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ABSTRACT

Objective: Identification of drugs, associated medication entities, and interactions among them are crucial to

prevent unwanted effects of drug therapy, known as adverse drug events. This article describes our participa-

tion to the n2c2 shared-task in extracting relations between medication-related entities in electronic health

records.

Materials and Methods: We proposed an ensemble approach for relation extraction and classification between

drugs and medication-related entities. We incorporated state-of-the-art named-entity recognition (NER) models

based on bidirectional long short-term memory (BiLSTM) networks and conditional random fields (CRF) for

end-to-end extraction. We additionally developed separate models for intra- and inter-sentence relation extrac-

tion and combined them using an ensemble method. The intra-sentence models rely on bidirectional long

short-term memory networks and attention mechanisms and are able to capture dependencies between multi-

ple related pairs in the same sentence. For the inter-sentence relations, we adopted a neural architecture that

utilizes the Transformer network to improve performance in longer sequences.

Results: Our team ranked third with a micro-averaged F1 score of 94.72% and 87.65% for relation and end-to-

end relation extraction, respectively (Tracks 2 and 3). Our ensemble effectively takes advantages from our pro-

posed models. Analysis of the reported results indicated that our proposed approach is more

generalizable than the top-performing system, which employs additional training data- and corpus-driven proc-

essing techniques.

Conclusions: We proposed a relation extraction system to identify relations between drugs and medication-

related entities. The proposed approach is independent of external syntactic tools. Analysis showed that by us-

ing latent Drug-Drug interactions we were able to significantly improve the performance of non–Drug-Drug

pairs in EHRs.
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INTRODUCTION

The interactions between drugs and medication-related entities are

crucial to avoid harmful consequences of pharmaceuticals. In partic-

ular, adverse drug events (ADEs) reflect how much certain drugs can

affect patients by causing undesirable side effects.1 Clinical narra-

tives and electronic health records (EHRs) constitute a rich source

for ADE evidence. Hence, careful examination of clinical narratives

can provide helpful information for pharmacovigilance. However,

the large amount of EHRs, as well as their informal and unstruc-

tured nature, makes the mining of interesting interactions related to

ADEs a challenging task for clinicians. To tackle this issue, natural

language processing (NLP) techniques have been widely applied on

EHRs to automatically extract ADE-related information using rela-

tion extraction (RE) methods.

Related work
Due to lack of publicly available data, initial approaches identified

potential ADEs using co-occurrence statistics and feature-based

methods, while evaluating on drugs with known adverse effects.2

Later, Kang et al3 built a knowledge base utilizing information from

the Unified Medical Language System. Drugs and ADEs were deter-

mined based on a concept matching module. The shortest path be-

tween two concepts in the knowledge base was used to identify

potential relations. Following feature-based techniques, graph topo-

logical and linguistic features were also explored to automatically

detect drugs and their ADEs in unstructured text.4

Over the years, several researchers worked on creating addi-

tional annotated data with medication-drug interactions. The 2010

Informatics for Integrating Biology and the Bedside/Vetaran Affairs

challenge on concepts, assertions, and relations in clinical text5 fo-

cused on RE among medical problem, treatment, and test pairs. The

best performing systems in the challenge6,7 used dictionaries and

feature-based methods, while a convolutional neural network

(CNN) model was proposed to achieve competitive performance.8

A systematically annotated corpus was generated in Gurulingappa

et al.9 for extraction of Drug-Dosage and Drug-ADEs relationships

from medical case reports. Based on this corpus, an end-to-end system

including CNN and bidirectional long-short term memory (BiLSTM)

networks10 was proposed on the shortest dependency path of an en-

tity pair.11 The method was extended by replacing the shortest depen-

dency path with an attention mechanism,12 achieving higher

performance. ADE relation extraction (RE) was treated as a multi-la-

bel problem using BiLSTMs in Bekoulis et al.13 Performance was fur-

ther improved with adversarial training.14 Finally, Zhao et al15

treated ADEs relations as event structures, proposing a two-step event

extraction process including CNNs and a beam search algorithm.

The 2017 Text Analysis Conference Adverse Reaction Extraction

from Drug Labels Track 216 asked participants to identify relations

between adverse reactions and other named entities. The highest per-

forming system in the challenge proposed a cascaded sequence label-

ling approach of BiLSTM conditional random fields (BiLSTM-CRF)

networks for end-to-end RE17 while the second ranking system used

BiLSTM-attention.18 A richer ADE-related corpus was developed by

Munkhdalai et al,19 extending to 8 named entities and 7 relation

types. They compared different models including support vector ma-

chine (SVM), LSTM and BiLSTM-attention. In the recent MADE

(Medication, indication and Adverse Drug Events) 1.0 Challenge,20

participants had to identify relations between medication and ADEs,

indications, other signs and symptoms. Once again, BiLSTM-

attention networks achieved state-of-the-art performance.21,22

Objective
In this work, we propose 3 neural network models to predict intra-

and inter-sentence relations in EHRs as part of our participation in

the 2018 n2c2 shared task on Challenges in Natural Language Proc-

essing for Clinical Data (https://n2c2.dbmi.hms.harvard.edu/

track2). Our models are able to effectively extract relations between

drugs and medication-related entities using BiLSTM-attention mech-

anisms and Transformer neural networks. Our contributions to the

task mainly focus on RE models. In more detail, we introduce a

walk-based model to support the identification of non–Drug-Drug

pairs using inference chains between sentential entities.23 Our analy-

sis showed that latent interactions between drugs in EHRs are

particularly important to capture ADE-related associations. Addi-

tionally, since ADE-Drug pairs are often located several sentences

apart,20 we propose a Transformer-based model to identify cross

sentence relations. To the best of our knowledge, this is the first

time Transformer is used for mention-level RE in clinical records.

Our team ranked third in both relation and end-to-end extraction

tasks. We report the submitted and improved performance of our

models with in-depth analysis, showing the effectiveness of our

methods to identify medication to drug relations in EHRs.

MATERIALS AND METHODS

The n2c2 challenge (Track 2) aims to extract and classify drug-

related interactions in EHRs. In particular, given an EHR with

annotated drug and medication entities, the task requires the identi-

fication of potential interactions between them and their corre-

sponding relation types. Based on the annotation scheme, the

relation type between two entities can be formed as a combination

of their semantic types. Hence, we treat this task as a binary classifi-

cation problem and classify an entity pair as related or not. We pro-

pose intra- and inter-sentence neural models to identify relations of

drugs with ADEs and other entities.

Motivated by the dynamics of different network layers, we first

propose a weighted BiLSTM model that combines information from

multiple neural layers, in contrast to existing models that use repre-

sentations from the last neural layer only. Second, we aim to support

the identification of related pairs using entity-based reasoning, in

case context information is insufficient. We thus introduce a walk-

based model that can infer entity pair associations using all existing

entities in a sentence. In essence, the model can learn latent Drug-

Drug interactions (DDIs) without any annotated data, to assist

non-DDIs. To extract inter-sentence relations, we propose a

Transformer-based network that can effectively memorize long-term

dependencies.

Intra-sentence models
To extract relations that reside in a single sentence, we developed

two BiLSTM-based models following their reported effectiveness in

similar tasks. Both models consider multiple entity pairs in a sen-

tence, compared with existing state-of-the-art RE approaches that

consider only one pair.24,25 The models have the same input and the

first two architectural layers. The first model, named Weighted

BiLSTM, aims to extract relation patterns that reside in the input se-

quence. The second model, named Walk-based model, is an ex-

tended version of the former, where a walk layer is stacked on top.

It uses sentential entity graphs to infer relations between entities.

In the first layer (ie, the embedding layer), we map words,

semantic entity types and relative positions to real-valued vectors.
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We follow the same approach as Zeng et al26 to represent the rela-

tive position of a word to the pair of interest, which we define as the

target pair. We observe that in EHRs, several patterns express rela-

tions between entities without any supportive context words. For in-

stance, the sentence [itraconazole]Drug [100mg]Strength [qd]Frequency is

a typical example of a medical prescription, where no context words

are present. Typically, the relations between itraconazole and attrib-

utes 100mg and qd are inferred even without explicit textual evi-

dence. As sequences of Drug–N number of non-Drug entities seem

important, we combine word and entity-type information as the in-

put representation of the network. This representation is then passed

into a BiLSTM layer to encode sentential-context information into

the word representations.

Weighted BiLSTM model

The Weighted BiLSTM model consists of four stacked layers as shown

in Figure 1. This model aims to combine information from multiple

neural layers to better represent a target pair. The word-based repre-

sentations of each sentence are firstly fed into a two-stacked BiLSTM

layer. We then combine the representations of the embedding layer

and the output of the stacked BiLSTM into a weighted average, which

results in context-aware word representations. We represent an entity

by averaging its corresponding word representations. The new rep-

resentations are augmented with relative position embeddings to the

target entities and fed into an argument-based attention mecha-

nism.27 The attention layer produces entity context representation

based on the importance of the sentence words towards this entity.

Finally, we form a final representation for each target pair by com-

bining the representations of the target entities and their contexts.

This pair representation is then fed into a binary classifier.

Walk-based model

The second intra-sentence model was first introduced for RE in the

general domain. The model assumes that a potentially related entity

pair can be supported by the relations between co-existing pairs in

the same sentence. In the example sentence of Figure 1, the direct as-

sociation between hypotension and atropine is not evident. How-

ever, if we use the ADE-Drug relation hypotension-dopamine and

the Drug-Drug relation dopamine-atropine, the target association

hypotension-atropine becomes clear. On that end, we restrict the

generated pairs to include at least one drug, thus enabling DDIs. In

fact, there are several DDIs in EHRs that can potentially affect the

associations between drugs and ADEs.28 Although DDIs are not an-

notated in the n2c2 dataset, we use them as an intermediate step to

infer non–Drug-Drug relations. Essentially, we infer the association

between a pair using a series of interactions between entities in a

sentence, including DDIs, as in the example shown in Figure 1.

To perform relation inference, we map a sentence into a directed

graph structure, where entities constitute the nodes and edges corre-

spond to the representation of the relation between two nodes. Fig-

ure 1 illustrates the proposed model, consisting of five layers. The

initial edge representations of the entity graph (length L¼1) are equal

to the entity pair representations, which are formed in the same way

as in the Weighted BiLSTM model. We employ a two-step process,

walk-generation and walk-aggregation (walk layer), to “walk” on the

entity graph. By iterating N times, over the walk layer, we form walks

of length up to 2N. Hence, we generate a finite number of walk repre-

sentations using entity pairs from the first to the second target entity.

These representations are merged into a final target pair representa-

tion using linear interpolation and fed into a binary classifier.

Inter-sentence model
In the n2c2 official training set, approximately 7% of relations are

expressed across sentences. To explore cross-sentence interactions,

we create relation candidates from multiple consecutive sentences.

As represented in Figure 2, we employ the Transformer network.27

Transformer is a self-attention-based multilayer neural model that

uses long word sequences to learn a new representation for each

context word. One Transformer block constitutes of two subcompo-

nents: (1) a multiheaded self-attention layer and (2) a position-wise

feed-forward neural layer. Similar to Verga et al,29 we utilize a

Figure 1. Architecture of the weighted bidirectional long-short term memory

(Weighted BiLSTM) and Walk-based models.24 ADE: adverse drug event.

Figure 2. Model architecture of inter-sentence relation extraction utilizing the

Transformer network.
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CNN with filter length equal to five in place of the feed-forward

neural layer. To learn richer word representations, we stack multiple

blocks with residual connections,30 named the Transformer layer.

Different from the intra-sentence models, the Transformer model

treats a single target pair at a time. We generate relation candidates based

on non-Drug and Drug pairs. Hence, we use the concatenation of word

and relative position embeddings as input to the Transformer layer to

form position-aware context representations. The output of the Trans-

former layer is a vector for each word of the input sequence. If a target

entity has multiple tokens, we sum the token representations into a single

embedding. To predict the relation of the target pair, we concatenate the

embeddings of both target entities and feed them into a binary classifier.

End-to-end Relation Extraction
To perform end-to-end RE, we build a pipeline system. We utilize the

ensemble of state-of-the-art BiLSTM-CRF31 models and simpler

feature-based CRF models for detection of named entities.32 The for-

mer model is able to recognize nested entities inside sentences which

are essentially entities embedded into other entities. The latter model

uses a set of different features, including orthographic, lexicosyntactic

and clustering features.

Experimental design
Data processing

The organizers provided 303 annotated discharge summaries

extracted from MIMIC-III.33 We randomly split the documents into

training and development sets (80% and 20%, respectively), while

duplicate relations were ignored, as shown in Table 1. We used

LingPipe for sentence splitting and OSCAR4 for word tokeniza-

tion.34 We further split a sentence if it contains any of the following

strings: “\n\n”, “:\n”, or “]\n”. If a token contains any of the follow-

ing special characters “@, ? %) (”, we also broke it into fine-grained

tokens. We additionally replaced terms that match the de-identified

patient data such as “doctor X” or “patient X” with a static string

of DEIDTERM, to reduce noise in the corpus.

Relation models and ensembling

We experimented with several settings for both intra- and inter-

sentence models. For the Weighted BiLSTM model, we experi-

mented with the number of stacked BiLSTM layers, attention and

PubMed,35 or randomly initialized pretrained word embeddings.

For the Walk-based model, we augmented the Weighted BiLSTM

model with walks. We additionally experimented with different

walk lengths, word embeddings and randomly removing non-related

pairs in the training set, which we define as negative instance filter-

ing. While training, negative filtering was used to counterbalance

the bias towards the negative relation class. Finally, we

concatenated consecutive sentences to perform inter-sentence RE.

We generated instances containing up to three consecutive sentences

as there is only 6% of relations across more than three sentences.

We also examined different number of Transformer blocks.

To increase performance, we ensembled the relation models. In

more detail, we generated intra-sentence relations using the

Weighted BiLSTM and Walk-based models while predicting inter-

sentence relations from the Inter-sentence model (when including

intra-sentence relations from the inter-sentence model, performance

was reduced). We tested simple ensemble techniques including ma-

jority36 and weighted voting.37 We finally selected majority voting

as our ensembling method, as a result of higher performance on the

development set. For each pair, we selected the prediction with dom-

inating votes among models. Intra-sentence pairs predictions were

collected from different intra-sentence models. For inter-sentence

pairs, we selected predictions that resulted from the inter-sentence

model alone. The combination of intra- and inter-sentence predicted

pairs served as our final relation system predictions.

Our ensembling method included the fusion of several models.

Specifically, we trained Walk-based models with different pretrained

embeddings and walk lengths, as well as negative filtering inclusion/

exclusion (on the best model), which resulted in 8 models. We addi-

tionally trained the highest recall setting 9 times using multiple

initialization seeds. Concerning the Weighted BiLSTM model, we

re-trained the best performing setting using 6 different hyper-

parameter sets including gradient clipping, dropout rate, entity type

and pair representation dimensions. Among intra-sentence ensem-

bles, we selected the combination that provided the best perfor-

mance on the development set. For the inter-sentence model, we

trained 10 models with different initialization seeds. During train-

ing, we used early stopping on the development set to identify the

best training epoch of each model. For evaluation on the test set, we

retrained our models on the union of training and development sets.

End-to-end pipeline

We tuned the named-entity recognition (NER) components on the de-

velopment set and selected 2 ensembles. One that provided the highest

overall performance in terms of F1-score and another that had the larg-

est recall, named “recall” NER. The second model enables more candi-

date pairs as it can predict more named entities. We trained the three

proposed RE models on gold entities and during prediction, the output

of the NER module was given as their input. Similarly to Track 2, for

evaluation on the test set, we combined the training and development

sets and used the best-performing ensemble on the development set.

RESULTS

We report the performance of the proposed inter- and intra-senten-

tial relation models on the development set in Table 2. We use the

Approximate Randomization significance test38 to measure perfor-

mance differences among models and settings. We consider statisti-

cal significance with P value <.05.

Table 1. Statistics of n2c2 dataset in intra- and inter-sentence rela-

tions for the training and development sets

Training Development

Total sentences 44 475 11 520

Sentences with >1 entity 7125 1907

Sentences with 1 entity 1835 401

Sentences with no entities 35 515 9212

Sentences with 1 pair 1672 409

Inter Intra Inter Intra

Number of positive relations 1994 26591 570 7119

Strength-Drug 36 5276 13 1373

Dosage-Drug 107 3192 33 888

Duration-Drug 29 489 4 120

Frequency-Drug 158 4828 53 1259

Form-Drug 123 5060 74 1358

Route-Drug 107 4220 35 1173

Reason-Drug 1239 2830 307 783

ADE-Drug 195 696 51 165

Negative relations 78 471 39 850 20 050 9183

Duplicate relations 19 9

ADE: adverse drug event.
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We tested the weighted model using different number of stacked

layers and attention. The addition of attention did not significantly

reduce the performance with one BiLSTM but it did for two-

stacked. The main reason for this behavior may be that two-stacked

layers capture fine-grained contextual information and therefore at-

tention introduces noise. Significance testing between stacked

BiLSTM layers showed that two-stacked layers significantly contrib-

ute to the performance.

We then stacked the walk layer on top of the single Weighted

BiLSTM model. In the Walk-based model, we always consider at-

tention to include explicit context information in the edges of the en-

tity graph. We do not stack multiple BiLSTM layers while using

walks to avoid over-parameterization. As observed, the Walk-based

model achieves significantly better performance than the two-stacked

BiLSTM with much less learned parameters. Furthermore, longer

walks improve performance which resulted in our best performing

model, including one weighted BiLSTM layer, attention and walks of

L¼8. Significance testing between the walk models proved that lon-

ger walks are respectively better than shorter ones, in terms of F1-

score. The performance slightly dropped when we applied negative

filtering on top of the best walk model, but as expected, provided the

highest recall among all intra-sentence models.

We finally tested the Transformer model on intra-sentence pairs

(span 1). We observed that the model obtains significantly lower

performance than the other two models. The best performance was

achieved with 2-span sentences and 2 Transformer blocks, which is

significantly better than using less or more blocks as well as longer

sentence span. As most cross-sentence relations exist between two

sentences (approximately 71%), introducing longer spans results in

much more negative instances and consequently a highly imbalanced

dataset.

Table 3 shows our submission and improved performance in the

relation and end-to-end extraction tasks. Due to time limitations,

the Walk-based model initially utilized a simple attention mecha-

nism,39 as originally proposed in Christopoulou et al.24 However,

additional experiments showed that argument-based attention yields

better results (see Supplementary Appendix B). We further improved

our intra-sentence ensemble by incorporating models with walk

length less than L¼8. The new best ensemble model includes walks

of length L¼2 and L¼8, 1 random seed model and 3 Weighted

BiLSTM models. Statistical significance testing indicated that our

new ensemble is significantly better than our submitted one in Track

2. For the end-to-end task, we used the best-performing pipeline on

the development set. The submitted ensemble included the Weighted

BiLSTM model alone and the “recall” NER ensemble. When we

used our improved RE model on the output of our “recall” NER

performance improved.

DISCUSSION

Error analysis
Because we treat this task as a binary classification problem, errors

are restricted to two classes. Additionally, there are no directionality

errors as the relation is always from a non-Drug to a Drug entity.

We analyze the incorrect predictions of our models using category-

wise false positive rates (FPR) and false negative rate (FNR). We es-

timate the error rate as the proportion of all negative instances that

were misclassified as positive (FPR) and the proportion of all posi-

tive instances that were misclassified as negative (FNR), as shown in

Equations 1 and 2,

FPRi ¼
# FP in class i

# FP in class i þ # TN in class i
(1)

FNRi ¼
#FN in class i

#FN in class i þ # TP in class i
(2)

Table 2. Performance of the proposed RE models on the develop-

ment set

Model Precision Recall F1-score

Intra-sentence

Weighted, 1� BiLSTM 0.9702 0.8985 0.9330

þ Attention 0.9713 0.8975 0.9330

þWalks L ¼ 2 0.9767 0.9029 0.9384

þWalks L ¼ 4 0.9803 0.9040 0.9406

þWalks L ¼ 8 0.9804 0.9066 0.9420

þ Negative Filtering 0.9734 0.9115 0.9414

Weighted, 2� BiLSTM 0.9719 0.9057 0.9376

þ Attention 0.9722 0.9036 0.9366

Inter-sentence

sentence span 1, 2� Transformer 0.9549 0.9046 0.9291

sentence span 2, 1� Transformer 0.9265 0.8963 0.9112

sentence span 2, 2� Transformer 0.9358 0.9458 0.9408

sentence span 2, 3� Transformer 0.9240 0.9465 0.9351

sentence span 2, 4� Transformer 0.9198 0.9365 0.9281

sentence span 3, 2� Transformer 0.8851 0.9654 0.9235

BiLSTM: bidirectional long-short term memory; RE: relation extraction.

Table 3. Performance on test set for relation (Track 2) and end-to-end (Track 3) extraction task of submitted and improved models.

Model Precision Recall F1-score

Relation

* Intra [ensemble] þ Inter [ensemble] 0.9463 0.9480 0.9472

Intra [ensemble] þ Inter [ensemble] 0.9572 0.9456 0.9514

End-to-end

* NER [recall] þWeighted [ensemble] þ Inter [ensemble] 0.9264 0.8318 0.8765

NER [recall] þ Intra [ensemble] þ Inter [ensemble] 0.9286 0.8321 0.8777

The asterisk indicates our submitted models to the n2c2 shared task.

NER: named entity recognition.
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Figure 3 visualizes the false negative error rates of our intra-

sentence models and their ensemble, as evaluated only on intra-

sentence pairs (we do not report the FPR, as we found it was below

1% for all models and relation classes) (Supplementary Appendix

C). It is observed that ADE-Drug and Reason-Drug classes have

the highest probability to misclassify a pair as negative (10% for

ADE and 5% for Reason). In fact, these classes are the most diffi-

cult to predict, as they require well-formed context and relation-

indicative words. In the sentence “Allergies: [Bactrim]Drug

([rash]ADE),” the relation between ADE and Drug is not evident as

there are no keywords to support it. In contrast, Duration, Form,

Strength, and other similar entities are always found close to a drug

and follow a standard pattern which can be learned from sequential

models eg, “[Azithromycin]Drug [250 mg]Strength [Tablet Sig]Form”. Al-

though Duration-Drug has the least positive occurrences in the data-

set, our models can detect it since it is always related to the closest

drug. Compared with Weighted BiLSTM, the Walk-based model is

less biased to negative relations, as the introduction of negative filter-

ing and the walk-inference enables the identification of more positive

instances. The combination of models reduces the FNR. As we

did not develop category-wise classifiers, the models try to fit all rela-

tion patterns under a single category. Because ADE- and Reason-

Drug patterns are much less, compared with other non–Drug-Drug

pairs, all models tend to have lower performance on these particular

categories.

Relative contributions
Next, we investigate the contribution of the inter-sentence model

to the overall performance. Figure 4 illustrates our best intra-

sentence ensemble and the improvement after merging with

inter-sentence predictions. As expected, the Reason-Drug class

has the highest improvement due to the large amount of inter-

sentence relations in the dataset (62% of intersentence relations).

However, ADE-Drug performance drops despite the number of

cross-sentence ADE-Drug pairs (10%), as Transformer fails to

detect them. This is due to the semantic structure of these pairs,

which, in most cases, require logical inference from one sentence

to the other (eg, “The patient had [two transfusion

reactions]ADE to [platelets]Drug when first admitted. She was

premedicated with [anti-histamines]Drug”). The relation between

two transfusion reactions and anti-histamines is inferred based

on implied context, not present in the snippet.

We then analyze the importance of the walk layer by measuring

the performance on sentences with several entities. As shown in Fig-

ure 5, performance increases with longer walks. Among walk

lengths, L¼8 has the best performance across multi-entity senten-

ces, outperforming the other two models. This indicates that graph-

based methods can be helpful for RE.

We further investigate the contribution of DDIs in the walks

model. We retrain Walk-based models without DDIs and by consid-

ering only non–Drug-Drug pairs when forming walks. In this set-

Figure 3. False negative error rate of intra-sentence models and their ensemble on the development set. ADE: adverse drug event.

Figure 4. Performance of the best relation extraction ensemble on each relation class on the development set. Blue bars indicate the performance of the intra-

sentence model ensemble (Walk and Weighted models), while orange bars show performance improvement when merging intra- and inter-sentence models.

ADE: adverse drug event.
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ting, the ADE-Drug pair hypotension-atropine of Figure 1, cannot

incorporate walks of L¼2 in its representation, as valid entity paths

between the corresponding target entities cannot be formed. In es-

sence, by removing DDIs, we restrict the relation inference steps be-

tween two entities. As it is noticed from Table 4, the Walk-based

model performs significantly lower without DDIs. Additionally, sig-

nificance testing designated that different walk lengths perform simi-

larly when excluding DDIs. All these observations indicate the

importance of latent DDIs in inferring other related pairs.

Performance comparison
We finally compare our models with the best performing systems in

relation and end-to-end tracks. Regarding Track 2, the top-ranking

team utilized a joint approach, achieving a micro-averaged F1-score

of 96.3%. However the predicted relations were post-processed

with heuristics: addition of relations between isolated attributes and

their nearest drugs. Considering non-post-processed predictions,

their system achieved 93.99% in micro F1-score40, which is evi-

dently lower than our submitted performance of 94.72% and our

improved model of 95.14% (we implemented the same

postprocessing rule, but we could not get higher performance). The

same team ranked first in the end-to-end extraction track. The sec-

ond best performing system in Track 3 used additional training data

for NER, as well as information from the MIMIC-III and SIDER

databases.41 According to the organizers, there is no significant dif-

ference between their system performance and ours.

CONCLUSION

In this work, we proposed an ensemble method for RE between

drugs and medications, as part of our participation to the n2c2 chal-

lenge 2018. Our models ranked on the third place in both relation

(Track 2) and end-to-end extraction (Track 3).

We described three deep neural models that are independent of ex-

ternal syntactic and linguistic tools. A Weighted BiLSTM and a

Walk-based model were introduced for extracting relations in EHRs.

The proposed Walk-based model is able to infer associations between

entities by taking advantage of co-existing entity pairs in the same

sentence. Further exploration indicated that latent DDIs are particu-

larly important to infer non–Drug-Drug associations. We also pre-

sented a Transformer-based network for mention-level RE. The

approach we follow in this work utilizes much fewer parameters than

the originally proposed network. Analysis of the top-performing sys-

tems showed that our approach can achieve comparable performance

without additional training data and post-processing rules.

The proposed models can be applied to any RE task, to identify

relations between biomedical or generic domain named entities. Due

to the low performance of our models on ADE- and Reason-Drug

categories, we aim, as future work, to further investigate these inter-

actions by speculating their linguistic properties and develop more

suitable models. We also intend to exploit joint-learning approaches

for end-to-end RE.42 Finally, we plan to apply the proposed ap-

proach to other biomedical RE corpora, as well as to collaborate

with clinicians, to show not only the clinical significance of our

methods but also their generalizability.

FUNDING

This research was supported with funding from Biotechnology and

Biological Services Research Council EMPATHY (Enriching Meta-

bolic PATHwaY) models with evidence from the literature (Grant

ID: BB/M006891/1) (SA) and the Manchester Molecular Pathology

Innovation Centre (Grant ID: MR/N00583X/1) (SA).

AUTHOR CONTRIBUTIONS

The Walk-based, Weighted BiLSTM, and Transformer models were

implemented by FC, TTT, and SKS, respectively. TTT implemented

the model ensembling. FC and TTT conducted error analysis and

drafted the manuscript. MM and SA supervised all steps of the work.

SKS, MM, and SA revised the manuscript. All authors provided

feedback and read and approved the final version of the manuscript.

SUPPLEMENTARY MATERIAL

Supplementary material is available at Journal of the American

Medical Informatics Association online.

ACKNOWLEDGMENTS

The authors would like to thank the Institute of Advanced Industrial Science

and Technology/Artificial Intelligence Research Center for providing the com-

putational resources for the realization of the experiments conducted in this

work. FC and TTT also express their gratitude to the James Elson and the Re-

search Impact Scholarship awards from the University of Manchester.

CONFLICT OF INTEREST STATEMENT

None declared.

REFERENCES

1. Bates DW, Cullen DJ, Laird N. Incidence of adverse drug events and po-

tential adverse drug events: implications for prevention. JAMA 1995; 274

(1): 29–34.

Table 4. Performance of the Walk-based model with and without

considering Drug-Drug pairs

F1-score Exclude DDIs Include DDIs

L¼ 8 L¼ 4 L¼ 2 L¼ 8 L¼ 4 L¼ 2

Micro 0.9366 0.9366 0.9366 0.9420 0.9406 0.9384

Macro 0.9345 0.9345 0.9335 0.9389 0.9367 0.9349

DDI: Drug-Drug interaction.

Figure 5. Performance of intra-sentence models on the development set on

sentences with different number of entities.

Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 1 45

https://academic.oup.com/jamia/article-lookup/doi/10.1093/jamia/ocz101#supplementary-data


2. Wang X, Hripcsak G, Markatou M, et al. Active computerized pharmacovi-

gilance using natural language processing, statistics, and electronic health

records: a feasibility study. J Am Med Inform Assoc 2009; 16 (3): 328–37.

3. Kang N, Singh B, Bui C, et al. Knowledge-based extraction of adverse

drug events from biomedical text. BMC Bioinformatics 2014; 15 (1): 64.

4. Dasgupta T, Naskar A, Dey L. Exploring linguistic and graph based fea-

tures for the automatic classification and extraction of adverse drug

effects. In: Proceedings of CICLing; 2017: 463–74.

5. Uzuner €O, South BR, Shen S, et al. 2010 i2b2/VA challenge on concepts,

assertions, and relations in clinical text. J Am Med Inform Assoc 2011; 18

(5): 552–6.

6. Roberts K, Rink B, Harabagiu S. Extraction of medical concepts, asser-

tions, and relations from discharge summaries for the fourth i2b2/VA

shared task. In: Proceedings of i2b2/VAWorkshop on Challenges in Natu-

ral Language Processing for Clinical Data; 2010.

7. de Bruijn B, Cherry C, Kiritchenko S, et al. NRC at i2b2: one challenge,

three practical tasks, nine statistical systems, hundreds of clinical records,

millions of useful features. In: Proceedings of i2b2/VAWorkshop on Chal-

lenges in Natural Language Processing for Clinical Data; 2010.

8. Sahu SK, Anand A, Oruganty K, et al. Relation extraction from clinical

texts using domain invariant convolutional neural network. In: Proceed-

ings of BioNLP; 2016: 206-15.

9. Gurulingappa H, Rajput AM, Roberts A, et al. Development of a bench-

mark corpus to support the automatic extraction of drug-related adverse

effects from medical case reports. J Biomed Inform 2012; 45 (5): 885–92.

10. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput

1997; 9 (8): 1735–80.

11. Li F, Liu W, Yu H. Extraction of information related to adverse drug

events from electronic health record notes: design of an end-to-end model

based on deep learning. JMIR Med Inform 2018; 6 (4): e12159.

12. Ramamoorthy S, Murugan S. An attentive sequence model for adverse

drug event extraction from biomedical text. arXiv 2018 Jan 2 [E-pub

ahead of print].

13. Bekoulis G, Deleu J, Demeester T, Develder C. Joint entity recognition

and relation extraction as a multi-head selection problem. Expert Syst

Appl 2018; 114: 34–45.

14. Bekoulis G, Deleu J, Demeester T. Adversarial training for multi-context

joint entity and relation extraction. In: Proceedings of EMNLP; 2018:

2830–36.

15. Zhao J, Zhou T, Dai W. Convolutional neural network-based joint extrac-

tion of adverse drug events. In: Proceedings of ICCSE; 2018: 1–5.

16. Roberts K, Demner-Fushman D, Tonning JM. Overview of the TAC 2017 ad-

verse reaction extraction from drug labels track. In: Proceedings of TAC; 2017.

17. Xu J, Lee HJ, Ji Z, et al. UTH_CCB system for adverse drug reaction ex-

traction from drug labels at TAC-ADR. In: Proceedings of TAC; 2017.

18. Dandala B, Mahajan D, Devarakonda M. IBM Research System at TAC

2017: adverse drug reactions extraction from drug labels. In: Proceedings

of TAC; 2017.

19. Munkhdalai T, Liu F, Yu H. Clinical relation extraction toward drug safety

surveillance using electronic health record narratives: classical learning versus

deep learning. JMIR Public Health Surveill 2018; 4 (2): e29.

20. Jagannatha A, Liu F, Liu W, et al. Overview of the first natural language

processing challenge for extracting medication, indication, and adverse

drug events from electronic health record notes (MADE 1.0.). Drug Saf

2018; 42 (1): 99–111.

21. Dandala B, Joopudi V, Devarakonda M. IBM Research System at MADE

2018: detecting adverse drug events from electronic health records. In:

International Workshop on Medication and Adverse Drug Event Detec-

tion; 2018: 39–47.

22. Li F, Zhang M, Fu G, et al. A neural joint model for entity and relation ex-

traction from biomedical text. BMC Bioinform 2018; 18 (1): 198.

23. Christopoulou F, Miwa M, Ananiadou S. A walk-based model on entity

graphs for relation extraction. In: Proceedings of ACL; 2018(2): 81–8.

24. Yi Z, Li S, Yu J, et al. Drug-drug interaction extraction via recurrent neu-

ral network with multiple attention layers. In: Proceedings of ADMA;

2017: 554–66.

25. Björne J, Salakoski T. Biomedical event extraction using convolutional

neural networks and dependency parsing. In: Proceedings of BioNLP;

2018: 98–108.

26. Zeng D, Liu K, Lai S, et al. Relation classification via convolutional deep

neural network. In: Proceedings of COLING; 2014: 2335–44.

27. Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need. Adv

Neural Inf Process Syst 2017; 30: 5998–6008.

28. Liu R, Diwan M, AbdulHameed MDM, et al. Data-driven prediction of

adverse drug reactions induced by drug-drug interactions. BMC Pharma-

col Toxicol 2017; 18 (1): 44.

29. Verga P, Strubell E, McCallum A. Simultaneously self-attending to all

mentions for full-abstract biological relation extraction. In: Proceedings

of NAACL-HLT 2018; (1): 872–84.

30. He K, Zhang X, Ren S, et al. Deep residual learning for image recognition.

In: Proceedings of IEEE CVPR; 2016: 770-78.

31. Ju M, Miwa M, Ananiadou S. A neural layered model for nested

named entity recognition. In: Proceedings of NAACL-HLT; 2018(1):

1446–59.

32. Ju M, Nguyen NTH, Miwa M, et al. An Ensemble of Neural Model for

Nested Adverse Drug Events and Medication Extraction with Subwords

[published online ahead of print June 14, 2019]. J Am Med Inform Assoc

2020; 27 (1): 22–30.

33. Johnson AEW, Pollard TJ, Shen L, et al. MIMIC-III, a freely accessible

critical care database. Sci Data 2016; 3: 160035.

34. Jessop DM, Adams SE, Willighagen EL, et al. OSCAR4: a flexible archi-

tecture for chemical text-mining. J Cheminform 2011; 3 (1): 41.

35. Chiu B, Crichton G, Korhonen A, et al. How to train good word

embeddings for biomedical NLP. In: Proceedings of BioNLP; 2016:

166–174.

36. Lam L, Suen SY. Application of majority voting to pattern recognition: an

analysis of its behavior and performance. Trans of SMC 1997; 27 (5):

553–68.

37. Mu X, Lu J, Watta P, et al. Weighted voting-based ensemble classifiers

with application to human face recognition and voice recognition. In: Pro-

ceedings of IJCNN; 2009: 2168–71.

38. Noreen EW. Computer-Intensive Methods for Testing Hypotheses. New

York, NY: Wiley; 1989.

39. Zhou P, Shi W, Tian J, et al. Attention-based bidirectional long short-term

memory networks for relation classification. In: Proceedings of ACL;

2018(2): 207–12.

40. Wei Q, Ji Z, Li Z, et al. A study of deep learning approaches for medica-

tion and adverse drug event extraction from clinical text. [published on-

line ahead of print May, 2019]. J Am Med Inform Assoc 2020; 27 (1):

13–21.

41. Kuhn M, Letunic I, Jensen LJ, et al. The SIDER database of drugs and side

effects. Nucleic Acids Res 2016; 44 (D1): D1075–9.

42. Miwa M, Bansal M. End-to-end relation extraction using lstms on sequen-

ces and tree structures. In: Proceedings of ACL; 2016(1): 1105-16.

46 Journal of the American Medical Informatics Association, 2020, Vol. 27, No. 1


	ocz101-TF2
	ocz101-TF3
	ocz101-TF5
	ocz101-TF6
	ocz101-TF8

