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Huntington’s disease can be predicted many years before symptom onset, and thus makes an ideal model for studying the earliest

mechanisms of neurodegeneration. Diffuse patterns of structural connectivity loss occur in the basal ganglia and cortex early in the

disease. However, the organizational principles that underlie these changes are unclear. By understanding such principles we can

gain insight into the link between the cellular pathology caused by mutant huntingtin and its downstream effect at the macroscopic

level. The ‘rich club’ is a pattern of organization established in healthy human brains, where specific hub ‘rich club’ brain regions

are more highly connected to each other than other brain regions. We hypothesized that selective loss of rich club connectivity

might represent an organizing principle underlying the distributed pattern of structural connectivity loss seen in Huntington’s

disease. To test this hypothesis we performed diffusion tractography and graph theoretical analysis in a pseudo-longitudinal study

of 50 premanifest and 38 manifest Huntington’s disease participants compared with 47 healthy controls. Consistent with our

hypothesis we found that structural connectivity loss selectively affected rich club brain regions in premanifest and manifest

Huntington’s disease participants compared with controls. We found progressive network changes across controls, premanifest

Huntington’s disease and manifest Huntington’s disease characterized by increased network segregation in the premanifest stage

and loss of network integration in manifest disease. These regional and whole brain network differences were highly correlated

with cognitive and motor deficits suggesting they have pathophysiological relevance. We also observed greater reductions in the

connectivity of brain regions that have higher network traffic and lower clustering of neighbouring regions. This provides a

potential mechanism that results in a characteristic pattern of structural connectivity loss targeting highly connected brain regions

with high network traffic and low clustering of neighbouring regions. Our findings highlight the role of the rich club as a substrate

for the structural connectivity loss seen in Huntington’s disease and have broader implications for understanding the connection

between molecular and systems level pathology in neurodegenerative disease.

1 Department of Neurodegenerative Disease, UCL Institute of Neurology, London, WC1N 3BG, UK
2 Developmental Imaging and Biophysics Section, UCL Institute of Child Health, London, WC1N 1EH, UK
3 Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, London, WC1N 3BG, UK
4 Department of Electronic Engineering, NED University of Engineering and Technology, Karachi, Pakistan
5 Computational, Cognitive and Clinical Neuroimaging Laboratory, Department of Medicine, Imperial College London, W12 0HS, UK

doi:10.1093/brain/awv259 BRAIN 2015: 138; 3327–3344 | 3327

Received February 6, 2015. Revised July 21, 2015. Accepted July 22, 2015. Advance Access publication September 18, 2015

� The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,

distribution, and reproduction in any medium, provided the original work is properly cited.

http://creativecommons.org/licenses/by/4.0/
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Introduction
Huntington’s disease is an autosomal dominant neurode-

generative disorder caused by a CAG repeat expansion in

the HTT gene on chromosome 4. The full penetrance of

Huntington’s disease in mutation carriers with 439 CAG

repeats makes it a model for studying the preclinical phase

of neurodegeneration, as it is possible to predict who will

develop the disease many years before symptom onset. Loss

of caudate volume and surrounding white matter occur

early in the premanifest stage, while more extensive grey

and white matter loss, extending to cortical regions is seen

in manifest disease (Tabrizi et al., 2011). Consistent with

this grey and white matter loss, recent investigations using

diffusion tensor imaging tractography reveal loss of struc-

tural connectivity between the basal ganglia and cortex

(Kloppel et al., 2008; Bohanna et al., 2011; Marrakchi-

Kacem et al., 2013; Novak et al., 2015) and across a dif-

fuse cortical network (Poudel et al., 2014). However, such

observational studies have not yet revealed whether there

are any organizational principles that underlie this distrib-

uted pattern of structural connectivity loss. Understanding

whether such principles exist will provide insight into the

link between the cellular pathology of Huntington’s disease

and its effect at the level of cortical organization affecting

particular structures and networks.

The ‘rich club’ is one such pattern of organization estab-

lished in healthy human brains. Structural connections are

not uniform but are organized across the brain in a non-

homogenous fashion. Specific hub (‘rich club’) brain regions

are more highly connected to each other, forming a selective

network with higher connectivity than other brain regions

(van den Heuvel and Sporns, 2011). Cortical rich club re-

gions include the superior frontal, superior parietal,

precuneus and insula and are reproducible across studies

(van den Heuvel and Sporns, 2011; van den Heuvel et al.,

2013). Such topological centrality of the rich club network

supports integrative processing and adaptive behaviours

(Senden et al., 2014). Consistent with this, the degree

of structural rich club connectivity predicts general

cognitive performance in healthy older adults (Baggio

et al., 2015).

We hypothesized that selective loss of rich club connectiv-

ity might represent an organizing principle underlying the

distributed pattern of structural connectivity loss seen in

Huntington’s disease. Such a hypothesis, if correct, would

be consistent with the trans-neuronal spread of pathogenic

misfolded proteins that are a feature of Huntington’s disease

(Pecho-Vrieseling et al., 2014) and other neurodegenerative

diseases, such as Alzheimer’s (Braak and Braak, 1998; Braak

and Del Tredici, 2011; Yin et al., 2014) and Parkinson’s

disease (Braak et al., 2003; Olanow and Brundin, 2013).

This trans-neuronal spread would be expected to selectively

target highly connected hub or rich club regions thus linking

a general cellular pathology to a selective topological target-

ing of specific brain areas.

Using diffusion tractography and graph theoretical ana-

lysis in premanifest and manifest Huntington’s disease and

healthy individuals we set out to test the following hypoth-

eses: (i) Huntington’s disease leads to selective structural

connectivity loss of rich club regions causing breakdown

of the whole brain network; (ii) such regional rich club

and whole brain network changes are associated with cog-

nitive and motor deficits seen in Huntington’s disease; and

(iii) highly connected brain regions with high network traf-

fic and low clustering of neighbouring regions are more

susceptible to structural connectivity loss.
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Materials and methods

Cohort

We studied a cohort including Huntington’s disease (n = 38),
premanifest Huntington’s disease (n = 50) and control partici-
pants (n = 47) from the London, Paris and Leiden sites of the
TRACK-Huntington’s disease study (Supplementary Table 1).
Premanifest gene carriers required a disease burden
score4250, based on their medical records at the time of
assessment, and a UHDRS total motor score45, indicating
no substantial motor signs. Controls were selected from the
spouses or partners of individuals with premanifest or early
Huntington’s disease or were gene-negative siblings, to
ensure consistency of environments. Additional inclusion and
exclusion criteria are detailed elsewhere (Tabrizi et al., 2009).
Statistical analysis was carried out using SAS version 9.4. The
study was approved by the local ethics committees, and writ-
ten informed consent was obtained from each participant. Left-
handed participants were excluded from the analyses to avoid
confounding effects caused by differences in structural connect-
ivity in those who are right hemisphere dominant.

MRI acquisition

T1- and diffusion-weighted images were acquired on Siemens
(London and Paris) and Philips (Leiden) 3 T MRI scanners.
Scanning time was� 10 min for T1-weighted and 9 min for
diffusion-weighted acquisitions. Detailed information on acqui-
sition and head coil parameters are provided in the
Supplementary material.

Preprocessing

Cortical and subcortical regions of interest were generated by
segmenting a T1-weighted image using Freesurfer (Desikan
et al., 2006). These included 70 cortical regions and six sub-
cortical regions (caudate, putamen and thalamus bilaterally).
Cortical and subcortical parcellations were visually reviewed
for each subject for quality control. The globus pallidus and
nucleus accumbens were excluded as regions of interest due to
poor segmentations. To ensure the exclusion of these regions
did not affect our results an 80-region graph theory analysis
including these regions is provided in the Supplementary ma-
terial. These targets were then warped into diffusion space by
finding the mapping between the T1-weighted image and frac-
tional anisotropy map using the NiftyReg toolkit (Modat
et al., 2010) and applying the resulting warp to each of the
regions of interest.

The Freesurfer segmentation was also used to generate fore-
ground masks for tractography. The graph analysis uses a fore-
ground mask generated by combining the cortical/subcortical
grey matter masks with the white matter mask. For the cortico-
basal ganglia connectivity analysis [including voxel connectivity
profiles (VCPs)], two foreground masks were generated, one for
the left hemisphere and the other for the right hemisphere,
allowing investigation of intrahemispheric connectivity for
each basal ganglia region.

Diffusion data were preprocessed as follows: first the b = 0
image was used to generate a brain mask using FSL’s brain
extraction tool (Smith, 2002). This mask was then eroded by

one voxel to provide a more stringent mask. Next, eddy cor-
rect was used to align the diffusion-weighted volumes to the
first b = 0 image and the gradient directions updated to reflect
the changes to the image orientations. Finally, data were re-
constructed using diffusion tensor imaging and constrained
spherical deconvolution (CSD), as implemented in MRtrix
(Tournier et al., 2012). CSD was used as it provides better
angular resolution than many other multiple-fibre reconstruc-
tion algorithms, while maintaining a modest computation time
(Tournier et al., 2007; Seunarine and Alexander, 2013). The
CSD reconstruction used a maximum spherical harmonic order
of 6 for both the response and the fibre orientation distribu-
tion functions. A summary of the processing pipeline is pro-
vided in Fig. 1.

Diffusion tractography

Whole brain probabilistic tractography was performed using
the iFOD2 algorithm in MRtrix (Tournier et al., 2012).
Specifically, 5 million streamlines were seeded throughout the
white matter, in all foreground voxels where fractional anisot-
ropy 50.2. Streamlines were terminated when they either
reached the cortical or subcortical grey matter mask or
exited the foreground mask. The SIFT algorithm (spherical-
deconvolution informed filtering of tractograms; Smith et al.,
2013) was then used to reduce biases in the reconstructed data
by ensuring that the streamline densities were proportional to
the estimated fibre density. The resulting set of streamlines was
used to construct the structural brain network.

For the corticobasal ganglia connectivity analysis (including
VCPs), 5000 streamlines were seeded for each voxel within the
basal ganglia regions of interest and terminated when they
reached the cortical mask or exited the hemisphere mask.
The probability of connectivity between every seed voxel and
every target region was established for each subject and the
data were stored as individual subject connectivity probability
maps.

Construction of structural brain network

Regions of interest were defined as connected if a fibre origi-
nated in Region of interest 1 and terminated in Region of
interest 2. These connections were weighted by streamline
count and combined into a 76 � 76, undirected and weighted,
structural connectivity matrix. In addition we also created
volume normalized matrices for our analyses. This was done
by dividing the number of streamlines connecting two regions
of interest by the sum of their volumes. Both un-normalized
and normalized matrices were used in the analysis as it is un-
clear from the current literature whether normalization is
required or not.

The threshold masks for generating sparse connectivity
matrices for the subsequent graph theoretic analyses were cre-
ated for connections present in 25%, 50%, 75% and 100% of
control participants. These masks were then used to threshold
individual connectivity matrices across all groups, consistent
with thresholding strategies in the seminal rich club paper
(van den Heuvel and Sporns, 2011). By using the control
group to generate threshold masks we aimed to exclude con-
nections due to noise as opposed to pathology. Whole brain
network results were most consistent across thresholds for un-
normalized matrices (Supplementary Table 2) therefore un-
normalized results are reported here, whereas normalized are
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Figure 1 Summary of processing pipeline. BET = Brain Extraction Tool; CSD = constrained spherical deconvolution; DTI = diffusion

tensor imaging; FA = fractional anisotropy; fODF = fibre orientation distribution function; GM = grey matter; QC = quality control; WM = white

matter.
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reported in Supplementary Tables 2 and 3. Both un-normal-
ized and normalized results are generally in agreement unless
otherwise stated in the manuscript. As results were consistent
across thresholds a value of 75% was used, in keeping with
the chosen threshold in the seminal human rich club report
(van den Heuvel and Sporns, 2011).

Graph theoretical analysis

Various graph metrics were calculated using the brain connect-
ivity toolbox (Rubinov and Sporns, 2010) and have been dis-
cussed in detail elsewhere (Bullmore and Sporns, 2009). We
analysed the structural networks using both global and local
nodal summary statistics. Global graph metrics characterize
the brain network properties as a whole whereas using node-
level local metrics we can probe more region-based differences.

Global brain network segregation was assessed using nor-
malized clustering coefficient and modularity. Clustering coef-
ficient is the fraction of brain regions neighbours that are also
neighbours of each other. Modularity represents the commu-
nity structure present within brain networks. Brain network
integration was assessed using normalized average path
length and global efficiency. Average path length represents
the average of shortest paths between brain regions in the
network; increase in average path length represents loss of
network integration. Global efficiency is the inverse of shortest
path length. Small worldness was also investigated. Networks
that exhibit small worldness show a fine balance between net-
work integration and segregation to facilitate both regional
and network-wide information processing. Path lengths and
clustering coefficients were normalized relative to a set of
1000 random networks.

Altered topology in individual brain regions was assessed
using degree, strength, betweenness centrality and clustering
coefficients. Degree is defined as the number of connections
to a brain region that link it to the rest of the network whereas
strength is the weighted variant of degree. Betweenness cen-
trality is defined as the fraction of shortest paths in the net-
work that pass through a given brain region. For ease of
understanding, betweenness centrality is referred to as ‘net-
work traffic’ throughout the manuscript. Similarly, strength
is referred to as (graph theory) strength to avoid confusion
with streamline density.

Statistically significant group differences in graph metrics
were analysed using permutation testing (10 000 permutations)
with two-tailed t-tests to investigate both increases and de-
creases in structural connectivity. Age, sex, education and
study site were included as covariates. For individual brain
region metrics, a false discovery rate (FDR) correction was
applied across the 76 brain regions, and a Bonferroni correc-
tion was applied for the multiple graph theory measures tested
in both the regional and whole brain analyses.

Rich club analysis

A rich club analysis (van den Heuvel and Sporns, 2011) was
performed to identify rich club organization and regions in
each group. Rich club organization is a tendency for highly
connected brain regions to be more densely connected among
themselves than brain regions with fewer connections. The
weighted rich club coefficients were calculated for each partici-
pant and normalized relative to a set of 1000 comparable

random networks. The presence of rich club organization
was identified by performing two-tailed t-test permutation test-
ing (10 000 permutations) of the area under the curve (normal-
ized weighted rich club coefficient against degree) for each
group versus random network. FDR correction was then
applied to correct for multiple comparisons across a range of
degrees, in line with a similar analysis in the literature (van den
Heuvel et al., 2013). Rich club regions were defined as the top
12 brain regions with the highest degree. To ensure reliability
of our tractography data, rich club regions were also investi-
gated in the 80-region analysis for combined and single sites
(Supplementary material).

Clinical correlations

We investigated how differences in brain networks relate to
performance in cognitive and motor tests. Participants were
assessed using symbol digit modalities (Smith, 1968), Stroop
word reading (Stroop, 1935), Indirect Circle Tracing (log of
the indirect circle annulus) (Say et al., 2011; Tabrizi et al.,
2011), Negative Emotion Recognition (Ekman and Friesen,
1976), Speeded Tapping (mean inter-tap interval non-domin-
ant hand) (Reilmann, 2005) and total motor score
(Huntington Study Group, 1996). These variables were
chosen because of their demonstrated sensitivity in
Huntington’s disease (Stout et al., 2012; Tabrizi et al.,
2013). We used partial Pearson correlations controlling for
age, sex, study site, education and CAG length to assess
how graph metrics related to clinical variables for
Huntington’s disease gene carriers (additionally correlations
for graph metrics of individual groups for the 80-region ana-
lysis are presented in the supplementary material). Regional
correlations were FDR corrected across 76 brain regions and
Bonferroni corrected for four local metrics and six clinical
measures (P50.05/24). Whole brain correlations were
Bonferroni corrected for five global metrics.

Network-based statistics

To probe further which specific structural connections showed
group differences in premanifest Huntington’s disease versus
controls we used the network-based statistics method
(Zalesky et al., 2010). A general linear model was used to
model group differences with age, sex, education and study
site included as covariates. Permutation testing, using unpaired
t-tests, was performed with 5000 permutations. A test statistic
was then computed for each connection and a threshold
applied (t = 3.1) to produce a set of suprathreshold connec-
tions, thereby identifying anatomical networks, which show
significant differences in structural connectivity between
groups. A family-wise error correction was also applied
(P5 0.05).

Selective vulnerability: streamline
density, network traffic, regional
clustering and distance from the
striatum

Correlations were performed between the average control
group streamline density for each brain connection against
group differences in streamline density for that brain
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connection, both for all brain connections in the network and
for corticobasal ganglia connections only. For corticobasal
ganglia connections only, separate analyses were performed
using streamline data generated from the graph theory pipeline
(volume un-normalized and normalized) and from the cortico-
basal ganglia connectivity pipeline (volume normalized only).
Average control brain region network traffic was correlated
with group differences in (graph theory) strength and degree
for each brain region. We also performed correlations between
regional clustering coefficient and group differences between
degree and (graph theory) strength for each brain region.
Partial Pearson correlations, controlling for Euclidean distance,
were performed for average control path length to the basal
ganglia and group differences in connection density for each
corticobasal ganglia connection, separate analyses were per-
formed using streamline data generated from the graph
theory pipeline (volume un-normalized and normalized) and
from the corticobasal ganglia connectivity pipeline (volume
normalized only). For this analysis, a Bonferroni correction
was applied for (27) multiple comparisons.

Group-averaged voxel connectivity
profiles

Group-averaged VCPs were generated to allow qualitative ana-
lysis of ‘patterns’ of basal ganglia connectivity. To generate
group-averaged VCPs, the individual connectivity probability
maps (defined in the ‘Diffusion Tractography’ section above)
were first warped into standard space using Niftyreg.
Specifically, we used a two-step approach, warping the con-
nectivity maps to their corresponding subject T1-weighted
image space, before warping the resulting image into MNI
space. The standard space connectivity maps were then aver-
aged together to create a mean connectivity map for each
group. VCPs were generated using the approach described
by Draganski et al. (2008). Finally, the labels of the VCPs
were standardized for each structure (i.e. so that the labels
for the structure are comparable between groups) by finding
the unique patterns of connectivity across all three groups,
assigning a new label to each pattern in the set and then
remapping the labels of the VCPs to the new scheme.

Statistical analysis of corticobasal
ganglia connectivity

Statistical analysis of the corticobasal ganglia connectivity in-
formation was performed on the individual connectivity maps
using a mass-univariate approach. This involved permutation
testing as outlined in the graph theoretical analysis. Age,
gender, study site and education were included as covariates
when assessing group differences. CAG length was also
included as a covariate in the correlation analyses. An FDR
correction was applied for 210 corticobasal ganglia connec-
tions and a Bonferroni correction applied for six clinical
tests. The inputs to both analyses were vectors describing the
volume of the basal ganglia regions of interest that connected
to each of the cortical targets. Specifically, the individual con-
nectivity maps were first binarized such that any voxel within
the basal ganglia region of interest with at least 1% of stream-
lines reaching a given cortical target was regarded as being
connected to that target. The number of voxels connected to

the cortical target were then calculated and normalized by the
sum of the volumes of the corresponding basal ganglia region
of interest and cortical target, providing a normalized estimate
of the volume of the region connected to target. The procedure
was repeated for all cortical targets, resulting in a vector
describing the connectivity between the basal ganglia and
cortex for each subject.

Results

Cohort

The cohort consisted of 38 participants with early

Huntington’s disease (25 female; mean age 49.5 � 10.4

years; mean CAG repeat length 43.4 � 2.4, mean disease

burden score 370.6 � 10.4), 50 premanifest Huntington’s

disease participants (24 female; mean age 42.2 � 8.9 years;

mean CAG repeat length 40.3 � 2.1, estimated years to

onset 11.1 � 3.9, mean disease burden score 301.3 � 7.4)

and 47 controls (32 female; mean age 47.6 � 9.0 years).

Premanifest Huntington’s disease participants were signifi-

cantly younger in age when compared with controls

(P = 0.006) and Huntington’s disease (P = 0.0005) partici-

pants. There were no group differences in gender, educa-

tion or study site (Supplementary Table 1). The analysis

was pseudo-longitudinal in that we included two different

stages of the same condition with premanifest and manifest

Huntington’s disease having a temporal spacing of at least

10 years (Langbehn et al., 2004).

Rich club organization

All groups showed significant rich club organization

(Control; degree 20–63, Premanifest; degree 19–63,

Manifest; degree 19–63). Rich club regions were in perfect

agreement across groups. The regions were as follows (in

order of highest degree): right and left thalamus, precuneus

and caudate, right superior parietal, left superior frontal,

right superior frontal, left superior parietal, right insula, left

insula. The same rich club regions were identified for the

80-region analysis both at combined and single sites

(Supplementary material).

Regional brain network measures

Significant reductions in degree (number of brain connec-

tions) were seen between premanifest Huntington’s disease

and controls in the left and right caudate and left anterior

cingulate (Fig. 2A). Manifest versus premanifest

Huntington’s disease showed significant reductions in the

left and right caudate, right thalamus, right putamen, right

paracentral and left supramarginal regions (Fig. 2B).

Numerous regions showed significant decreases in

Huntington’s disease versus controls including cortical

and basal ganglia rich club regions, as well as cingulate,

motor, temporal and occipital areas (Fig. 2C). Volume nor-

malized results and the three additional graph metrics
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Figure 2 Group differences in degree. Significant group differences in degree for (A) premanifest Huntington’s disease versus controls

(P = 0.01 for all regions), (B) Huntington’s versus premanifest Huntington’s disease (*P = 0.009, **P = 0.006, ***P = 0.005, ****P = 0.001) and (C)

Huntington’s disease versus controls. For C, only those regions with P5 0.0003 are displayed to highlight the most significant regions. Controls

(blue, left columns), premanifest Huntington’s disease (red, centre columns) and Huntington’s disease (green right columns) are presented in each

graph to illustrate consistent step-wise reductions in degree across groups. A brain network is displayed above each bar chart. Spheres represent

brain regions with red spheres indicating the brain regions showing significance between groups. Data are represented as a group mean (con-

fidence intervals are not included as not standard for permutation tests).
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examined [strength, betweenness centrality (network traffic)

and clustering coefficient] are presented in Supplementary

Table 3. Similar group differences were seen in the 80-

region analysis (Supplementary Fig. 1) with the exception

of (graph theory) strength (Supplementary material).

Network segregation

Significant increases were seen in normalized clustering coef-

ficient in Huntington’s disease participants versus controls

(P = 0.0001), Huntington’s disease participants versus pre-

manifest (P = 0.0007) and premanifest participants versus

controls (P = 0.0082) (Fig. 3A). Modularity showed signifi-

cant increases in Huntington’s disease participants versus

controls (P = 0.0001) and in premanifest Huntington’s dis-

ease participants versus controls (P =0.0037) (Fig. 3B).

Similar group differences in segregation were seen in the 80-

region analysis (Supplementary material)

Network integration

Normalized average path length showed significant in-

creases in Huntington’s disease participants versus controls

(P = 0.0004) and manifest versus premanifest Huntington’s

Figure 3 Group differences in network segregation and integration. Segregation: (A) normalized clustering coefficient (B) modularity.

Integration: (C) normalized average path length and (D) global efficiency. *P5 0.01. Data are represented as a group mean (confidence intervals

are not included as not standard for permutation tests). HD = Huntington’s disease.
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disease participants (P = 0.0032) (Fig. 3C). Significant de-

creases were seen in global efficiency in Huntington’s dis-

ease participants versus controls (P = 0.006) (Fig. 3D). No

significant group differences were seen in small worldness.

The 80-region analysis revealed similar group differences in

network integration (Supplementary material).

Corticobasal ganglia connections

When comparing premanifest Huntington’s disease

participants versus control subjects significant reductions

were predominantly seen in cortico-caudate connections

in the network-based statistics analysis (Fig. 4). These

included a number of basal ganglia connections to cortical

rich club and non-rich club regions (Supplementary Table

4).

The corticobasal ganglia connectivity univariate analysis

(P50.05), using streamline density, showed that of those

connections showing group differences, 57% (13/23) con-

nected to rich club regions for premanifest Huntington’s

disease participants versus controls, 51% (18/35) for mani-

fest versus premanifest Huntington’s disease participants

and 68% (75/111) for Huntington’s disease participants

versus controls (Fig. 5; see Supplementary Fig. 3 for land-

scape version of Fig. 5C). For Huntington’s disease partici-

pants versus controls increases were seen in streamline

density in connections to the anterior and posterior

cingulate

Altered patterns of corticobasal
ganglia connectivity

Group averaged VCPs showed altered patterns of cortical

connectivity to the caudate, putamen and thalamus, with

all connectivity patterns including one or more cortical rich

club regions. In the caudate there was loss of connectivity

to the superior frontal and insula rich club regions in mani-

fest participants compared with controls and premanifest

Huntington’s disease (Fig. 6A). The putamen shows loss

of connectivity to the superior frontal, superior parietal

and insula rich club regions both in manifest and premani-

fest Huntington’s disease compared to controls (Fig. 6B),

whereas the thalamus showed loss of connectivity to the

superior parietal, precuneus and superior frontal rich club

regions in manifest compared to premanifest Huntington’s

disease and controls (Fig. 6C).

Regional brain network clinical
correlations

Clinical measures revealed correlations with the degree

(number of brain connections) of rich club and non-rich

club brain regions (DF = 86, for all clinical correlations).

For total motor score, correlations were seen with the

left (Rho = �0.48, P = 2.6 � 10�4) and right inferior par-

ietal (Rho = �0.44, P = 0.001), left caudal middle frontal

(Rho = �0.43, P = 0.001), left precentral (Rho = �0.4,

P = 0.002), left superior frontal (Rho = �0.41, P = 0.002)

and left rostral middle frontal regions (Rho = �0.4,

P = 0.002). Indirect circle tracing correlated with the left

superior frontal (Rho = 0.45, P = 0.002) and right lingual

(Rho = 0.43, P = 0.002), while Negative Emotion

Recognition test performance correlated with the right

caudate (Rho = 0.49, P = 2.3 � 10�4), left inferior parietal

(Rho = 0.44, P = 0.001) and left precentral (Rho = 0.43,

P = 0.001).

No significant (P5 0.05) correlations were seen with any

other regional graph metric and Stroop word reading,

symbol digit modalities or Speeded Tapping mean inter-

tap interval. Similar correlations were seen in the 80-

region analysis for gene carriers only and across groups

(Supplementary material and Supplementary Fig. 2).

Whole brain network clinical
correlations

Network segregation: normalized clustering coefficient

showed significant correlations with total motor score

(Rho = 0.42, P = 7.55 � 10�5) and indirect circle tracing

(Rho� 0.43, P = 7.62 � 10�5), while modularity signifi-

cantly correlated with total motor score (Rho = 0.34,

P = 1.15 � 10�6). Network integration: correlations were

seen for normalized average path length and total motor

score (Rho = 0.51, P = 1.15 � 10�6) and emotion

Figure 4 Network-based statistics analysis showing sig-

nificantly reduced connectivity between premanifest

Huntington’s disease versus controls in cortico-caudate

connections. Red = caudate; blue = cortical rich club regions;

yellow = cortico-caudate connections.
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recognition (Rho = �0.34, P = 0.002). The 80-region ana-

lysis revealed similar correlations (Supplementary material).

Clinical correlation with corticobasal
ganglia connectivity

For the corticobasal ganglia connectivity analysis our uni-

variate results showed significant negative correlations with

total motor score and streamline density for 27 corticobasal

ganglia connections, 16 (59%) of which were connected to

rich club regions.

Susceptibility to structural
connectivity loss

Significant (P5 0.05 corrected) positive correlations were

identified between average control streamline density and

group differences in streamline density for Huntington’s

disease versus controls. Group differences in streamline

density in premanifest versus control subjects did not

show a correlation (Fig. 7A). Similar results were seen for

corticobasal ganglia connections in both the graph theory

and corticobasal ganglia connectivity analysis. A positive

Figure 6 VCP across groups. (A) Caudate, (B) putamen, and (C) thalamus. Labels are combined as follows: parietal = superior and inferior,

orbitofrontal = lateral and medial, temporal = inferior, middle and superior. Each label list corresponds to the colour in the legend to the left of it.

Label lists are displayed in black and red font alternately for ease of viewing.
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Figure 7 Selective vulnerability analysis. (A) Correlation of average control streamline density against group differences in streamline

density [based on graph theoretical analysis (volume un-normalized)]; each data point represents a single brain connection. (B) Correlation of

average control corticobasal ganglia streamline density against group differences in streamline density [based on corticobasal ganglia connectivity

analysis (volume normalized)]; each data point represents a single corticobasal ganglia connection. (C) Correlation of average control brain region

network traffic against group differences in (graph theory) strength [based on graph theoretical analysis (volume un-normalized)]; each data point

represents a single region of interest. (D) Correlation of average control clustering coefficient against group differences in degree [based on graph

theoretical analysis (volume un-normalized)]; each data point represents a single region of interest. HD = Huntington’s disease.
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correlation was seen between average control streamline

density and group differences in streamline density for pre-

manifest versus controls in the corticobasal ganglia con-

nectivity analysis (Fig. 7B).

Significant positive correlations were seen with average

control brain region network traffic and group differences

in (graph theory) strength across all groups (Fig. 7C); how-

ever, this was not maintained after volume normalization

(Supplementary Table 5). No significant correlations were

seen with average control brain region network traffic and

group differences in degree.

Significant negative correlations were seen with aver-

age control clustering coefficient and group differences

in degree across all groups (Fig. 7D). No significant

correlations were seen with average control clustering

coefficient and group differences in (graph theory)

strength.

There were no significant correlations between path

length to the basal ganglia and group differences in stream-

line density for either the graph theory or corticobasal

ganglia connectivity analysis. Volume normalized results

are provided in Supplementary Table 5.

Discussion

Altered brain network connectivity
and selective vulnerability in
premanifest and manifest
Huntington’s disease

We performed a graph theory analysis, complemented by

network-based statistics, corticobasal ganglia connectivity

and VCP analyses to focus on structural connectivity loss

of rich club regions in Huntington’s disease. We found

altered brain network connectivity specifically affecting

rich club regions, predominantly in the basal ganglia (caud-

ate) in premanifest Huntington’s disease, but extending to

cortical rich club regions (superior frontal, superior par-

ietal, precuneus and insula) in manifest disease. By using

network-based statistics, corticobasal ganglia connectivity

and VCP analyses, we were also able to demonstrate select-

ive loss of connections and altered patterns of connectivity

between the basal ganglia and cortical rich club regions. In

conjunction with these regional group differences we iden-

tified altered whole brain network topology with isolated

increase of network segregation in the premanifest

Huntington’s disease participants when compared to con-

trols; this extended to an increase in segregation and loss of

integration when comparing manifest against both pre-

manifest Huntington’s disease and controls. This suggests

that increases of whole brain network segregation occur in

the earliest stages of the neurodegenerative disease process,

before symptom onset, and subsequently progress to loss of

network integration in the manifest stages. We postulate

that conversion from premanifest to manifest

Huntington’s disease, in addition to the emergence of cho-

rea through an imbalance in the indirect and direct path-

ways of the basal ganglia (Andre et al., 2011), may reflect a

breakdown of such network integration (Fig. 8).

While reduction in the degree of rich club brain regions

was seen at a regional level, increase in network segrega-

tion was seen at a global level in both premanifest and

manifest Huntington’s disease. Connections among rich

club brain regions make up the majority of long-range con-

nections in the human connectome (van den Heuvel et al.,

2012). This suggests that the loss of these long-range rich

club connections connecting distant brain regions results in

increased network segregation in the premanifest stage, and

loss of integration in the manifest stage. In contrast to

degree of the rich club regions, relatively few group differ-

ences were seen in network traffic (betweenness centrality),

(graph theory) strength and clustering coefficient. Network

traffic is the most sensitive graph theory measure in trau-

matic brain injury (Fagerholm et al., 2015). However, our

data show that Huntington’s disease predominantly results

in loss of brain connections (degree) as opposed to alter-

ations of regional brain network topography.

Rich club regions are brain hubs that form the backbone

of the brain network (van den Heuvel et al., 2012) allowing

integration of specialized cortical regions (Senden et al.,

2014). We demonstrate positive correlation with emotion

recognition performance and degree of the right caudate

and left superior frontal region. It is unsurprising that

loss of degree to these rich club regions is associated with

impaired emotion recognition. Previous work by our group,

using task functional MRI in premanifest Huntington’s dis-

ease, showed a number of the regions defined as rich club

(for example caudate, thalamus, superior frontal, superior

parietal, precuneus and insula) are activated when perform-

ing an emotion recognition task (Novak et al., 2012). We

also report negative correlation between emotion recogni-

tion performance and normalized clustering coefficient (a

measure of network segregation). This suggests increased

segregation of the network leads to impaired communica-

tion between specialized brain regions resulting in impaired

emotion recognition performance. Similar results are seen

when we correlate total motor score with degree of the left

superior frontal, normalized clustering coefficient and nor-

malized average path length (a measure of network integra-

tion). Thus loss of rich club connectivity, coupled with

increased network segregation and reduced integration is

likely to contribute to the clinical manifestation of

Huntington’s disease. The lack of correlation of Stroop

word reading, symbol digit modalities or Speeded

Tapping mean inter-tap interval with rich club graph

theory measures suggest that these tasks may be less de-

pendent on optimal communication between diverse brain

regions.

By testing several mechanistic hypotheses, we shed light

on the reasons for the region and connection selective

changes we have shown in premanifest and manifest

Huntington’s disease. We demonstrated a strong positive
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correlation with streamline density (particularly to the basal

ganglia) and group differences in streamline density. We

show correlations between group differences in (graph

theory) strength and brain region network traffic.

Furthermore we show negative correlation between re-

gional clustering coefficient and group differences in

degree. In contrast to a previous study in Alzheimer’s dis-

ease and frontotemporal dementia (Zhou et al., 2012), we

found a very low correlation with group differences in

streamline density and path length to the area showing

earliest atrophy, which in Huntington’s disease is the stri-

atum (Tabrizi et al., 2011). The reason for this difference is

likely methodological. Zhou and colleagues (2012) based

their calculation of path length on resting state functional

MRI data of healthy controls and correlated path length

with voxel based morphometry atrophy patterns seen in

dementia patterns. In contrast, we used diffusion tractogra-

phy to generate both variables to examine correlation be-

tween path length to the striatum and group difference in

streamline density, which we suggest may be a more robust

approach.

In other neurodegenerative disorders, similar whole-brain

network disruption is seen. In Alzheimer’s disease there is a

loss of both network integration and segregation in the

structural connectome, which is also seen to a lesser

extent in mild cognitive impairment (Yao et al., 2010; Bai

et al., 2012). Mild cognitive impairment is a syndrome with

increased risk of developing Alzheimer’s disease, which can

perhaps be thought of as loosely comparable to premanifest

Huntington’s disease, in that it is a preclinical form of

Alzheimer’s disease. However, studies of premanifest

Huntington’s disease are more specific, in that 100% of

premanifest Huntington’s disease gene carriers will develop

the disease, whereas only a much smaller proportion of

participants with mild cognitive impairment develop

Alzheimer’s disease. While the authors of a recent review

suggest increased network segregation is a direct conse-

quence of loss of integration (Griffa et al., 2013), our

Figure 8 Summary of findings. There is selective loss of basal ganglia rich club connectivity due to high higher connection to the basal ganglia,

higher network traffic and reduced clustering coefficients of rich club regions. This results in increased network segregation leading to the subtle

motor and cognitive symptoms seen in premanifest Huntington’s disease. Further loss of cortical rich club connectivity results in reduced network

integration resulting in the overt cognitive and motor symptoms seen in manifest Huntington’s disease. HD = Huntington’s disease.
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results suggest that these network phenomena are not dir-

ectly linked but rather develop ‘sequentially’ as the disease

progresses.

The findings of this study have direct relevance for many

of the emerging therapeutic strategies in Huntington’s dis-

ease. The conceptually most compelling therapeutic strategy

is gene silencing using a range of potential agents/com-

pounds (Godinho et al., 2015). However one challenge to

the potential effectiveness of such therapies is their ability

to distribute widely enough and to reach therapeutically

relevant concentrations in the brain (Wild and Tabrizi,

2014). A recent animal study suggests that when mutant

HTT is still present in the striatum, but removed from the

cerebral cortex, there is improvement in motor and behav-

ioural deficits (Wang et al., 2014). This is consistent with

our results showing that there is preserved global efficiency

when mainly cortico-striatal rich club connections are af-

fected, in the premanifest stage, when gene carriers have

subtle symptoms. It may therefore be the case that if anti-

sense oligonucleotides are only able to target the cortex this

may cause sufficient huntingtin lowering to preserve struc-

tural network integrity and prevent conversion to manifest

Huntington’s disease.

Our study is the first to investigate the structural connec-

tome in Huntington’s disease using graph theory.

Previously, Poudel et al. (2014) used deterministic tracto-

graphy and network-based statistics to investigate frac-

tional anisotropy, radial diffusivity and streamline density

changes in a frontal-parietal-striatal network in premanifest

and manifest Huntington’s disease and control participants.

They showed group differences of these metrics in the fron-

tal-parietal-striatal network and correlations of these met-

rics with cognitive and motor variables. However, the use

of deterministic tractography with the diffusion tensor for-

malism is incapable of resolving crossing fibres (Behrens

et al., 2007). Furthermore the study is limited to a net-

work-based statistical analysis of the frontal-parietal-stri-

atal network and was therefore unable to address the

selective vulnerability of rich club brain regions or global

changes in the brain network as we have done in this work.

For the first time in a diseased population, we used both

CSD, which deals more effectively with crossing fibres than

the diffusion tensor or multi-tensor methods (Tournier

et al., 2012) and SIFT, which has higher reproducibility

and is more representative of the underlying biology of

white matter connections than conventional methods

(Smith et al., 2015). CSD has been shown to perform

well at the acquisition protocol specifications used in this

study (b = 1000) (Ramirez-Manzanares et al., 2011;

Wilkins et al., 2015). At b = 1000 a minimum number of

28 gradient directions is required (Tournier et al., 2013).

Therefore the angular coverage achieved using CSD at

b = 1000 is more than sufficient with 42 directions. While

the performance of diffusion tractography methods in pa-

tients with atrophy has not been explicitly examined in the

literature, previous work by our group has demonstrated

low within-subject variability of diffusion metrics in

manifest Huntington’s disease participants, suggesting atro-

phy does not cause significant distortion of the diffusion

signal (Cole et al., 2014).

We seed streamlines using two complimentary

approaches. In the graph theory analysis streamlines are

seeded throughout the white matter and allowed to connect

to any of our 76 regions of interest. In contrast, for the

corticobasal ganglia analysis, streamlines are seeded in the

grey matter of basal ganglia structures at the voxel level

and allowed to connect to multiple regions in their corres-

ponding hemisphere. This allows us to probe corticobasal

ganglia structural connectivity change both at the region of

interest and voxel level, therefore taking into account local

basal ganglia changes in architecture that one may expect

in Huntington’s disease.

We used this latter approach in combination with canon-

ical variate analysis, a multivariate technique, and VCP ana-

lyses in a previous study where we failed to find group

differences between premanifest Huntington’s disease and

controls (Novak et al., 2015). This was likely due to meth-

odological differences, particularly the use of multitensor

reconstruction as opposed to CSD used in this study.

While the previous study suggested a relative increase in

structural connectivity to the putamen, volume normaliza-

tion was only carried out on basal ganglia structures. In this

study we volume normalized for all brain regions.

Furthermore, because canonical variate analysis-based multi-

variate analysis has limited interpretation in terms of sug-

gesting changes in individual connections’ contribution to

the overall connectivity pattern; in this study we performed

a univariate analysis to uncover direction of change in con-

nectivity. This univariate analysis did not suggest any in-

crease in connectivity per se as was reported in Novak

et al. (2015), based on canonical variate analysis analysis.

Our results suggest that loss of subcortical rich club con-

nectivity in the premanifest stage of Huntington’s disease

leads to increased network segregation followed by loss of

cortical rich club connectivity after clinical disease mani-

fests causing a breakdown of network integration. This

study was, however, pseudo-longitudinal, and thus further

longitudinal analysis is required to confirm the progression

in structural brain network change over time in

Huntington’s disease. However, studying adult onset

slowly progressive neurodegenerative diseases longitudin-

ally is challenging as the participants will need to be fol-

lowed for decades or longer, particularly in those with

premanifest disease. Pseudo-longitudinal analyses allow a

snapshot that encompasses, in one analysis, a timespan of

over 25 years with premanifest Huntington’s disease gene

carriers up to 15 years before predicted onset (Langbehn

et al., 2004) and early stage clinically symptomatic partici-

pants (up to 10 years after onset).

With respect to limitations, there were significant differ-

ences in age between premanifest and control subjects and

participants with premanifest and manifest Huntington’s

disease in our cohort, an unavoidable consequence of the

natural history of Huntington’s disease. We aimed to
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minimize this effect by including age as a covariate of no

interest in all analyses to model and remove this variance.

We acknowledge that streamline density is not a direct

marker of axonal fibre count. We also acknowledge the

limitations of diffusion tractography. However, we have

taken steps to address the biases that exist in diffusion

tractography, namely longer streamlines are more likely

to terminate prematurely whereas regions of interest

closer together have shorter streamlines and are therefore

likely to have higher ‘connection densities’. To overcome

these limitations we used the SIFT method which is more

reproducible and biologically accurate than conventional

methods (Smith et al., 2015).

This study focuses on interbrain region structural con-

nectivity. Therefore abnormalities occurring within specific

brain regions, such as the caudate and putamen, have not

been taken into account. We do, however, account for

brain region atrophy by reporting both volume un-normal-

ized and volume normalized results.

Currently in the literature there is no consensus regarding

volume normalization in connectome studies. There is a

suggestion that volume normalization may overcompensate

volume-driven effects on streamline count (Zalesky and

Fornito, 2009). We have found results suggestive of this

in our study. In our graph theoretical analysis, volume

normalized results show increases in strength in the left

thalamus and left hippocampus in Huntington’s disease

versus controls. Additionally in the corticobasal ganglia

connectivity analysis increases were seen in connection

density in connections to the anterior and posterior cingu-

late. While there is a suggestion that compensatory mech-

anisms come into play in Huntington’s disease, these are

more likely to occur in the premanifest stage (Papoutsi

et al., 2014; Scheller et al., 2014). This suggests that our

results showing increased (graph theory) strength or con-

nection densities in these regions are spurious results of

volume normalization. Similarly, in assessing regional

betweenness centrality and group differences in (graph

theory) strength, the positive correlation we observed in

the un-normalized results was not maintained after

volume normalization. While the optimal choice of brain

parcellation scheme in connectome studies is unknown,

some authors suggest that less dense parcellation schemes

with larger regions of interest allow for more robust repro-

ducible findings than dense parcellation schemes with thou-

sands of regions of interest (Smith et al., 2015).

Conclusion
We show highly connected brain regions, with high net-

work traffic, are most susceptible to structural connectivity

loss in Huntington’s disease, which results in clinically rele-

vant brain network changes of increased segregation in the

premanifest stage and loss of integration in the manifest

stage. These findings highlight the role of the rich club as

a substrate for the structural connectivity loss seen in

Huntington’s disease and have broader implications for

understanding the connection between molecular and sys-

tems level pathology in neurodegenerative disease.
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