
AMAandYoung groups (see Table S1 formore details). The
genome-wide copy number variations (CNVs) were nor-
mal in all samples (Figure S1A). The genomewas then split
into 200 bp bins, and only bins containingmore than three
CpG sites and conserved in 80% of the samples in each
group were used for downstream analysis (Figure S1B).
Principal component analysis (PCA) and hierarchical

clustering analysis showed no obvious separation of the
AMA and Young groups in either maternal or paternal
samples (Figure 1B and Figure S2A,B). The global patterns
of DNA methylation levels were also similar among sam-
ples (Figure S2C,D). The mean value was approximately

75% in each group, and it was slightly lower in the AMA
group than in the Young group for both maternal and
paternal samples, but the difference did not reach statis-
tical significance (Figure 1C,D). Meanwhile, the overall
DNA methylation level around the gene body was simi-
lar among the four groups (Figure 1D). Interestingly, it was
notable that the averagemethylation levels of all four kinds
of retrotransposons (including LTR, LINE, SINE and SVA)
were significantly lower in AMA-mother than in Young-
mother, while no differences were observed in the father
group (Figure 1E and Figure S2F).
We next performed intergroup comparisons to eluci-

date the definitive influence of AMA, and identified 516
and 464 AMA-related differentially methylated regions
(DMRs) in the mother and father groups, respectively
(|df|> = 15% and q value < .05; for mothers: hyper
DMRs (45.7%), n = 236; hypo DMRs (54.3%), n = 280; for
fathers: hyper DMRs (44.4%), n= 206; hypo DMRs (55.6%),
n = 258) (Figure 1F and Figure S3A–F; see Table S3 for
more details). These DMRs were broadly distributed on
the genome scale and primarily located outside of the pro-
moter regions (Figure S3J,K). Further functional genomic
annotation revealed that a large percentage of DMRs
were located in SINEs (37.4%–43.4%), LTRs (11.4%–19.9%),
LINEs (10.7%–16.1%), as well as CpG islands (4.7%–7.8%)
(Figure S4A). However, mother-DMRs and father-DMRs
were quite distinct in terms of their exact genomic posi-
tions, with only 14 hyper-DMRs and 19 hypo-DMRs in
common (Figure 1G). Searching for the nearest genes of
DMRs in both longevity and aging databases34,35 revealed
that 44 genes in the mother group and 20 genes in the
father group had been reported to be associated with
aging (Figure 1H,I). The nearest genes of two mother-
DMRs, RPS6KA5 and ETS2, were previously defined as
senescence-associated secretory phenotype (SASP) genes36
(Figure 1J), while no overlap existed between the near-
est genes of father-DMRs and SASP genes (Figure 1J).
Gene Ontology (GO) enrichment analysis revealed that
the nearest genes of mother-DMRs were enriched in
processes involving organ morphogenesis, histone modifi-
cation, phospholipid metabolism, and leukocyte differen-
tiation. However, the nearest genes of father-DMRs were
highly enriched inwound healing, cell-substrate adhesion,
and calcium ion transmembrane transport (Figure S4B).
Both mother-DMRs and father-DMRs were enriched in
the processes associated with neuron differentiation (near-
est genes: CCND1, SPOCK1), protein homotetramerization
(nearest gene: USP16) and glycosylation (nearest genes:
GAL3ST1) (Figure 1G and Figure S4B; see Table S4 for
details). Together, the above results indicated that aging-
related alterations in the parental DNA methylomes were
present in AMA pregnancy and were more conspicuous in
the maternal part.
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F IGURE 1 Distinct advanced maternal age (AMA)-related DNAmethylation changes in the mother and father groups. (A) Flowchart of
the experiment and data analysis. (B) Three-dimensional scatter plot showing the distribution of parental samples in the four groups
(AMA-mother, Young-mother, AMA-father, Young-father). The first three principal components from principal components analysis (PCA)
based on the 200 bp tiles DNA methylation pattern (n = 701937) were used; sample size: n = 40. (C) Box plot showing the distribution of DNA
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2.2 AMA induced DNAmethylation
changes in offspring

Then, we analysed the DNA methylomes of UCB sam-
ples to evaluate the epigenetic changes in AMA offspring.
Similar to what was observed in PPB, PCA and hierarchi-
cal clustering analyses showed no obvious separation of
the AMA and Young groups (Figure 2A and Figure S2A).
The mean value showed no significant intergroup dif-
ference (Young: 75.31%; AMA: 74.99%; p value = .44;
Figure 2B), and the average DNA methylation pattern
on the genome-wide scale or specifically around gene
bodies was comparable between the AMA and Young
groups. (Figure 2C and Figure S2C,D,G). Nevertheless, the
average DNA methylation levels of CpG islands signifi-
cantly decreased in the AMA group (Young: 26.52%; AMA:
26.50%; p value = .035; Figure 2D). Intergroup compari-
son analysis further identified 182 hyper DMRs and 269
hypo DMRs (|df|> = 15% and q value <.05) (Figure 2E,
Figure S3G–I), which were broadly distributed on all chro-
mosomes and mainly in non-promoter regions (Figure 2F
and Figure S3J). Once again, we observed a larger per-
centage of hypo DMRs than hyper DMRs (40.4% vs. 59.6%,
Figure S3H) and a high proportion of hyper/hypo DMRs
located in SINE (36.8% and 43.4%), LTR (11.5% and 19.2%),
LINE (15.2% and 18.1%) (Figure S4A), as described for the
parental sample.
Among the nearest genes of offspring-DMRs, 25 genes

were listed in the longevity or aging databases (Figure 2G).
Remarkably, the SASP gene RPS6KA5 was also observed
among them, with a nearby hypo DMR located in the
intron 1 region (chr14: 91033401–91033600) (Figure 2H). As
shown in Figure 1J, the same region was also identified as
AMA-related hypo DMR in themother group. GO analysis
suggested that disturbance of those DMRs might influ-
ence various processes associated with vesicle-mediated
transport, autophagy, electron transport chain, eye devel-

opment, and so on (Figure S4C). Importantly, quite a few
GO terms were also found in the enrichment analysis of
the mother group, including processes involving neuron
differentiation, regulation of GTPase signal transduction,
metabolism, and histone modification (Figure S4B,C).
Integrated analysis between parental DMRs and offspring-
DMRs further uncovered overlapping commonDMRs that
shared the same trend between offspring and parents
(MK_commonDMRs: n= 64; FK_commonDMRs: n= 58,
FMK_common DMRs: n= 13) (Figure 2I). Taken together,
our findings indicated that AMA would also disturb the
DNA methylome of the offspring. These changes bore
many remarkable similarities to those in the maternal
DNA methylome.

2.3 AMA altered the maternal and
neonatal transcriptomes

In addition to examining the DNA methylome, we also
performed mRNA-seq of maternal peripheral blood and
UCB samples to explore the influence of AMA on gene
expression (Table S1 and Figure S5A). Similar to the obser-
vations in the DNAmethylome, correlational analysis and
PCA based on the transcriptomes of all samples showed
obvious separation of the mother and offspring groups but
only slight separation between theAMAandYoung groups
(Figure S5B,C). Intergroup comparison analysis identi-
fied 741 and 3157 differentially expressed genes (DEGs)
in the mothers and offspring, respectively (Figure 3A,B,
Figure S5D,E; p< .05 and fold change>= 1.5; for mothers:
Up-regulated DEGs: n = 386 and Down-regulated DEGs:
n = 355; for offspring: Up-regulated DEGs: n = 1128 and
Down-regulated DEGs: n = 2029; see Table S5 for details).
A total of 206 DEGs in the offspring group and 43 DEGs
in the mother group were recorded in the longevity or
aging databases (Figure S5E). GO analysis showed that

methylation level in four groups. Each dot represents the average DNA methylation level of each sample; the p value between AMA and
Young groups was determined by Wilcoxon rank-sum test. (ns: p > .05); the p value for the comparison among multiple groups was
determined by Kruskal–Wallis test. (D) Mean DNA methylation levels along with the gene bodies, and 15 kilobases (kb) upstream of the
transcription start site (TSS) and 15 kb downstream of the transcription end site (TES) of all genes. (E) Box plot presenting the distribution of
the average DNA methylation level of specific genome elements in the AMA-mother group (red) and Young-mother group (blue); each dot
represents the average DNA methylation level for each sample; the p value between the AMA and Young groups was determined by the
Wilcoxon rank-sum test. (F) Heatmap showing the DNA methylation of AMA-related differentially methylated regions (DMR) in the mother
group (left) and father group (right). Blue bars represent the Young group, and red bars represent the AMA group. Orange bars represent
hyper DMRs, while green bars represent hypo DMRs. (G) Venn diagram showing the numbers of overlapping and nonoverlapped DMRs
among the four groups; the corresponding relative genic location and nearby gene for each DMR in the targeted categories are presented on
the left. Distal stands for distal intergenic. (H, I) Venn diagram showing the number of intersections between genes provided by the genAge
database and genes near AMA-DMRs in either the mother groups (H) or the father group (I). (J) Venn diagram showing the number of
intersections between genes near AMA-DMRs and senescence-associated secretory phenotype genes in the mother groups. The relative genic
locations and concrete genomic coordinates for the corresponding DMRs of overlapping genes are presented on the right (ns: p > .05, ∗p <
.05; ∗∗p < .01, ∗∗∗p < .001).
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F IGURE 2 Advanced maternal age (AMA)-related DNA methylation changes in offspring. (A) Three-dimensional scatter plot showing
the distribution of neonatal samples in the AMA and Young groups (sample size: n = 20); the first three principal components of PCA based
on the 200 bp tiles DNA methylation pattern (n = 701937) were used. (B) Box plot showing the distribution of the mean DNA methylation
level in the AMA and Young groups; each dot represents the average DNA methylation level of the corresponding sample; the p value
between the AMA and Young groups was examined by the Wilcoxon rank-sum test. (ns: p > .05). (C) Average DNA methylation levels of the
gene bodies, and 15 kb upstream of the TSS and 15 kb downstream of the TES of all genes for each sample. (D) Box plot showing the
distribution of the average DNA methylation level of specific genome elements as mentioned in Figure 1E in the AMA (red) and Young
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both offspring-DEGs and mother-DEGs were involved in
neutrophil activation, mitotic nuclear division, and neu-
ron development. Offspring-DEGs also focused on those
processes related to embryo and placenta development,
protein modification, regulation of RNA processing and
translation, and mitochondrial function, while mother-
DEGs were highly enriched in mesenchyme development,
regulation of inflammatory response, chromosome segre-
gation, and cell−cell adhesion (Figure S5F, see Table S6 for
details).
A total of 109 common AMA-DEGs shared the same

trend between themother and offspring groups (Figure 3C,
common Up-regulated DEGs: n = 39 and common down-
regulatedDEGs:n= 70).GMFG, as a SASP genewithin this
set, was upregulated in the AMA group (Figure 3C). GO
enrichment analysis suggested that these DEGs might be
involved in the processes of cytokine production, cell mito-
sis, protein modification, neutrophil activation, defence
response to gram−negative bacterium and the NF–KB
signalling pathway (Figure 3D; see Table S7 for details).
Overall, the above results revealed that the fluctuation
in the transcriptome reflected the aging-like effect of
AMA on both offspring and mothers, which shared many
similarities with DMRs in related biological processes.
The results also presented considerable similarities in
the transcriptional alterations between the mother and
offspring.
We then performed an integrated analysis between

DEGs and DMRs for either mother or offspring to identify
DEGs potentially rooted in theDNAmethylation change of
nearby DMRs (offspring-DEGs, n = 58; mother-DEGs, n =
13) (Figure 3E–G). Specifically, SLC28A3, a gene encoding
a nucleoside transporter, was significantly downregulated
in both the offspring and mothers of the AMA group,
along with an increased DNA methylation level in DMRs
located in intron 1(Figure 3E–H). The reduced expression
of SLC28A3 was further validated by real-time fluores-
cence quantitative polymerase chain reaction (qRT-PCR)
(Figure 3I). This result suggested thehighly interconnected
changes in the transcriptome and DNA methylome in the
AMA group.

2.4 Specific alterations in AMA
offspring presented intergenerational
correlation

Although common changes between parents and off-
spring have been observed in both the transcriptome and
DNA methylome, how close the connection between the
changes in the offspring and parents is remains uncertain.
In fact, the CD24 (CD24 molecule), one of the com-
mon DEGs and encoding a glycosylphosphatidylinositol-
linked cell surface protein tightly correlated with cell
pluripotency,37 was not only significantly downregulated
in both AMA groups, but also showed strong linear correc-
tions between paired mother and offspring (Figure S8A),
which were validated using qRT-PCR, too (Figure 4A,B).
This observation hinted that part of alterations in off-
spring might be directly correlated with the parental
changes induced by AMA. Thus, benefiting from the defi-
nite parentage in our cohort, we calculated the Spearman
correlation coefficients between parents and offspring for
both offspring-DMRs and offspring-DEGs to identify the
intergenerationally correlated DMRs (R > = 0.600 and p
value < 0.05; Figures S6 and S7) and DEGs (R > = 0.600
and p value < .05; Figure S8A). Among these, 18 and 14
DMRs, respectively belonged to commonmother-offspring
and father-offspring DMRs shown in Figure 2I (23% and
19%),while 48DEGswere previously identified as common
DEGs showed in Figure 3C (44%; Up-regulated DEGs: n =
11; Down-regulated DEGs: n = 37; Figure 4C). This result
suggested that a considerable proportion of AMA-related
DMRs and DEGs observed in offspring might be directly
inherited from parents.
The parental characters were passed on to offspring

mainly through the gamete and embryo, and previ-
ous studies have outlined highly diverse molecular
dynamics for different genomic elements and vari-
ous genes during gametogenesis and pre-implantation
development.12,38–40 To investigate the DNA methylation
pattern of those intergenerationally correlated DMRs
during the epigenetic reprogramming process, we here
reanalysed the published single-cell chromatin overall

groups (blue); each dot represents the average DNA methylation level for each sample; the p value between the AMA and Young groups was
determined by the Wilcoxon rank-sum test. (E) Heatmap showing the DNA methylation level in the AMA-related differentially methylated
regions (DMRs) of the AMA offspring group and Young offspring group. Blue bars represent the Young group, and red bars represent the
AMA group. The orange bars represent the hyper DMRs, while the green bars represent the hypo DMRs. (F) Column graph showing the
proportion of AMA-DMRs in different genomic features. (G) Venn diagram showing the intersection of genes provided by the genAge
database and genes near AMA-DMRs. (H) Venn diagram showing the intersection of genes near AMA-DMRs and senescence-associated
secretory phenotype genes. The relative genic locations and concrete genomic coordinates for the corresponding DMRs of overlapping genes
are presented on the right. (I) UpSet plot revealing the relationship among six lists of AMA-DMRs in father groups, mother groups and
offspring groups. Bar plots on the left and top represent the number of DMRs in the corresponding group. MK-common DMRs are DMRs
identified as common between the mother and offspring groups; FK-common DMRs are DMRs identified as common between the father and
offspring groups; FMK-common are DMRs identified as common among the mother, father and offspring groups.
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F IGURE 3 Advanced maternal age (AMA)-related transcriptional alterations in the mother and offspring. (A, B) Volcano plot
simultaneously displaying the p value and the fold change in gene expression level in the comparison between the AMA and Young groups
for either the mother (A) or offspring (B) groups. Red dots and blue dots represent the upregulated and downregulated DEGs identified
between the AMA group and Young group; light grey dots refer to genes with no significant change. (C) Venn diagrams displaying the
number of overlapping or no-overlapping AMA-DEGs between the mother and offspring groups (left), and the number of intersections
between senescence-associated secretory phenotype genes and common DEGs in mother and offspring groups (right). (D) Bubble chart
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omic-scale landscape sequencing (scCOOL-seq) data of
human pre-implantation embryonic development41 and
depicted the dynamic DNA methylome patterns for 91
intergenerationally correlated DMRs detected in the data
(Figure 4D and Table S8). Those DMRs were further
classified into seven clusters using hierarchical clustering,
and the dynamic pattern in each cluster showed strong
development-stage specificity (MeE1-MeE7, Figure 4D). It
indicated that DNA methylation patterns of those DMRs
were strictly regulated by demethylation and remethyla-
tion mechanism during embryonic development, rather
than just keep out of the epigenetic reprogramming
process.
Meanwhile, we also downloaded single-cell transcrip-

tional data of human oogenesis and pre-implantation
embryos to profile the expression dynamics of 48 inter-
generationally correlated common DEGs.38,40 Among the
10 patterns defined in follicle generation, genes with the
RO2 pattern drastically increased from secondary follicle
to antral follicle, a phenomenon that might play impor-
tant role in follicular lumen formation. Genes with the
RO4 and RO5 patterns showed the opposite pattern and
striking changes in the preovulatory stage. In particular,
Suzhen Yuan and his colleagues found that the upregu-
lation of EGR1 (RO4 pattern) participated in granulosa
cell apoptosis and follicle atresia during ovarian aging.42
In addition, RO3, RO6, and RO9 patterns presented dras-
tic fluctuations in gene expression from the primordial
follicle stage to the primary follicle stage (Figure 4E).
Six distinct clusters of gene expression patterns were
identified in preimplantation embryos (Figure 4F). The
dramatical increase in expression after the morula stage
implied that genes with the RE1 pattern might be associ-
ated with the cell differentiation of blastocyst. The specific
high expression after the 4-cell stage evinced the char-
acter of zygotic genes after major ZGA for genes with
the RE2 and RE6 patterns. In contrast that of RE2 gene,
the high expression levels of genes with the RE3 pattern
decreased sharply after the 4-cell stage, implying that those
genes might be potential maternal-effect genes that were
largely degraded during the maternal-to-zygotic transition

(MZT). It is worth noting that the expression of CD24 both
increased sharply during the transition from the antral
follicle to the preovulatory follicle during folliculogene-
sis, echoing the early report about its important role in
the regulation of ovulation.43 During the development of
early embryos, the expression ofCD24was increased in the
periods of ZGA and the transition from morula to blasto-
cyst, (Figure 4F), consistent with its high expression in the
following villus trophoblast cell and the key roles in medi-
ating immune tolerance at the foetal-maternal interface.44
Together, these results revealed that the DNAmethylation
patterns of intergenerationally correlated DMRs and the
expression patterns of those intergenerationally correlated
DEGs varied during oocyte maturation and preimplanta-
tion embryonic development, and suggested the potential
impact of AMA on multiple key processes in these two
periods.

2.5 AMA-related transcriptional
alterations existed in AMA oocyte and
blastocyst

Several previous studies have discussed the influence
of AMA on human MII oocytes or embryos after
cryopreservation.45–47 We then compared offspring-DEGs
and mother-DEGs with two published blastocyst-DEG
lists26,46 and one MII oocyte-DEG list,47 and revealed a
series of overlapping DEGs (Figure 5A, see Table S9 for
details). Among common AMA-DEGs between mother
and offspring groups, two upregulated genes and two
downregulated geneswere observed in the oocyte, while 18
genes were downregulated in the blastocyst. Meanwhile,
11 of those 22 genes (HTRA3, FCGR1A, BST2, MED12L,
SLC12A1, MLNR, CNTNAP1, NPIPB4, CAPN3, DNAH10,
and LOC101929076) were previously identified as mother-
offspring intergenerationally correlated DEGs (Figure 5A
and Figure S8A). In particular, the HTRA3 (high tem-
perature requirement factor A3), which encodes a serine
protease and has been reported to negatively regulate tro-
phoblast invasion,48 has a reduced expression in the AMA

showing representative Gene Ontology (GO) terms for common AMA-DEGs mentioned in (C). The gene number in all enrichment terms was
not less than three, with a p value < .05. The p value was measured by hypergeometric test. (E–G) Heatmap showing the DNA methylation
level of AMA-related (differentially methylated regions) DMRs whose nearest genes belonged to AMA-DEGs in either the offspring group (E)
or in the mother group (G, left) or the gene expression level of AMA-DEGs overlapped with genes near AMA-DMRs in either the offspring
group (F) or in the mother group (G, right). Blue bars indicate the Young group, and red bars indicate the AMA group. Gray and orange bars
indicate Up-DEGs overlapping with genes near hypo DMRs and genes near hyper DMRs, respectively. Green and purple bars indicate
Down-DEGs overlapping with genes near hypo DMRs and genes near hyper DMRs, respectively. (H) Box diagram showing the gene
expression level of SLC28A3 in the four groups (AMA-Offspring, Young-Offspring, AMA-mother, Young-mother). (I) Column diagram
displaying the relative gene expression level of SLC28A3 determined by qRT-PCR in the AMA and Young groups for either neonatal samples
(left) or maternal samples (right). Each dot represents the relative gene expression level of each sample; error bars refer to the standard
deviation. The p value between the AMA and Young groups was determined by unpaired t-test (∗p < .05).
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F IGURE 4 Intergenerational correlation of advanced maternal age (AMA)-related changes in either the DNA methylome or
transcriptome. (A) Column diagram displaying the relative gene expression levels of CD24 determined by qRT-PCR in the AMA and Young
groups for either neonatal samples or maternal samples. Each dot represents the relative gene expression level of each sample. Error bars
refer to the standard deviation. The p value between AMA and Young groups was calculated by unpaired t test. (∗p < .05; ∗∗p < .01;
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mother, offspring and blastocyst groups (Figure 5A–C).
In folliculogenesis, the expression of HTRA3 increased
sharply during the transition from the antral follicle to the
preovulatory follicle, consistent with the previous report
about the important role in the regulation of ovulation
and luteinization.49 In the development of early embryos,
the expression of HTRA3 was downregulated soon after
fertilization (Figure 5D). qRT-PCR further validated the
significant downregulation in the AMA group and lin-
ear corrections between mother and offspring for HTRA3
(Figure 5E,F). Among the four DEGs observed in oocyte,
MED12L, one mother-offspring intergenerationally corre-
lated DEGs downregulated in the AMA group, showed
a trend toward downregulation in both mothers and off-
spring in qRT-PCR validation, but statistical significance
was reached only in the mother group (Figure S8B,C). In
conclusion, these results supported the view that some of
the intergenerationally inherited alterations observed in
the transcriptome of offspring directly came from the dis-
turbance of AMA in oocytes or preimplantation embryos
(Figure 5G,H).

3 DISCUSSION

A variety of socioeconomic factors in contemporary soci-
ety have combined to produce an increase in pregnancies
among women of AMA.50 In addition to being an inde-
pendent risk factor for various pregnancy complications,
AMA is generally accompanied by greater risks of adverse
pregnancy outcomes and adverse effects on the long-term
health of offspring.27 Although accumulating evidence has
blamed offspring’s health issues on pre-existent AMA-

induced maternal abnormities, the underlying molecular
mechanisms for the intergenerational hereditary phe-
nomenon are still largely uncharted. In this study, we
systematically profiled the influence of AMA on the DNA
methylome and transcriptome of nuclear families and
explored the potential origin of offspring changes, which
might be inherited through gametes and embryos. We
observed a significant reduction in the DNA methyla-
tion levels of various retrotransposons in the AMA-mother
group, and on the CpG island in the AMA-offspring
group. Many genes near AMA-DMRs, as well as AMA-
DEGs, have been reported to be associated with aging.
We also identified a series of genes whose expression
changes might result from a corresponding alteration in
DNAmethylation and many common biological processes
enriched for both AMA-DMRs and AMA-DEGs. This
reflected the aging-like alteration induced byAMAand the
consistency of AMA impacts across different omics. Fur-
thermore, we highlighted the similar influence of AMA
between parents and offspring, especially between mother
and offspring. Combined with published datasets, our
analyses further revealed the diverse methylation patterns
of intergenerationally correlated DMRs and expression
patterns of intergenerationally correlated DEGs presented
in human folliculogenesis and preimplantation embry-
onic development. In particular, some AMA-DEGs were
already significantly changed in MII oocyte or blastocyst,
such as HTRA3, whose differential expressions was fur-
ther verified in both the mother and offspring groups.
In summary, this research unveiled the intergenerational
relatedness of the alterations induced by AMA in both
the DNAmethylome and transcriptome and supported the
claim that the adverse impact of AMAon themothermight

∗∗∗p < .001). (B) Scatter diagram showing the relative gene expression level determined by qRT-PCR for CD24 in paired maternal and
neonatal samples. The blue straight line is the fitted linear regression line. Each dot represents a family. AMA families are shown in red, and
Young families are in blue. The correlation coefficient and p value between the mother and offspring groups were calculated by
Spearman-based correlation tests. The shadow indicates the 0.95 confidence level interval around the fitted linear regression line; n = 10. (C)
Bar graph showing the number of intergenerational and no-intergenerational correlated differentially methylated regions (DMRs) in either
MK-common DMRs or FK-common DMRs identified in Figure 2I, as well as the number of intergenerational and no-intergenerational
correlated DEGs in MK-common DEGs as mentioned in Figure 3C. (D) Heatmap (right) showing the raw average DNA methylation level in
different stages of early embryo development for each intergenerationally correlated DMR. Heatmap (left) and line graph showing the scaled
average DNA methylation level in different stages of early embryo development for each intergenerationally correlated DMRs. Each DMR
was expanded to an additional 150 bp upstream and downstream. Only expanded DMRs covering more than three CpGs in DNA methylome
data of early embryo development were analysed. Red dot in each stage refer to the median value of the scaled DNA methylation level of
different DMRs. K-means clustering based on the methylation dynamic pattern was performed to cluster those DMRs. (E) Heatmap and line
graph showing the scaled average gene expression level in different stages of human oogenesis for each detected intergenerationally
correlated DEGs. Red dot in each stage referred to the median value of scaled gene expression level of different DEGs. K-means clustering
based on the expression pattern was applied to classify those genes. (F) Heatmap showing the scaled gene expression level in each cell during
early embryo development for each detected intergenerationally correlated DEG. K-means clustering based on the expression pattern is
applied to classify those genes. Curve chart in the right showing the loess-smoothed row-scaled expression dynamics pattern for genes in
selected six different clusters. The shadow denotes the 0.95 confidence level interval around the fitting curves. For specific cluster, each point
refers to the median of row-scaled expression value of DEGs in each cell.
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F IGURE 5 Interrelationship among advanced maternal age (AMA)-related transcriptional alterations in the mother, offspring, MII
oocyte and blastocyst. (A) Venn diagrams displaying the number of intersections for five lists of AMA-related DEGs from our maternal blood
data, cord blood data, one published MII oocyte data and two published cry blastocyst data. Bar graph showing the total number of DEGs in
each dataset. The top panel shows upregulated DEGs, while the bottom panel shows downregulated DEGs. (B) Scatter diagram showing the
gene expression levels of HTRA3 in paired maternal and neonatal samples. The blue straight line refers to the fitted linear regression line. The
correlation coefficient and p value between the mother and offspring groups were calculated by Spearman-based correlation tests. (C) Box
diagram showing the gene expression of HTRA3 in four groups (AMA-Offspring, Young-Offspring, AMA-Mother and Young-Mother) (D)
Line diagram showing the gene expression dynamics of HTRA3 during oogenesis and early embryo development. (E) Scatter diagram
showing the relative gene expression level determined by qRT-PCR for HTRA3 in paired maternal and neonatal samples. The blue straight
line is the fitted linear regression line. Each dot represents a family. AMA families are shown in red, and Young families are in blue. The
correlation coefficient and p value between the mother and offspring groups were calculated by Spearman-based correlation tests. The
shadow indicates the 0.95 confidence level interval around the fitted linear regression line; n = 10. (F) Column diagram displaying the relative
gene expression levels of HTRA3 determined by qRT-PCR in the AMA and Young groups for either neonatal samples or maternal samples.
Each dot represents the relative gene expression level of each sample. Error bars refer to the standard deviation. The p value between AMA
and Young groups was calculated by unpaired t-test. (∗p < .05; ∗∗p < .01; ∗∗∗p < .001). (G) A schematic illustration showing the close
connection between mother and offspring for the AMA-related alterations in either transcriptome or DNA methylome. The AMA-related
alteration in three genes:SLC28A3, CD24 and HTRA3 represents three typical patterns for intergenerationally correlated AMA-DEGs
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interfere with oocytes and early embryos, and thus lead to
abnormal changes in offspring.
Specific environmental exposures or experiences and

physiological changes, such as starvation, depression and
the aging process, could influence the stability of the
DNAmethylome.8 Heijmans and colleagues identified that
the DNA methylation changes induced by starvation in
the imprinting control region (ICR) near the IGF2 gene
in the mother were associated with the lowered birth
weight in offspring.51 The accumulation of errors in DNA
methylation maintenance during the aging process gen-
erally leads to global decreases in DNA methylation.52
Puberty and menopause demarcate the beginning and
the end of the female reproductive life cycle, while 35
years of age is generally regarded as a turning point for
female fecundity, marked by rapid declines of antimulle-
rian hormone (AMH), ovarian reserve and increased risks
of adverse pregnancy outcomes.53 We observed significant
alterations in a range of genes and genomic regions pre-
viously reported to be associated with the aging process,
longevity and the SASP (such as RPS6KA5 and ETS2) in
AMA mothers. Many AMA-DEGs and AMA-DMRs were
highly enriched in immunity processes and the processes
of glycometabolism and cardiovascular function. Higher
chronic proinflammatory status has been regarded as one
prominent feature of aging.54 Meanwhile, aging is well
known as amajor risk factor for metabolic syndrome, arte-
riosclerosis and cardiovascular disease.3 The above obser-
vations together claimed a more universal aging process
laying behind the reproductive aging in AMA mothers.
Furthermore, this might partly explain the strongly inde-
pendent association between AMA and the increased risk
of gestational diabetes mellitus and preeclampsia.6 The
DNA methylome of AMA fathers also exhibited a series
of alterations, which were enriched in the regulation of
neuron projection development and response to wound-
ing, and the number of AMA-related DMRs identified in
fathers was similar to that identified in the mothers. Addi-
tional intergenerational contributions from AMA father
might partly explain the significantly greater number of
offspring-DEGs compared with mother-DEGs. A 10-year
birth cohort study in Sweden has suggested a relationship
between advanced paternal age and increased incidence of
autism in the offspring.55 Kaichi Yoshizaki and colleagues
further showed that hypomethylation of mouse sperm

DNA could alter the expression of genes in REST/NRSF
pathway and induce an intergenerational influence on the
neurodevelopmental programs in the offspring.56 Thus,
although the variations in AMA fathers showed less con-
sistency with the aging process, advanced paternal age
might also introduce specific intergenerational influence
on offspring.
More importantly, we observed significantly downregu-

lated methylation levels at retrotransposons (LTR, LINE,
SINE, SVA) in the AMA-mother group. Retrotransposons
make up more than one-third of the human genome,
and show increased expression levels but decreased DNA
methylation levels during aging in multiple species.57 Our
results further demonstrated thatAMAmight introduce an
aging-like influence into the maternal DNA methylome.
Nevertheless, the methylation levels of retrotransposons
showed no significant inter-group difference in fathers,
although there was a larger age difference between fathers
in the two groups. Recent genome-wide DNAmethylation
profiling studies further highlighted the sexual dimor-
phism in the specific age-related DNA methylation pat-
terns of CpGs.58 Females generally outlive males and have
a younger epigenetic age than their male counterparts.59
Previous studies discovered that sex hormone fluctuations
can respond to changes in epigenetic agewithin a relatively
short time in females.60,61 Thus, the much more dramatic
changes in sex hormone levels before and after age 35
in females may be the immediate cause of the obvious
sexual dimorphism in the methylation changes of retro-
transposons. Due to the limited retrotransposon coverage
of RRBS on coverage on retrotransposons, it would be
better to use WGBS or pyrosequencing to verify the sex-
ual dimorphism of the global DNA methylation change in
retrotransposons in the future.
AMA might lead to premature senescence in the term

placenta and first trimester villi of either human ormice.62
Our study found that 25 genes near AMA-DMRs and 206
DEGs in AMA-offspring were associated with aging or
longevity. Remarkably, the changes in DNA methylation
or gene expression of several aging-related genes, such as
RPS6KA5 and GMFG, in AMA-offspring coincided with
the alterations in AMA-mothers. Those molecular char-
acteristics in AMA-offspring indicated that the aging-like
influence of AMA was not limited to extraembryonic tis-
sue. To date, three studies using methylation microarrays

mentioned in our study, respectively. AMA’s impact on pregnant women will induce abnormal fluctuations in specific gene expression (such
as HTRA3) in MII oocytes or preimplantation embryos, thus contributing to the similar changes observed in offspring. (H) A schematic
diagram showing the interrelationship between AMA, AMA-related maternal molecular change, AMA-related offspring molecular change,
and disease risk. AMA induced adverse changes on the mother and resulted in the increased risk of pregnant complications. The inheritable
part of maternal changes, together with paternal impact and other external factors, lead to abnormal molecular changes in offspring and
further influence their long-term health.
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have suggested alterations in offspring DNA methylation
related to maternal age in childbirth. Markunas et al.
claimed that methylation changes in five identified CpGs
near KLHL35 might persist from birth until adulthood.32
The 144 CpGs identified by Adkins et al. in offspring and 87
CpGs revealed byMoore et al. in adult daughters were both
enriched in the processes associated with neurological
regulation and metabolism, which implied that maternal
age might affect the metabolism and neurodevelopment
in later life of offspring.31,33 Our results also presented
the DNA methylation changes involved in the regulation
of neuron development, Rho protein signal transduction,
glycosyl compound metabolic process, hexose metabolic
process and catabolic process in AMA-offspring. This
was consistent with the greater risks of neurological and
neuropsychiatric diseases observed in AMA offspring in
humans,63 and the abnormal hippocampal gene expres-
sion and impaired learning and memory observed in the
AMA offspring of mice model.29,64 However, the con-
troversies about the relationship between AMA and the
metabolism disorders in the offspring28 call for long-term
follow-up research in larger cohorts. Another notable
aspect was the potential disturbance of DNA methyla-
tion involved in the respiratory electron transport chain,
mitochondrial gene expression and protein targeting to
the ER, which were all related to oxidative stress, the key
mechanism of endothelial dysfunction and arterial dam-
age, which ultimately increased the risk of vascular disease
and arterial stiffness.65 In this context, our data supported
the points proposed by previous AMA cohorts that AMA
offspring are at greater risk of cardiovascular diseases due
to oxidative stress.
Previous studies on the relationship between mater-

nal age and the offspring DNA methylome are limited
by the lack of maternal methylation data and the potential
influence of confounding diseases, such as breast cancer
and cleft lip.31–33 Benefiting from our strict inclusion cri-
teria and the availability of data from both parents and
offspring, we were able to directly evaluate the intergen-
erational inheritance phenomenon of the effects of AMA
on either the DNA methylome or transcriptome. Enrich-
ment analysis for 109 common DEGs and 78 common
DMRs between themother and offspring groups suggested
their participation in processes involving neuron differ-
entiation, immune and protein modification. Meanwhile,
the paired intergenerational analysis further confirmed
the high relevance in special genes or genomic regions,
and those intergenerationally correlated DEGs and DMRs
represented various dynamic patterns during the devel-
opment of oocyte and early embryo. The stage-specific
DNAmethylation patterns for those correlated DMRs sup-
ported the view that the drastic de novo DNAmethylation
happened in every stage, and DNA methylation repro-

gramming in preimplantation embryo development was
shaped by the combination of the global demethylation
and local remethylation.12 It also implied that those DMRs
might play key roles in regulating embryo development,
which need further verification. Among those correlated
DEGs, genes with the RO4 patterns showed quite strik-
ing changes during the preovulatory stage. EGR1, a gene
belonging to the EGR gene family, has been demonstrated
to be induced by LH and encodes transcription factors
important for ovulation in mice.42 CAPN3 may have a
potential regulatory role in embryonic muscle fibre phe-
notype and development.66 Those genes with RO3, RO6,
and RO9 patterns might be involved in primordial fol-
licular activation. The similarity of the dynamic pattern
implied that other genes or regions within those clusters
might exert similar functions in gametogenesis and embry-
onic development process, but further investigations are
needed.
AMA-related transcriptional changes in oocytes were

significantly enriched in the processes of mitochondrial
function, oxidative stress and actin-binding alteration.53
Consistent with this, AMAwould also induce a significant
global decline in the transcriptome of the blastocyst and
repressed the processes related to mitochondrial function
and the cell cycle.26 Apart from those overlapping AMA-
DEGs (HTRA3, CNTNAP1, DNAH10, MED12L, BST2, etc.)
among adult blood, cord blood, oocyte and embryo data,
AMA-related changed gene expression associated with
the cell cycle and cell division was observed in both the
mother and offspring groups. Combined with the poten-
tial disturbance of mitochondrial electron leakage and
gene expression in offspring, as mentioned earlier, this
observation underscores the direct intermediary role of
oocyte and embryo as biological stages vulnerable to the
influence of AMA. In particular, HTRA3 and MED12L
were both decreased intergenerationally correlated AMA-
DEGs, with the former co-altered in AMA embryos and
the latter existing in AMA oocytes. The deletion of HtrA3
causes the placenta capillaries dysfunction and intra-
uterine growth restriction (IUGR) in mice model.67 Thus,
the decrease of HTRA3 in AMA embryos suggested a
further investigation of placental abnormalities in AMA
pregnancy. MED12L (Mediator Complex Subunit 12L) is
the homolog ofMED12, a classical maternal factor that the
oocyte-specific ablation of which in mice would influence
embryo development but not disrupt the folliculogen-
esis and ovulation.68 The relatively high expression of
MED12L was maintained until the 8-cell stage, and there-
fore implied that it may also serve as a maternal factor,
the abnormal downregulation of which in AMA-oocyte
may also disrupt the following early embryo development.
The sharply increased expression of CD24 in oocyte of
preovulatory follicle suggests its important role in oocyte
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development. Previous study also verified that CD24 is
critical for triggering ovulation.43 Although CD24 did not
observe in the AMA-related DEGs list of MII oocyte pro-
vided by Zhang et al.,47 our unpublished data do suggest
that the expression of CD24 may also be disturbed in
human AMA-oocyte. Taken together, this evidence indi-
cated that some of the changes in the AMA offspring may
be due to the abnormal changes in the gene expression net-
work of oocytes and preimplantation embryos. Our results
supported the explanations offered by the developmental
origins of health and disease (DOHaD) hypothesis for the
later-life health problems of AMA offspring.69
Our research has some limitations. First, although pre-

vious research by Adkins et al. found no significant
relationship between maternal age and the methylation
pattern reflecting blood cell populations, it would be ideal
to separate individual cell populations for analysis or per-
form analysis based on the rapidly developing single-cell
method. Second, studies in larger prospective cohorts will
be helpful to validate our observations, to supplement the
paired samples of nuclear families with rigorous exclusion
criteria applied in our study. Third, only the cord blood
was evaluated in our study, and the biopsy tissue from
adult offspring and the extraembryonic tissues, such as
the villus from the placenta, need to be further investi-
gated for comprehensive and detailed recognition of the
influence of AMAacross organs and developmental stages.
In conclusion, we systematically explored the impact of
AMA on the DNA methylome and transcriptome of par-
ents and offspring. AMA might induce intergenerational
epigenetic and transcriptional changes involving immune
and metabolism pathways, some of which were rooted in
oocyte and early embryo, and then passed on to the next
generation.

4 EXPERIMENTAL PROCEDURES

4.1 Ethics

All samples were collected after patients signed informed
consent and in accordance with ethical standards. This
research was approved by the Reproductive Study Ethics
Committee of Peking University Third Hospital (approval
number scheme: 2016SZ-015).

4.2 Sample collection and treatment

Thirty nuclear families with foetuses (20 parents-offspring
families and 10 mother-offspring families) were recruited
in this research and were divided into the AMA group
and the Young group based on maternal age. The mean
age of AMA mothers was 39 ± 1.22 years, while that of

young mothers was 29.8 ± 2.59 years. The BMI was not
significantly different between AMA and Young moth-
ers. Women with polycystic ovarian syndrome (PCOS),
diabetes, hypertension, hyperthyroidism, hypothyroidism,
systemic lupus erythematosus, or pregnancy complica-
tions such as preeclampsia, gestational diabetes mellitus,
severe metabolic syndrome, or intrauterine infection were
not eligible. Families with premature babies or infants
who suffered from chromosomal abnormalities, any birth
defects, or the Apgar score below 7 were also excluded. All
women delivered by caesarean section at term (37 to 42
weeks). Approximately 4 ml of UCB and parental periph-
eral blood samples were collected on the day of delivery
and treated within 2 h. Parental peripheral blood samples
were collected before delivery in order to avoid any effects
of blood transfusion during delivery. Of the 4ml samples, 1
mlwas used forDNAextraction and 1mlwas used for RNA
extraction immediately, and the rest was stored at −80◦C
for backup.

4.3 DNA extraction

QIAamp R© Blood Mini Kit (Qiagen Cat# 51104) was used
to collect genomic DNA (gDNA) from the blood samples
following the manufacturer’s instructions. The gDNA was
evaluated by a NanoDrop 300 ultraviolet spectrophotome-
ter (ALLSHENG#AS-11020-00) to ensure an A260/A280
value ranged between 1.8 and 2.0, and stored in −80◦C.

4.4 RNA extraction

QIAamp RNA Blood Mini Kit (Qiagen Cat# 52304) was
used to extract total RNA from the whole blood sam-
ple. The RNA was evaluated a NanoDrop 300 ultraviolet
spectrophotometer (ALLSHENG#AS-11020-00) and Agi-
lent 2100 Bioanalyzer (Agilent# G2939BA). Qualified RNA
samples were referred to as samples with an A260/A280
value of approximately 2.0 and an RNA integrity num-
ber (RIN) of no less than 7. A total of 500 ng of total
RNA was reverse transcribed to obtain cDNA using the
PrimeScript™ RT reagent Kit (TaKaRa Cat# RR047A). The
remaining RNA sample was applied for library construc-
tion for mRNA-seq.

4.5 Reduced representation bisulphite
sequencing library construction and
sequencing

RRBS was performed as follows: The digestion of 3
ng unmethylated lambda DNA (Thermo Scientific, Cat#
SD0021) and 500 ng of gDNA in 40 μl mixture systems was
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performed by adding 5 μl FastDigestMspI and 5 μl 10x Fast-
Digest buffer (Thermo Scientific Cat# FD0544). Then, the
end-repair and adapter ligation of the digested DNA frag-
ments were handled with the NEBNext Ultra DNA Library
Prep Kit (NEB Cat# E7370), following the recommended
instructions in the manual. Specifically, NEBNext methy-
lated adapter (15 μM;NEBCat# E7535) was used to prevent
the change in adaptor sequence during bisulphite conver-
sion treatment. After the digestion of U bases by 3 μl USER
enzyme (NEB Cat# E6610A), size selection of DNA frag-
ments was performed through agarose gel electrophoresis
(2% TAE gel) and excision of gel slices containing targeted
200–700 bp DNA, which were extracted by a gel DNA
recovery kit (VISTECH Cat# DC2005). Next, a Methyl-
Code bisulphite conversion kit (Thermo Scientific Cat#
MECOV-50) was used for bisulphite conversion according
to the manuals. The converted fragments were amplified
and tagged with specific barcode sequences by 12 cycles
of PCR using Kapa HiFi U+ Master Mix (Kapa Biosys-
tems Cat# KK2801). Finally, the product was purified by
two rounds of clean-up using 0.8X Agencourt AMPure XP
Beads (Beckman Cat# A63881), followed by quality test-
ing in a Qubit 3.0 Fluorometer (Thermo Scientific Cat#
Q33216). After the detection of exact fragment distributions
and molar concentrations with a Fragment Analyzer™
Automated CE System (Analysis Kit: Cat# DNF-474-0500)
and a Library Quant Kit for Illumina (NEB Cat# E7630L),
the qualified DNA methylation libraries were sequenced
on the Illumina NovaSeq platformwith the PE150 strategy.

4.6 mRNA-seq library construction and
sequencing

mRNA libraries were generated using the NEBNext R©
UltraTM RNA Library Prep Kit for Illumina R© (NEB
Cat# E7530L) according to the manufacturer’s recom-
mendations. In short, poly(A) mRNA was isolated from
approximately 500 ng total RNA with NEBNext Magnetic
Oligo d(T)25 Beads provided in NEBNext Poly(A) mRNA
Magnetic Isolation Module (NEB Cat #E7490). After frag-
mentation, priming, and the subsequent first-strand and
second-strand cDNA synthesis, double-stranded cDNA
was obtained and purified by 1.8X AMPure XP Beads
(Beckman Cat# A63881). Then, the end preparation and
adapter ligation of double-stranded DNA fragments were
performed, and the hairpin loop structurewithin the adap-
tor was cut by incubating the product with USER Enzyme
(NEBCat#M5505L). Finally, purified adaptor-ligatedDNA
fragments were amplified and tagged with specific bar-
code sequences by PCR. The final mRNA libraries were
assessed and sequenced as previously described in the
RRBS protocol.

4.7 Real-time quantitative reverse
transcription polymerase chain reaction

qRT-PCR for reversed cDNA was performed with
PowerUp™ SYBR™ Green (Thermo Fisher Cat# A25742) in
the QuantStudio 3 Real-Time PCR system as follows: 95◦C
for 5 min, followed by 40 cycles of 95◦C for 30 s, 60◦C 40 s
and 72◦C 1min, followed by 72◦C 5min. The delta-delta-Ct
(ΔΔCt) algorithm was performed to calculate relative gene
expression. Each experiment was performed three times,
and ACTB was used as the control. The primers are listed
below:
SCD (F: ACGCTTGTGCCCTGGTATTT/R: GCACCAC

AGCATATCGCAAG)
CD24 (F: GCTCCTACCCACGCAGATTTA/R: GACCA

CGAAGAGACTGGCTG)
SLC28A3 (F: TGTCAGCACCTGCGTCAT/R: CCTGCC

ATTCCACTCCC)
HTRA3 (F: CTGTGTTGTTGCTGGGTCAC/R: GTGTT

CTGTAGGGCGAAGGG)
MED12L (F: CTCCCTCAGTATCCAGGGCT/R: CTGCT

GCAAAGGCATCTGTG)
ACTB (F: CATGTACGTTGCTATCCAGGC/R: CTCCTT

AATGTCACGCACGAT)

4.8 Data downloading and processing

The single-cell gene expression matrix for human oocytes
during folliculogenesis and pre-implantation embryo was
downloaded from our previously published datasets.38,40
The expression levelwas estimated using the fragments per
kilobase million (FPKM). The scCOOL-seq data of human
preimplantation embryos were downloaded from previ-
ously published datasets,41 and processed as previously
described. Briefly, Bismark software (version 0.23.0)70 was
applied to align qualified reads to the Homo sapiens refer-
ence genome (human GRCh38/hg38) with the parameter
“–paired-end and –non_directional.” Those unmapped
reads were then re-aligned with single-end and non-
directional model. After removing the PCR duplicates, the
methylation levels of CpG sites were extracted using the
function bismark_methylation_extractor" in Bismark soft-
ware (version 0.23.0) for downstream analysis. The aging
and longevity genes list were downloaded from the Aging
Atlas35 and LongevityMap (Build 3).34

4.9 Fundamental analysis for RRBS
data

All 150 bp bisulphite sequencing paired-end reads were
trimmed to delete adaptors, bases of substandard qual-
ity (Q < 20), and the reads shorter than 36 bases



HUA et al. 17 of 21

using TrimGalore software (https://www.bioinformatics.
babraham.ac.uk/projects/trim_galore/; version 0.6.6) and
Cutadapt (version 1.18), with the parameters“ –quality
20 –phred33 –stringency 3 –length 36 –rrbs –paired –
trim1.” For bisulphite conversion rate evaluation, phage
λ genome was used as an extra reference using the func-
tion “bismark_genome_preparation” in Bismark software
(version 0.23.0).70 Bismark with the parameter “bowtie2"
was used to map the clean reads to the spiked-in phage
λ genome, and the bisulphite conversion rate was deter-
mined by the ratio of the number of unmethylated Cs
to the total number of Cs detected. Sixty samples with a
bisulphite conversion rate of more than 99% were retained
for downstream analysis. Subsequently, Bismark with the
parameter “bowtie2” was performed to align clean reads to
the H. sapiens reference genome (human GRCh38/hg38).
Only the uniquely mapping readings with less than 2%
mismatch were retained. Then, the number of reads sup-
porting Cs and supporting Ts in each CpG site was counted
using the function “bismark_methylation_extractor” in
Bismark with the parameter ” –paired-end –no_overlap."
Finally, the coverage files recording the methylation state
of CpG sites were inputted into the R package methylKit
(version 1.10.0) for further analysis, and only CpG sites
on autosomes with more than 5-fold read coverage were
retained. The genome was tiled into consecutive 200
bp windows, and the 200 bp bins covered more than
three CpG sites and existed in at least eight samples
per group (AMA-offspring, AMA-mother, AMA-father,
Young-offspring, Young-mother, and Young-father) were
retained for downstream analysis. Detailed information
including sequencing depth and bisulphite conversion
rate, the number of covered CpG sites and retained bins,
is provided in Table S2.

4.10 Copy number variation analysis

For each RRBS library, the software “readCounter” in the
HMMcopy suite following the R package “HMMcopy”
(version 1.26.0) was applied to calculate the CNVs at 1
Mb resolution based on mapped RRBS reads sorted by
SAMtools (version 1.3.1). The CNVs were plotted by the R
function “points” and “plot.”

4.11 Global DNAmethylation level
estimation and differentially methylated
regions identification

The DNA methylation level of any retained 200 bp bin
was calculated using the R package methylKit (version

1.10.0)71 as the ratio of the total count of Cs and the total
count of Cs and Ts bases within that bin. Based on this,
the methylation level of each sample was calculated by
averaging the DNA methylation levels of all bins. Inter-
group comparisons between the AMA and Young groups
were also performed using the R package methylKit (ver-
sion 1.10.0),71 and DMRs was referred as 200 bp bins with
q-values no more than .05 and the mean methylation
difference thresholds no less than 15%.

4.12 DNAmethylation pattern around
the genic region

The -15 kb upstream of the TSS and 15 kb downstream of
the transcription end site (TES) of each gene were sep-
arately split into nonoverlapping 100 bp windows, while
the gene body range from TSS to TES was equally divided
into 100 fractions. The average DNA methylation levels
within every window or faction were calculated, and the
mean value of each genomic locations type was then com-
puted to profile the global methylation pattern around the
genic region for every sample. In addition, the mean value
of all samples in the sample group was used to profile
the global methylation pattern around the genic region for
each group. The methylation pattern was visualized by the
R function “plot.”

4.13 DNAmethylation levels within
various genomic elements

The coordinate files of the known genomic elements
were acquired from the UCSC Genome Browser, includ-
ing Low_complexity elements, CpG island (CGI), gene
body, 5′-UTR, 3′-UTR, three types of promoters (high-
CpG-density promoters [HCP], intermediate-CpG-density
promoters [ICP], and low-CpG-density promoters [LCP])
as previously defined,72,73 and repetitive elements clas-
sified into seven categories: long terminal repeat (LTR),
long interspersed elements (LINE), short interspersed
elements (SINE), Retroposon_SVA, transposon, satellite,
and microsatellite. The coordinate files of the imprinting
control region (ICRs) were obtained from the paper of
Hamada et al.74 Metastable epialleles (MEs) were obtained
from the paper of Noah J. Kessler. et al.75 To evalu-
ate the average DNA methylation level of each type of
genomic element, only regions covering more than three
CpG sites were reserved, and the mean methylation level
of all retained CpG sites within a specific region was
defined as theDNAmethylation level of the corresponding
region.

https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
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4.14 DNAmethylation pattern of
selected DMRs in preimplantation embryos

To calculate the methylation level of each intergenera-
tionally correlated DMR mentioned in Figures S6 and
S7, each DMR was expanded with additional 150 bp in
both the upstream and downstream directions. Then, each
single-cell DNA methylation data recording methylation
level of every CpG sites was used as input, and expanded
DMRs covering more than three CpGs in DNA methy-
lome data of early embryo development was reserved. The
DNA methylation level of corresponding DMRs was cal-
culated by averaging the methylation level of all retained
CpG sites within a specific expanded DMR. Next, samples
with at least one DMRs of not NA value were reserved
and merged into single file. The average methylation
value of every sample in different stages was calculated
respectively, and defined as the methylation level of the
target expanded DMR in each stage. Ward hierarchical
clustering for each intergenerationally correlated DMR
was performed using the function “hclust” in R pack-
age stats (version 3.6.0) based on the scaled average
DNA methylation level in different stages of early embryo
development.

4.15 RNA-seq data analysis

The quality of the raw fastq data was first assessed
by the FastQC tool (version 0.11.9), and then processed
by the software TrimGalore with the parameter of “–
quality 20 –stringency 3 –length 36 –paired” to remove
the adapter, ploy-N, inferior-quality bases and reads less
than 36 bases. Clean reads were then aligned to the H.
sapiens reference genome (human GRCh38/hg38) using
STAR software (version 2.7.8a) with default parameters.
The uniquely aligned reads were subsequently counted by
featureCounts software (version 1.6.3).76 Finally, DEseq2
(version 1.24.0) was applied to generate the normal-
ized count matrix for offspring or mother samples.
Detailed information on all RNA-seq libraries is listed in
Table S2.

4.16 Identification of differentially
expressed genes

The intergroup differential expression analysis for either
offspring or mother was performed using the R pack-
age DESeq2 (1.24.1).77 Genes meeting the criteria of fold
change values more than 1.5 or less than 0.67 and p values
less than .05 were defined as DEGs.

4.17 Principal component analysis and
hierarchical clustering analysis

The average methylation value of the 200 bp bins around
the entire genome was used for the hierarchical clustering
analysis and PCA to evaluate the global DNA methylation
similarity of offspring and parental samples, with the func-
tion “clusterSamples” in R package methylKit (version
1.10.0)71 and the function “pca” in R package pcaMethods
(version 1.76.0),78 respectively. PCA was also performed
to evaluate the transcriptome profile of offspring and
mother samples with the function “pca” in the R package
pcaMethods (version 1.76.0), using the normalized counts
matrix for gene expression generated by DESeq2 (version
1.24.0). The distance matrices among RNA libraries were
calculated using function dist with default parameters in
the R package stats (version 3.6.0) and were visualized
using the R package pheatmap (version 1.0.12). The clas-
sification of the dynamic pattern of DNA methylation
during the development of preimplantation embryos and
the dynamic pattern of gene expression during folliculo-
genesis and preimplantation embryos was based on the
hierarchical clustering analysis, employing the function
“dist” in the R package stats (version 3.6.0) and the func-
tion “hcluster” in the R package amap (version 08–18) with
the parameter “method = pearson.”

4.18 Correlation analysis

The mean value of DNAmethylation level of each remain-
ing 200 bp bins was calculated for each group (AMA-
offspring, AMA-mother, AMA-father, Young-offspring,
Young-mother, Young-father), and the correlation coeffi-
cients and confidence intervals between AMA and Young
groups were calculated by the function “stat_cor” in the R
package ggpubr (version 0.4.0) with default parameters.79
The Spearman’s correlation coefficients and confidence
intervals between parents and offspring samples were
calculated using the function “cor.test” and “cor” in R
package stats (version 3.6.0) for either the methylation
level of selected DMRs or the expression level of selected
DEGs. Only DMRs or DEGs with a p value threshold
of .05 and correlation Spearman’s correlation coefficients
(R value) greater than 0.6 were defined as candidate
intergenerational related DMRs or DEGs.

4.19 Genomic functional annotation

The nearest genes, genomic features and the distance
to the transcriptional start site (TSS) of DMRs were
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annotated using the R package ChIPseeker (version 1.20.0)
and H. sapiens annotation package org.Hs.eg.db (version
3.8.2).80 The promoter was identified as the region from 3
kb downstream to 3 kb upstream of the TSS. The coordi-
nate files of genomic elements were downloaded from the
UCSC Genome Browser as mentioned in “DNAmethyla-
tion levels in specific genomic elements.” The function
“foverlaps” in R package data.table (version 1.14.0) was
applied to identified the DMRs with at least 1-bp overlap
with any genomic elements.

4.20 Gene Ontology enrichment
analysis

GO enrichment analysis for biological processes was per-
formed to assess the potential biological functions of
selected DMRs and DEGs, using the “enrichGO” function
in the R/Bioconductor package “clusterProfiler (3.8.1)”
packages

4.21 Statistical analysis

An unpaired two-tailed t-test in GraphPad Prism (Version
9.2.0) was applied to determine the significance of dif-
ferences in the intergroup comparison of other clinical
features for either parents or progenies. Fisher’s exact test
in SPSS (version 26.0) was used to determine the signifi-
cance of differences in the comparative analysis of sexes
and modes of birth. The statistical significance of Gene
Ontology (GO) term enrichment analysis was determined
using a hypergeometric test in the R package clusterPro-
filer, and the p value was adjusted by the multiple test
adjustment (Benjamini–Hochberg, BH).
For bar-dot plots of gene expression determined by qRT-

PCR, the significance of differences between two groups
was determined by unpaired two-tailed t-test in GraphPad
Prism (Version 9.2.0). For box-dot plots of DNA methyla-
tion, the significance of differences between two groups
was determined by the Wilcoxon rank-sum test. The p
value for the comparison among multiple groups was
determined by theKruskal–Wallis test. For a column graph
of the proportion of bins with significantly differential
DNA methylation levels for paternal or maternal samples,
the chi-squared test was applied to calculate the signifi-
cance of differences between all 200 bp bin groups and
correlated AMA-DMRs of offspring groups. Unless other-
wise stated, Spearman-based correlation tests were used to
determine the correlation coefficient and p value between
any two groups (ns: p > = .05; ∗p < .05; ∗∗p < .01; ∗∗∗p <
.001).
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