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A B S T R A C T

A critical factor that influences the success of an in-vitro fertilization (IVF) treatment cycle is the quality of the
transferred embryo. Embryo morphology assessments, conventionally performed through manual microscopic
analysis suffer from disparities in practice, selection criteria, and subjectivity due to the experience of the
embryologist. Convolutional neural networks (CNNs) are powerful, promising algorithms with significant po-
tential for accurate classifications across many object categories. Network architectures and hyper-parameters
affect the efficiency of CNNs for any given task. Here, we evaluate multi-layered CNNs developed from scratch
and popular deep-learning architectures such as Inception v3, ResNET-50, Inception-ResNET-v2, NASNetLarge,
ResNeXt-101, ResNeXt-50, and Xception in differentiating between embryos based on their morphological quality
at 113 h post insemination (hpi). Xception performed the best in differentiating between the embryos based on
their morphological quality.
1. Introduction

Infertility is an underestimated healthcare problem that affects over
48 million couples globally and is a cause of distress, depression, and
discrimination (Mascarenhas et al., 2012; Turchi, 2015). Although
assisted reproductive technologies (ART) such as in-vitro fertilization
(IVF) have alleviated the disease burden to an extent, it has been inef-
ficient with an average success rate of approximately 30% reported in
2015 in the US (CDC, 2015). IVF remains an expensive therapy costing
$7000 - $20,000 per ART cycle in the US, most of which is not covered by
insurance (Birenbaum-Carmeli, 2004; CDC, 2015; Toner, 2002) with
many patients requiring numerous cycles to achieve a successful preg-
nancy. Multiple factors such as maternal age, medical diagnosis, gamete
and embryo quality, and endometrium receptivity determine the success
of ART cycles (Barash et al., 2017; Demko et al., 2016; Einarsson et al.,
2017; Erenus et al., 1991; Hill et al., 1989; Osman et al., 2015; Paulson
et al., 1990). However, non-invasive selection of the highest available
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quality from a patient's cohort of embryos (top-quality embryo) for
transfer, remains one of the most important factors in achieving suc-
cessful ART outcomes, yet this critical step remains a significant chal-
lenge (Barash et al., 2017; Conaghan et al., 2013; Filho et al., 2010;
Machtinger and Racowsky, 2013; Racowsky et al., 2015; Vaegter et al.,
2017; Wong et al., 2013).

Embryo transfers are performed at the cleavage or blastocyst stage of
development. Embryos are at the cleavage stage 2–3 days after fertil-
ization and may reach the blastocyst stage 5–7 days after fertilization.
Traditional methods of embryo selection rely on visual embryo
morphological assessment and are highly practice-dependent and sub-
jective. Emulating the skill of highly trained embryologists in efficient
embryo assessment in a fully automated system is a major unmet chal-
lenge in all of the previous work done in computer-aided embryo as-
sessments due to focus on measuring specific expert-defined parameters
such as zona pellucida thickness variation, number of blastomeres, de-
gree of cell symmetry and cytoplasmic fragmentation, etc (Rocha et al.,
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2017a, 2017b). Computer vision methods for embryo assessment are
semi-automated, limited to measuring specific parameters providing
metrics that require further analysis by embryologists and strictly
controlled imaging systems (Filho et al., 2010). Previous attempts in
developing systems using traditional machine-learning approaches
require intensive image preprocessing followed by human-directed seg-
mentation of embryo features for classification (Matos et al., 2014; Rocha
et al., 2017a, 2017b). Owing to the dependency of these approaches on
image processing and segmentation, such methods suffer from the same
limitations as computer vision techniques.

Convolutional neural networks (CNN), which work on the principles
of representation learning have already received significant attention
from the medical community in evaluating, through embryo
morphology, the embryo quality and implantation potential, and for
other applications for clinical IVF practices such as quality control of
systems and embryologists (Dimitriadis et al., 2019a, 2019b; Hariton
et al., 2019; Kanakasabapathy et al., 2019a, 2019b, 2019c; Khosravi
et al., 2019; Thirumalaraju et al., 2019a, 2019b, 2019c; Tran et al.,
Figure 1. Embryo hierarchy used by the neural network. (A) Following inseminatio
113-hours morphologies are sorted into 2 major classes (blastocysts and non-blastoc
were not tracked further and thus were not considered in 70 hpi and 113 hpi assessm
were composed of blastocysts. Class 5 composed of blastocysts that met the clinical c
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2019). However, all of these studies provide limited information on the
neural networks themselves and the effect of hyper-parameters on the
task of embryo morphological assessments. Different architectures and
hyper parameters achieve varying performances on the same task and are
non-universal. To the best of our knowledge, no comparative studies of
architectures or methods have been performed using a standardized set
of clinical embryo images. Furthermore, domain-shifted embryo data has
never been evaluated using any of the previous studies. Therefore, the
primary goal of this study was to evaluate popular CNN approaches using
a dataset of day 5 embryo (113 h post insemination) images in classifying
embryos based on their morphological quality. Day 5 embryos were used
for the network evaluation studies given their importance to the field of
embryology and since most published studies are focused on this day of
embryo development (Dimitriadis et al., 2019b; Hariton et al., 2019;
Kanakasabapathy et al., 2019a, 2019b, 2019c; Khosravi et al., 2019;
Thirumalaraju et al., 2019b, 2019c).

Embryos with normal fertilization were evaluated based on their
morphology at 113 h post insemination (hpi) (Figure 1). At the blastocyst
n, pronuclear stage embryos are categorized into two classes and based on their
ysts) subdivided into 5 classes. Embryos with abnormal fertilization (non-2PN)
ents. Classes 1 and 2 were composed of non-blastocysts and classes 3, 4, and 5

riteria for cryopreservation. (B) Representative images for each class of embryo.
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stage (at 113 hpi), embryos are conventionally graded through 83 classes
of blastocysts based on the combinations of (i) the degree of blastocoel
expansion (grades 1–6), (ii) inner cell mass quality (grades 1–4), and (iii)
trophectoderm quality (grades 1–4) along with 3 classes of non-
blastocysts. For the CNN classification algorithm, the grading system
was simplified to encompass all 86 classes within a 2-level hierarchy of
training and inference classes (Figure 1). Thus, the embryos were eval-
uated at 113 hpi stage using multilayered CNNs (5–43 layers), Inception
v3 (Szegedy et al., 2015), ResNET-50 (He et al., 2015),
Inception-ResNET-v2 (Szegedy et al., 2016), NASNetLarge (Zoph et al.,
2017), ResNeXt-101 (Xie et al., 2016), ResNeXt-50 (Xie et al., 2016), and
Xception (Chollet, 2016). The two major categories of non-blastocysts
and blastocysts included the training classes 1, 2, and 3, 4, 5, respec-
tively. Using a retrospective dataset comprising of 2,440 embryos, the
deep CNN models were trained and tested to primarily classify between
two classes (non-blastocysts and blastocysts) using images of embryos
captured at 113 hpi. The best performing model was then used to eval-
uate an independent test set of 742 embryos in differentiating blastocysts
based on their morphological quality. In addition, we tested the networks
(Inception-v3, ResNET-50, Inception-ResNET-v2, multilayer CNN, NAS-
NetLarge, ResNeXt101, ResNeXt50, and Xception) in evaluating embryo
images of shifted domains. Xception performed the best in differentiating
between the embryos based on their morphological quality.

2. Materials and methods

2.1. Data collection and preparation

Data was collected at the Massachusetts General Hospital (MGH)
fertility center in Boston, Massachusetts. We used 3,469 recorded videos
of embryos collected from 543 patients under institutional review board
approvals (IRB#2017P001339; IRB#2019P002392). The retrospective
image data used for this study were collected as part of routine clinical
practice using an Embryoscope time-lapse system (Vitrolife). These in-
struments use Hoffman modulated contrast optics with 20� objective to
image each embryo. Images were acquired at a resolution of 1280� 1024
pixels every 10 min at 7 focal planes, to generate videos. Videos were
fragmented to extract the frames at a single focal plane and linked to a
specific time point (113 hpi) using a custom python script, which made
use of the OpenCV and Tesseract libraries. Machine-generated time-
stamps available on each frame of the video was used to identify the
images associated with 113 hpi. All embryos used in the study were
annotated using images from the fixed time-points by senior-level em-
bryologists with a minimum of 5 years of human IVF training. Out-of-
focus images were included in the datasets and used for both testing
and training. Only images of embryos that were completely non-
discernable were removed as part of the data cleaning procedure.

2.2. Data organization and hierarchical structuring

Embryo images collected at 113 hpi were separated prior to evalua-
tion. Only embryos with normal fertilization were used for evaluations.
The embryo images at 113 hpi time points were categorized between
training classes 1 through 5 (Figure 1). The embryo class categorizations
were based on the embryos' developmental state achieved by 113 hpi.
Class 1 comprised of degenerated and arrested embryos, which did not
begin compaction while class 2 comprised of embryos that were at the
morula stage at 113 hpi. Classes 1 and 2 together formed the inference
class of ‘non-blastocysts’. Class 3 comprised of embryos exhibiting fea-
tures of an early blastocyst such as the presence of a blastocoel cavity and
a thick zona pellucida with lack of overall embryo expansion. Class 4 was
made up of embryos, which were blastocysts with blastocoel cavities
occupying over half of the embryo volume and possessed either poor
inner cell mass (ICM) or poor trophectoderm (TE). These embryos were
overall considered to fall below 113 hpi cryopreservation quality criteria
based on the MGH fertility center guidelines (>3CC), where 3 represents
3

the degree of expansion (range 1–6) and C represents the quality of ICM
and TE (range A-D), respectively (Table 1). Class 5 on the other hand
comprised of all embryos, which met cryopreservation criteria and
included full blastocysts to hatched blastocysts (Table 1). Classes 3, 4,
and 5 together formed the inference class of ‘blastocysts’ that was used in
this study.

The 113 hpi evaluation dataset included images of 2,440 embryos
categorized across five classes post-cleaning based on their clinical an-
notations. Our training set for this classification task used 1,188 images
(Class 1: 19.36%; Class 2: 17.68%; Class 3: 20.12%; Class 4: 16.92%;
Class 5: 25.92%) with a validation dataset of 510 images (Class 1:
19.41%; Class 2: 18.43%; Class 3: 20.59%; Class 4: 15.69%; Class 5:
25.88%) obtained at 113 hpi. The independent non-overlapping test set
consisted of 742 images (Class 1: 19.41%; Class 2: 14.42%; Class 3:
17.38%; Class 4: 11.46%; Class 5: 37.33%). All training was performed
within the Keras environment, a popular open-source neural network
library designed for python. With the availability of unskewed validation
sets prior to augmentation, we used a data generator within Keras for
batch generation during training that performed random rotations and
flips across all classes on the fly.

2.3. Non-embryoscope image dataset

258 embryo images (Non-blastocysts: 54.65%; Blastocyst: 45.35%)
collected through the Society for Reproductive Biologists and Technol-
ogists (SRBT) for the Embryo ATLAS project, which were imaged using
standard inverted bright-field microscopes annotated by 8 director level
embryologists from 8 different fertility practices across the United States,
were used for the network evaluation. The threshold for classification
was optimized for each architecture but no additional training was per-
formed using the SRBT dataset.

2.4. CNN architectures evaluated in this study

Multiple CNN architectures were trained and tested in embryo as-
sessments to identify the best suited network for the task of evaluating
embryos. Inception-v3, ResNET-50, Inception-ResNET-v2, NASNetLarge,
ResNeXt-101, ResNeXt-50, and Xception architectures along with a 40-
layer CNN were tested by training them on 113 hpi embryo images for
classification. The Inception-v3 and Inception-ResNET-v2 were trained
with the Stochastic Gradient Descent (SGD) optimizer and with learning
rates set to 0.0004 and 0.0005, and decay factors of 0.75 and 0.5 for
every 10 epochs, respectively. ResNET-50 was trained with Adam opti-
mizers and with learning rates set to 0.001. We trained NASNetLarge,
ResNeXt-101, and ResNeXt-50 with SGD optimizer and with learning
rates set to 0.00001, 0.01, and 0.01, respectively and with a learning rate
scheduler. The input size of the embryo image used was 311� 311 pixels
in case of NASNetLarge and 210 � 210 pixels for all other architectures.
The 40-layer CNN, similarly, used a learning rate of 0.001 and mo-
mentum of 0.5 with an SGD optimizer that had a decay of 0.5 for every 40
epochs. The input size of the embryo image used was 210 � 210 pixels
and each image was convoluted through 64, 128, 256, and 512 feature
maps using 3 � 3 filters with padding and Rectified Linear Unit (ReLU)
activation. A dropout layer was also used with dropout probability set at
0.5 along with a flattened second-last layer which was connected to the
5-neuron output layer. A few models of ResNET-50 and de-novo CNNs
were highlighted here to elucidate the effect of hyperparameters on such
networks for the embryo dataset used (Table 2).

6 models for ResNET-50 trained using 113 hpi embryo images are
presented here (Table 2). ResNET-50 architecture was used for models 1,
2, 3, and 4, where only model 1 possessed no dropout while the rest (2, 3,
and 4) had a layer set at 0.5 probability. Three extra fully connected
layers with 1024, 1024, and 512 neurons between the ResNET-50
bottleneck layer and the final classification layer with an additional 20
trainable layers were used for model 5. Model 6 possessed 1024 neurons
in a single fully connected layer between the bottleneck layer and the



Table 1. Blastocyst grading system used by the Massachusetts General Hospital fertility center. The table shows how the graded embryos were categorized into 5 classes. Classes 1 and 2 primarily consisted of non-blastocysts
while classes 3, 4, and 5 consisted of blastocysts. Only embryos belonging to class 5 met the freezing criteria employed at the MGH fertility clinic.

Day 5/6 Stage (>113 hpi) Score Class Description

Degenerate or Arrested D 1 Embryo failed to develop to at least the morula stage

Morula M-A 2 More than 50% of the embryo has undergone compaction; no ICM or TE cells evident

Morula M-B 2 Incomplete compaction (less than 50% compaction)

Early Blastocyst 1* 3 Blastocoele less than half the volume of the embryo, little or no expansion in overall size; ZP thick

(1A ¼ good quality; 1B ¼ moderate quality, 1C ¼ poor quality)

Blastocyst 2 4 Blastocoele more than half the volume of the embryo, some expansion in overall size; ZP beginning to thin

Full Blastocyst 3 4 or 5** Blastocoele completely filling embryo; ZP not completely thinned

Expanded Blastocyst 4 4 or 5** Blastocoele completely filling embryo; fully expanded embryo and ZP very thin

Hatching Blastocyst 5 5 Hatching blastocyst, TE starting to herniate through the ZP

Hatched Blastocyst 6 5 Blastocyst completely hatched (i.e. completely out of the ZP)

ICM Grade Description

A ICM prominent & easily discernible with many cells, and cells compacted and tightly adhered together

B ICM discernible but with fewer cells, and loosely adherent together

C Very few cells visible, either compacted or loose, may be difficult to distinguish completely from TE

D No ICM cells discernible in any focal plane or ICM cells appear degenerate or necrotic

Trophectoderm Grade Description

A A continuous layer of small uniform eye-shaped cells bordering the blastocoele

B Fewer, larger cells that may not form a continuous layer

C Sparse TE cells, may be large

D All TE cells degenerate

Freezing/Biopsy Criteria: Stage 3 or above with a quality score greater than CC (i.e. do NOT freeze or biopsy embryos with a quality score of CC or any embryo with a D (for ICM or TE).
ZP: Zona Pellucida; ICM: Inner cell mass; TE: Tropechtoderm.

* No ICM or TE score is given for Stage 1 Early Blastocysts.
** Class 5 consists of embryos which meet the freezing criteria only.
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Table 2.Models of ResNET-50, multi-layer CNN, and Xception along with their hyperparameters. The ResNET-50 and multi-layered CNN models were trained using 113 hpi embryo images. Accuracy and loss represent the
validation accuracy and loss.

Model Layers between bottleneck and classification layer Learning rate Optimizer Decay Loss Accuracy

ResNET-50

113 hpi

1 Base architecture 0.001 Adam ND 0.8825 0.6011

2 Base architecture þ dropout (0.5) 0.01 SGD ND 0.9665 0.6137

3 Base architecture þ dropout (0.5) 0.005 Adam ND 0.9112 0.6039

4 Base architecture þ dropout (0.5) 0.01 SGD DwS 0.9269 0.6000

5 Base architecture þ dropout (0.5), additional layers 3 (1024, 1024, 512) þ 20 trainable layers 0.001 Adam ND 1.6235 0.2058

6 Base architecture þ dropout (0.5) þ additional layers (1024) 0.001 SGD DwS 0.9323 0.5847

CNN

113 hpi

1 2 layer3-3 þ flatten þ 1000 þ 5 0.0005 SGD Decay 1.4641 0.3549

2 2 layer5-5 þ flatten þ 1000 þ 5 0.0005 SGD Decay 1.4183 0.3843

3 2 layer3-5 þ flatten þ 1000 þ 5 0.0005 SGD Decay 1.4198 0.3803

4 2 layer5-5 þ BN-BN þ flatten þ 1000 þ 5 0.0005 Adam Decay 1.3510 0.4058

5 2 layer5-5 þ BN-BN þ global average pooling þ 32 þ 5 0.0005 Adam Decay 1.5231 0.3333

6 2 layer5-5 þ global average pooling þ 32 þ 5 0.0005 SGD Decay 1.5956 0.2588

7 2 layer5-5 þ BN-BN þ flatten þ 1000 þ 5 0.0005 SGD ND 1.4178 0.3647

8 2 layer5-5 þ BN-BN þ flatten þ 1000 þ 5 0.0005 Adam Decay 1.8889 0.3200

9 5 layer5-5 þ BN þ flatten þ 64 þ 5 0.005 Adam Decay 1.2799 0.4313

10 5 layer5-5 þ BN þ same padding þ flatten þ 512 þ 5 0.0005 SGD Decay 1.2255 0.4294

11 5 layer5-5 þ BN þ global average pooling þ 16 þ 5 0.0005 SGD Decay 1.2730 0.4215

12 40 layer3-2 þ global average pooling þ flatten þ dense 0.0005 SGD Decay 1.1581 0.4830

13 40 layer3-3 þ global average pooling þ flatten þ dense 0.0005 Adam ND 1.1689 0.5304

Xception

113 hpi

1 Base architecture 0.0005 SGD DwS 0.8601 0.6373

2 Base architecture þ dropout (0.5) 0.001 SGD DwS 0.8866 0.6333

3 Base architecture 0.0001 SGD DwS 0.9087 0.6235

4 Base architecture þ additional layers 3 (1024,1024,512) þ dropout (0.5) 0.0005 SGD DwS 0.8732 0.6549

5 Base architecture þ dropout (0.5) 0.0007 SGD DwS 0.8704 0.6078

6 Base architecture þ additional layers (1024) þ dropout (0.5) 0.001 Adam ND 0.8668 0.6372

7 Base architecture 0.006 SGD ND 0.8651 0.6588

8 Base architecture 0.0008 SGD ND 0.8850 0.6196

ND: No decay; DwS: Decay with scheduler; BN: Batch Normalization; SGD: Stochastic descent gradient.
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final classification layer, and with a dropout layer set at 0.5. Although
only two models are presented here with extra layers, in our overall
evaluations adding extra layers to the network did not help the network
to learn better. The network was trained by optimizing categorical cross-
entropy loss using an SGD optimizer with Nesterov momentum of 0.9 in
models 4 and 6 and Adam optimizer in other models. We used learning
rates of 0.01 for model 2 and 4, 0.005 for model 3, and 0.001 for all other
models. Models with extra layers, dropouts and with different optimizers
did not help the network to learn better. Model 1 without any extra
layers, decay and dropouts performed better than the models evaluated
in our study.

For de novo CNN training, 13 models were trained using a 2 layer
architecture for models 1 through 8, a 5 layer architecture for models 9,
10, and 11, and a 40 layer architecture for models 12 and 13 (Table 2).
The models were tested with different combination of architectural
modifications such as batch normalization, dropouts, global average
pooling, padding, and dense layers. A learning rate of 0.0005 was used
for all presented models except for model 9 that was trained at 0.005.
SGD and Adam optimizers were used with and without decay. Even
though increasing the number of layers helped in reducing validation loss
and improving validation accuracy, the confusion matrices showed that
the results were always skewed towards class 5. Therefore, the multi-
layer CNNs were not able to learn to classify well between different
embryo classes.

The Xception architecture pre-trained with 1.4 million images of
ImageNet was used, which performed with a top-1 accuracy of 79% and
top-5 accuracy of 94.5% across 1,000 classes of ImageNet database and
fine-tuned the pre-training weights across all layers through transfer
learning to fit our dataset and differentiate across the categories of em-
bryos by recognizing relevant features (Chollet, 2016). During the
transfer learning process, we discarded the last fully connected layer of
the original network and added a new fully connected layer, which
classifies the features into the defined five categories. The whole network
was trained by optimizing categorical cross entropy loss using an SGD
Optimizer with Nesterov Momentum of 0.9 and a learning rate of 0.0005
for 113 hpi. The network was trained over 200 epochs andmodel weights
were saved when the lowest validation loss was achieved (early stop-
page). The Xception architecture trained over 200 epochs for tasks of
evaluating embryomorphologies between the 5 training classes achieved
validation loss of 0.8601 and validation accuracy of 63.73%. The
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Figure 2. Comparison of different CNN architectures. Xception, ResNET50,
Inception v3, NASNetLarge, 40-layer CNN, ResNeXt-101, ResNeXt-50, and
Inception-ResNET v2 were used for embryo classification (5 classes) using 113
hpi embryo images. The error bars are standard errors of mean.
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dimensions of all embryo images used during training were resized to
210 � 210 pixels using computer vision libraries (OpenCV).

2.5. Classification at the inference level

For classification at the inference level, the algorithm outputs five
confidence values mapping the probabilities of the tested embryo asso-
ciated with each of the five training classes. The embryo is categorized
into the training class with the highest confidence. Embryos are assigned
to the inference classes based on the highest confidence score, which was
obtained through the summation of all confidence values associated with
the sub-classes of each inference class.

2.6. Xception: the effect of hyperparameters

Several trained models of the Xception architecture were evaluated
for embryo classifications at 113 hpi and to show the performance related
to the choice of learning rate, architectural parameters, and other
hyperparameters, we presented 8 models here for visualization (Table 2).

We used the vanilla Xception architecture for models 1, 3, 7, and 8,
and with dropouts set to 0.5 for models 2 and 5. An extra fully connected
layer with 1024 neurons between the Xception bottleneck layer and the
final classification layers with dropout was used for model 6. Model 4
possessed three extra fully connected layers with 1024,1024, and 512
neurons between the Xception bottleneck layer and the final classifica-
tion layer and also possessed dropouts. In models 1, 2, 3, 4, 5, and 8 the
network was trained by optimizing categorical cross entropy loss using
an SGD optimizer with Nesterov momentum of 0.9 with a learning rate of
0.0005, 0.001, 0.0001, 0.0005, 0.0007 and 0.0008, respectively. Models
6 was trained with Adam optimizer with a learning rate of 0.001, while
model 7 was trained with SGD and learning rate set at 0.006 with no
decay.

2.7. Data visualization techniques

Keras vis environment was used for data visualization. Saliency maps
were used to visualize the pixels involved in the networks during the
decision-making process. We mapped the activations of the activation
layer prior to bottleneck. We used the test set images in the generation of
the saliency maps. t-distributed stochastic neighbor embedding (t-SNE)
was performed to observe the distribution of the test dataset and verify if
the CNNwas able to isolate embryos into clusters based on their features.
We used the fully connected layer after global average pooling which has
2,048 dimensional vectors in visualizing the similarities between the
embryo images, as understood by the trained network, using the
respective datasets. Initially, a principal component analysis (PCA) was
performed to reduce 2,048 dimensions to 50 and then t-SNE was per-
formed to reduce the 50 dimensions into 2 dimensions for visualization.
We have utilized PCA for the initial dimensionality reduction to 50 from
2,048 dimensions, since it helps in suppressing noise while improving
computational speed (van der Maaten and Hinton, 2008).

3. Results

3.1. Selection of the optimal neural network

Depending on the complexity of the problem of interest, CNNs
generally require large amounts of annotated image data to accurately
learn features and differentiate between the categories of classification.
However, high-quality medical datasets are scarce and thus, we have
transfer learned our networks over ImageNet weights. Proven high-
performance CNN architectures such as Inception-v3, ResNET-50,
Inception-ResNET-v2, NASNetLarge, ResNeXt-101, ResNeXt-50, and
Xception were retrained using a dataset of 1,188 embryos imaged at 113
hpi and validated using 510 embryo images recorded at 113 hpi. The
same dataset was used to train a 40-layer CNN de novo. All networks



Table 3. Validation losses and accuracies of deep-convolutional neural networks.
Each architecture was transfer learned with a dataset of blastocysts and non-
blastocysts imaged at 113 hpi. The error values reported are standard errors of
mean.

Architectures Validation losses Validation accuracies (%)

Xception 0.86 � 0.003 63.53 � 0.631

ResNET-50 0.88 � 0.002 59.97 � 1.08

Inception v3 0.91 � 0.01 61.57 � 0.689

NASNetLarge 1.3 � 0.004 45.75 � 1.052

Multilayer CNN 1.14 � 0.009 49.17 � 1.108

ResNeXt-101 0.95 � 0.036 58.17 � 1.2

ResNeXt-50 0.99 � 0.029 60.07 � 2.076

Inception ResNET-V2 0.87 � 0.005 62.09 � 1.342

Table 4. Performance of different architectures on embryoscope and SRBT
datasets. All models tested were optimized through tuning their hyper-
parameters. The error values reported are standard errors of mean.

Test set accuracies (%)

Architecture Embryoscope (n ¼ 742) SRBT (n ¼ 258)

Xception 90.48 � 0.273 89.53 � 2.134

ResNET-50 89.71 � 0.72 84 � 5.01

Inception v3 89.08 � 0.812 85.9 � 1.873

NASNetLarge 78.44 � 0.233 72.48 � 3.552

Multilayer CNN 82.2 � 0.546 69.38 � 8.067

ResNeXt-101 90.75 � 0.273 77.52 � 4.084

ResNeXt-50 89.94 � 0.574 84.75 � 0.904

Inception ResNET-V2 90.21 � 0.518 85.01 � 1.68
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were trained with early stoppage rules prioritizing lowest validation loss
to minimize overfitting. After training over 200 epochs, the lowest
validation loss achieved by these networks were compared. After fine-
tuning the hyperparameters for all evaluated networks with 3 different
seeds each, the average 5-class validation loss along with the standard
error, of the best models from Xception, ResNET-50, Inception-v3,
NASNetLarge, multilayer CNN, ResNeXt-101, ResNeXt-50, and
Inception-ResNET-v2 were 0.86 � 0.003, 0.88 � 0.002, 0.91 � 0.01, 1.3
� 0.004, 1.14 � 0.009, 0.95 � 0.036, 0.99 � 0.029, and 0.87 � 0.005,
respectively and their 5-class validation accuracies, along with the
standard errors were 63.53% � 0.631%, 59.97% � 1.08%, 61.57% �
0.689%, 45.75 � 1.052, 49.17% � 1.108%, 58.17% � 1.2%, 60.07% �
2.076%, and 62.09% � 1.342%, respectively (Figure 2, Table 3). Xcep-
tion architecture achieved the lowest mean loss for embryo assessments.

Here, we also report 8 models of Xception to demonstrate the effect of
different hyperparameters in learning blastocyst data (Figure 3A,
Table 2). Models benefited from lower learning rates when trained with
our dataset. In our tests, SGD performed better for models that evaluated
these embryos.

We also evaluated simple CNNs designed from scratch, with an
increasing number of layers starting from 5 layers to 40 layers (Figure 3B,
Table 2). Evaluations with multi-layered CNNs indicated that as the
Figure 3. Comparison of models of ResNET-50, CNN, and Xception with differen
hyperparameters using embryo images at 113 hpi. (B) Validation loss of different m
embryo images. (C) Validation loss of different models of ResNet to compare the eff
curve represents the loss curve for the model that achieved the lowest loss among t
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complexity of networks increased, better classification performance can
be achieved with our embryo dataset as was observed with most of the
tested popular neural networks. Interestingly, however, ResNET-50 did
not train well regardless of the hyper parameter optimizations employed
(Figure 3C, Table 2).
3.2. Day 5 embryo developmental stage classification

In clinical practice, extending culture to Day 5 and transferring high
quality embryos at the blastocyst stage has been effective in improving
embryo selection and thus increasing implantation rates. We, therefore,
evaluated the models with 3 different seeds each, with an independent
test set of 742 embryos imaged at 113 hpi. The average accuracy along
with the standard error of the networks in categorizing the embryos into
two classes of blastocyst and non-blastocyst of the best models from
Xception, ResNET-50, Inception-v3, NASNetLarge, multilayer CNN,
ResNeXt-101, ResNeXt-50, and Inception-ResNET-v2 were 90.48% �
0.273%, 89.08%� 0.812%, 89.71%� 0.72%, 78.44%� 0.233%, 82.2%
� 0.546%, 90.75% � 0.273%, 89.94% � 0.574%, and 90.21% �
0.518%, respectively (Table 4). For the best performing Xception model
with an independent test set of 742 embryos imaged at 113 hpi, the ac-
curacy in categorizing the embryos into two classes of blastocyst and non-
t hyperparameters. (A) Validation losses for Xception trained with different
odels of multi-layer CNN with varying hyperparameters trained with 113 hpi

ect of hyperparameters in training embryo images at 113 hpi. The plot with red
he evaluated models.



Figure 4. Evaluation at the blastocyst stage.
(A) The t-SNE plot for the Xception model
trained to classify between non-blastocysts
(classes 1 and 2) and blastocysts (classes 3,
4, and 5). The saliency map of the two em-
bryos provides an example of the features
that the network use to classify embryos on
day 5. (B) The composite of bars illustrates
the system's performance in evaluating em-
bryos (n ¼ 742) from the test set of 97 pa-
tients. Each blue bar represents blastocysts
and red bar represents non-blastocysts, while
the color gradients differentiate the sub-
classes. The bars are sorted from blastocysts
to non-blastocysts (blue-red; classes 5-1)
based on their actual labels.
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blastocyst was 90.97% (CI: 88.67%–92.93%) (Figure 4) where CI is the
binomial 95% confidence interval. t-SNE visualization and saliency maps
showed a clear separation between the two inference groups and reliance
on the embryo morphological features by the network for classification
(Figure 4, Figure 5), which further indicate that the model makes use of
relevant embryo features that are distinct. The highlighted regions by the
saliency maps, more specifically, included regions of cellular fragmen-
tation, blastomeres (in cleavage stage embryos/underdeveloped em-
bryos), cavitation, vacuoles, the inner cell mass, and trophectoderm. The
confusion matrix of the network in classification between the five
training classes (Figure 6) confirmed the model's ability to differentiate
between the blastocysts and non-blastocysts and confusions were usually
between classes of adjacent quality level.

The model's micro-average and macro-average area under the curve
(AUC) values at the 5-class training level was calculated to be 0.91 and
0.89 (Figure 7), respectively. The AUC values for the classes 1, 2, 3, 4, and
5 were 0.94, 0.85, 0.88, 0.82, and 0.95, respectively.

The sensitivity and specificity of the Xception model in embryo
classification between the two inference classes (blastocysts and non-
blastocysts) at 113 hpi were 93.69% (CI: 91.16%–95.67%) and 85.66%
(CI: 80.70%–89.75%), respectively (n ¼ 742 embryos). The positive
predictive value (PPV) and negative predictive value (NPV) of the algo-
rithm were 92.74% (CI: 90.42%–94.54%) and 87.40% (CI: 83.09%–

90.73%), respectively. The AUC metric of the model when evaluated for
2-class classification performance was of 0.963 (CI: 0.947 to 0.975)
(Figure 7).

In a comparative analysis with the other architectures evaluated in
this study, Xception performed better than most architectures with mean
differences in classification accuracies of 0.7652%, 1.393%, 12.04%,
8.273%, 0.5390%, and 0.2695% when compared to ResNet-50, Incep-
tion-v3, NASNet, multilayer-CNNs, ResNeXt-50, and InceptionResNet-v2,
respectively (Table 4). Xception performed marginally poorer than
ResNeXt-101 with a mean difference of 0.2697% (Table 4). However, an
ANOVA test with Tukey's multiple comparison correction, revealed that
only the performance gains over NASNet and multilayer CNNs were
statistically significant (P < 0.05).
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3.3. Model performance on domain shifted data

We also evaluated the performance of models using embryo datasets
recorded with imaging systems other than the Embryoscope used for
collecting the training dataset used in this study. For this assessment, we
used embryo images submitted from 8 fertility practices to the Society for
Reproductive Biologists and Technologists (SRBT) for the Embryo ATLAS
project (Figure 8), which were imaged using standard inverted bright-
field microscopes and annotated by 8 director level embryologists.
Using a test set of 258 embryo images and without any additional
training or image pre-processing, the average accuracy along with the
standard error of the networks in categorizing the embryos into two
classes of blastocyst and non-blastocyst of the best models from Xception,
Inception-v3, ResNET-50, NASNetLarge, multilayer CNN, ResNeXt-101,
ResNeXt-50, and Inception-ResNET-v2 were 89.53% � 2.134%, 85.9%
� 1.873%, 84%� 5.01%, 72.48%� 3.552%, 69.38%� 8.067%, 77.52%
� 4.084%, 84.75% � 0.904%, and 85.01% � 1.68%, respectively
(Table 4). The best Xception model performed with an accuracy of
91.47% with a CI of 87.37%–94.58% in classifying between blastocysts
and non-blastocysts (Table 4). Xception performed with a sensitivity of
92.31% (CI: 85.90%–96.42%) and a specificity of 90.78% (CI: 84.75%–

95.00%). The PPV and NPV of the CNN were 89.26% (CI: 83.15%–

93.33%) and 93.43% (CI: 88.34%–96.39%), respectively with an AUC of
0.975 (CI: 0.948 to 0.990). Saliency maps were also mapped to confirm
that the model was using morphological features of the embryos in these
images for its classifications. Interestingly, in our evaluations the per-
formance of the Xception model trained on Embryoscope data tested on
the domain-shifted SRBT data was similar to its original performance.
However, all other networks showed a drastic drop in performance in
comparison to their original performance, when tested on the domain-
shifted SRBT dataset (Table 4). In a comparative analysis with the
other architectures evaluated in this study, Xception performed better
than all architectures with mean differences in classification accuracies
of 5.534%, 3.631%, 17.05%, 20.16%, 12.01%, 4.779%, and 4.522%
when compared to ResNet-50, Inception-v3, NASNet, multilayer-CNNs,
ResNeXt-101, ResNeXt-50, and InceptionResNet-v2, respectively
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(Table 4). However, an ANOVA test with Tukey's multiple comparison
correction, revealed that only the performance gain over multilayer
CNNs were statistically significant (P < 0.05).
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Images collected using the Embryoscope system was used in training
the network and the SRBT images collected at different clinical labora-
tories using inverted-brightfield microscopes were used for our
Figure 5. Saliency maps of embryos
assessed at 113 h post-insemination. The
saliency map was extracted from the network
to highlight the highest weighted features for
the embryo image. (A) A class 1 embryo
category at 113 hpi along with its respective
saliency map and saliency map overlaid on
the bright-field embryoscope image (B) A
class 2 embryo category at 113 hpi along
with its respective saliency map and saliency
map overlaid on the bright-field embryo-
scope image. (C) A class 3 embryo category
at 113 hpi along with its respective saliency
map and saliency map overlaid on the bright-
field embryoscope image. (D) A class 4 em-
bryo category at 113 hpi along with its
respective saliency map and saliency map
overlaid on the bright-field embryoscope
image. (E) A class 5 embryo category at 113
hpi along with its respective saliency map
and saliency map overlaid on the bright-field
embryoscope image. The highlighted regions
included regions of cellular fragmentation,
blastomeres (in cleavage stage embryos),
cavitation, vacuoles, the inner cell mass and
trophectoderm.



Figure 6. Confusion Matrices of the best Xception model in embryo classification tasks. (A) Confusion matrix for predicting embryos between 2 classes using 113 hpi
embryo images. (B) Confusion matrix for classifying embryos between 5 classes using 113 hpi embryo images. Rows represent the historic clinical annotation while the
columns indicate the network's predictions.

Figure 7. ROC analysis of the classification task performed by the best Xception model. (A) ROC analysis performed for all 5 classes of embryo images imaged at 113
hpi. (B) ROC curves for blastocyst and non-blastocyst classification and prediction tasks 113 hpi.
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experiments with domain-shifted data. All images here are resized to 210
£ 210 pixels to reflect the input of the neural networks.

4. Discussion and conclusions

Here, we report the development and evaluation of an AI-based
approach for automated human embryo assessment of embryo
Figure 8. Representative images of E
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development at 113 hpi. In the recent years, due to the upsurge in deep-
learning research, various complex neural network architectures have
been proposed and used for image recognition tasks and performance of
these architectures is highly dependent on the task. In our study, CNN
approaches were evaluated using a dataset of 113 hpi embryo images in
classifying embryos based on their morphological quality. Firstly, our
evaluations of whether a simple deep CNN, of up to 40 layers, was
mbryoscope and SRBT datasets.
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sufficient for efficiently assessing embryos indicated that more sophisti-
cated networks may be preferable than simply stacked deeper networks.
Inception, (48 layers) which uses inceptionmodules that are composed of
multiple filters of different sizes, over simple convolution layers showed
significantly better performance than our de novo CNNs. We evaluated
the performance of other popular networks such as ResNET, which
originally introduced residual blocks, and the hybrid Inception-ResNET.
We also evaluated the performance of networks such as ResNeXt-101 and
ResNeXt-50 that make use of the repeating layers, similar to ResNet,
along with the split-transform-merge strategy exploited in Inception.
Finally, NASNets, which utilize a reinforcement learning search method
to optimize architecture configurations with recurrent neural network
controller, were included in our study to understand the suitability of
frameworks that made use of partial self learning strategy. Xception was
developed with Inception as its base architecture, while adding residual
blocks and replacing the convolutions in original inception modules with
depthwise seperable convolutions.

Our observations have shown that Xception performed best in
learning the categorical embryo data and was able to classify them based
on their morphological quality. Xception, interestingly, performed well
on domain shifted data (SRBT dataset) that was acquired through
different imaging systems, which is uncommon with machine-learning-
or computer vision-based approaches (Tommasi et al., 2015). Saliency
maps of embryos imaged at the blastocyst stage (113 hpi), highlight the
whole embryo as regions of interest which is further indicative of
well-trained model that utilizes features that are relevant for classifica-
tion (Figure 5). In this study, we made use of clinical data in evaluating
shifted images and observed that the performance of different models of
the same network tends to vary more in the shifted data domain, similar
to prior reports (D'Amour et al., 2020). While the focus of this work was
more specific to the utility of the various neural network architectures in
embryology, further studies are needed to better understand the effect of
domain shifts when using real-world clinical data. Even though our
findings in this study are suggestive that the thus trained Xception model
is more robust even with domain shifted data, additional evaluations on
network consistency are required to be conclusive. It is, however,
encouraging for future studies that make use of Xception for embryo
morphological analyses.

The primary goal in an IVF procedure is to culture and transfer an
embryo that will result in a healthy baby. Embryologists, therefore, try to
identify the embryo of highest potential for transfer and to avoid embryos
of the lower quality from a cohort for patients with good prognosis. A
neural network's raw ability of separating embryos between five classes
does not directly benefit such clinical processes. Furthermore, the 5-class
classification accuracy should be taken with caution since it also affected
by the annotating embryologist's ability to repeatably and consistently
categorize embryos based on their morphology, which has been observed
to be not ideal. However, the evaluations are useful in understanding the
network learning. These networks, to be clinically viable, need to be
modified to suit the applications. For example, Xception correctly clas-
sified >99.5% of the highest quality blastocysts as good embryos (blas-
tocysts) which is of critical importance, clinically, when identifying
embryos suited for transfer. In this work, primarily to minimize sparsity
of data in limited dataset, we have classified embryos based on hierar-
chical classification system that consolidates the MGH blastocyst cate-
gorization into 5 classes though embryologists have highlighted that 5-
class system for embryo morphology-based classification may be more
beneficial over commonly used 3 class classification. For the study, we
have consolidated our network's 5-class output to 2 inference classes and
differentiated embryos between blastocysts and non-blastocysts to
highlight its performance on a more universal classification system
(blastocysts and non-blastocysts) since embryo categorization criteria
tends to vary with each clinic.

The work presented here is an example of demonstrating how deep-
learning techniques can be used in medicine particularly in an IVF pro-
cedure. The IVF community can greatly benefit from the modern
11
advancements in machine learning. Our future work will be focused on
many valuable applications and goals, such as predicting embryo
developmental outcomes at earlier timepoints, studying the use of neural
networks in aiding routine clinical tasks, and in predicting the eventual
outcome of embryos. Our presented results show the promise of using
neural networks in accurate embryo assessments with the potential to
eventually improve IVF practices in both resource-rich and resource-poor
settings regardless of the center's experience and infrastructure.

Declarations

Author contribution statement

P. Thirumalaraju, M. K. Kanakasabapathy, C. L. Bormann, H. Shafiee:
Conceived and designed the experiments; Performed the experiments;
Analyzed and interpreted the data; Contributed reagents, materials,
analysis tools or data; Wrote the paper.

R. Gupta, R. Pooniwala: Performed the experiments; Analyzed and
interpreted the data.

H. Kandula: Performed the experiments; Analyzed and interpreted the
data; Contributed reagents, materials, analysis tools or data.

I. Souter, I. Dimitriadis: Contributed reagents, materials, analysis
tools or data.

Funding statement

This work was supported by the Brigham and Women's Hospital
Precision Medicine Developmental Award (BWH Precision Medicine
Program) and Partners Innovation Discovery Grant (Partners Health-
care). It was also partially supported through 1R01AI118502,
R01AI138800, and R61AI140489 Awards (National Institutes of Health).

Data availability statement

Restrictions apply to the availability of the medical training/valida-
tion data, which were used with permission for the current study, and so
are not publicly available. Some data may be available from the authors
upon reasonable request and with permission of the Massachusetts
General Hospital.

Declaration of interests statement

Prudhvi Thirumalaraju, Manoj Kumar Kanakasabapathy, Charles L
Bormann Hadi Shafiee have a patent WO2019068073A1 pending.

Additional information

No additional information is available for this paper.

Acknowledgements

The authors would like to thank embryology staff fromMassachusetts
General Hospital for participating in this study and for the SRBT for
allowing us to utilize the embryo atlas.

References

Barash, O., Ivani, K., Huen, N., Willman, S., Weckstein, L., 2017. Morphology of the
blastocysts is the single most important factor affecting clinical pregnancy rates in
IVF PGS cycles with single embryo transfers. Fertil. Steril. 108, e99.

Birenbaum-Carmeli, D., 2004. 'Cheaper than a newcomer': on the social production of IVF
policy in Israel. Sociol. Health Illness 26, 897–924.

CDC, 2015. Fertility Clinic Success Rates Report.
Chollet, F., 2016. Xception: Deep Learning with Depthwise Separable Convolutions arXiv,

1610.02357.
Conaghan, J., Chen, A.A., Willman, S.P., Ivani, K., Chenette, P.E., Boostanfar, R.,

Baker, V.L., Adamson, G.D., Abusief, M.E., Gvakharia, M., et al., 2013. Improving
embryo selection using a computer-automated time-lapse image analysis test plus day

http://refhub.elsevier.com/S2405-8440(21)00403-5/sref1
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref1
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref1
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref2
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref2
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref2
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref3
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref4
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref4
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref5
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref5
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref5


P. Thirumalaraju et al. Heliyon 7 (2021) e06298
3 morphology: results from a prospective multicenter trial. Fertil. Steril. 100,
412–419 e415.

D'Amour, A., Heller, K., Moldovan, D., Adlam, B., Alipanahi, B., Beutel, A., Chen, C.,
Deaton, J., Eisenstein, J., Hoffman, M.D., et al., 2020. Underspecification Presents
Challenges for Credibility in Modern Machine Learning arXiv:2011.03395.

Demko, Z.P., Simon, A.L., McCoy, R.C., Petrov, D.A., Rabinowitz, M., 2016. Effects of
maternal age on euploidy rates in a large cohort of embryos analyzed with 24-
chromosome single-nucleotide polymorphism–based preimplantation genetic
screening. Fertil. Steril. 105, 1307–1313.

Dimitriadis, I., Bormann, C.L., Kanakasabapathy, M.K., Thirumalaraju, P., Gupta, R.,
Pooniwala, R., Souter, I., Rice, S.T., Bhowmick, P., Shafiee, H., 2019. Deep
convolutional neural networks (CNN) for assessment and selection of normally
fertilized human embryos. Fertil. Steril. 112, e272.

Dimitriadis, I., Bormann, C.L., Thirumalaraju, P., Kanakasabapathy, M., Gupta, R.,
Pooniwala, R., Souter, I., Hsu, J.Y., Rice, S.T., Bhowmick, P., et al., 2019. Artificial
intelligence-enabled system for embryo classification and selection based on image
analysis. Fertil. Steril. 111, e21.

Einarsson, S., Bergh, C., Friberg, B., Pinborg, A., Klajnbard, A., Karlstr€om, P.-O., Kluge, L.,
Larsson, I., Loft, A., Mikkelsen-Englund, A.-L., et al., 2017. Weight reduction
intervention for obese infertile women prior to IVF: a randomized controlled trial.
Hum. Reprod. 32, 1621–1630.

Erenus, M., Zouves, C., Rajamahendran, P., Leung, S., Fluker, M., Gomel, V., 1991. The
effect of embryo quality on subsequent pregnancy rates after in vitro fertilization.
Fertil. Steril. 56, 707–710.

Filho, E.S., Noble, J.A., Wells, D., 2010. A review on automatic analysis of human embryo
microscope images. Open Biomed. Eng. J. 4, 170–177.

Hariton, E., Dimitriadis, I., Kanakasabapathy, M.K., Thirumalaraju, P., Gupta, R.,
Pooniwala, R., Souter, I., Rice, S.T., Bhowmick, P., Ramirez, L.B., et al., 2019. A deep
learning framework outperforms embryologists in selecting day 5 euploid blastocysts
with the highest implantation potential. Fertil. Steril. 112, e77–e78.

He, K., Zhang, X., Ren, S., Sun, J., 2015. Deep residual learning for image recognition.
ArXiv e-prints.

Hill, G.A., Freeman, M., Bastias, M.C., Jane Rogers, B., Herbert III, C.M., Osteen, K.G.,
Wentz, A.C., 1989. The influence of oocyte maturity and embryo quality on
pregnancy rate in a program for in vitro fertilization-embryo transfer. Fertil. Steril.
52, 801–806.

Kanakasabapathy, M., Dimitriadis, I., Thirumalaraju, P., Bormann, C.L., Souter, I., Hsu, J.,
Thatcher, M.L., Veiga, C., Shafiee, H., 2019. An inexpensive, automated artificial
intelligence (AI) system for human embryo morphology evaluation and transfer
selection. Fertil. Steril. 111, e11.

Kanakasabapathy, M.K., Thirumalaraju, P., Bormann, C.L., Kandula, H., Dimitriadis, I.,
Souter, I., Yogesh, V., Kota Sai Pavan, S., Yarravarapu, D., Gupta, R., et al., 2019.
Development and evaluation of inexpensive automated deep learning-based imaging
systems for embryology. Lab Chip 19, 4139–4145.

Kanakasabapathy, M.K., Thirumalaraju, P., Gupta, R., Pooniwala, R., Kandula, H.,
Souter, I., Dimitriadis, I., Bormann, C.L., Shafiee, H., 2019. Improved monitoring of
human embryo culture conditions using a deep learning-derived key performance
indicator (KPI). Fertil. Steril. 112, e70–e71.

Khosravi, P., Kazemi, E., Zhan, Q., Malmsten, J.E., Toschi, M., Zisimopoulos, P.,
Sigaras, A., Lavery, S., Cooper, L.A.D., Hickman, C., et al., 2019. Deep learning
enables robust assessment and selection of human blastocysts after in vitro
fertilization. NPJ Digit. Med. 2, 21.

Machtinger, R., Racowsky, C., 2013. Morphological systems of human embryo assessment
and clinical evidence. Reprod. Biomed. Online 26, 210–221.

Mascarenhas, M.N., Flaxman, S.R., Boerma, T., Vanderpoel, S., Stevens, G.A., 2012.
National, regional, and global trends in infertility prevalence since 1990: a systematic
analysis of 277 Health surveys. PLoS Med. 9, e1001356.
12
Matos, F.D., Rocha, J.C., Nogueira, M.F.G., 2014. A method using artificial neural
networks to morphologically assess mouse blastocyst quality. J. Anim. Sci. Technol.
56, 15.

Osman, A., Alsomait, H., Seshadri, S., El-Toukhy, T., Khalaf, Y., 2015. The effect of sperm
DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-
analysis. Reprod. Biomed. Online 30, 120–127.

Paulson, R.J., Sauer, M.V., Lobo, R.A., 1990. Embryo implantation after human in vitro
fertilization: importance of endometrial receptivity. Fertil. Steril. 53, 870–874.

Racowsky, C., Kovacs, P., Martins, W.P., 2015. A critical appraisal of time-lapse imaging
for embryo selection: where are we and where do we need to go? J. Assist. Reprod.
Genet. 32, 1025–1030.

Rocha, J.C., Passalia, F.J., Matos, F.D., Takahashi, M.B., Ciniciato, D.d.S., Maserati, M.P.,
Alves, M.F., de Almeida, T.G., Cardoso, B.L., Basso, A.C., et al., 2017. A method based
on artificial intelligence to fully automatize the evaluation of bovine blastocyst
images. Sci. Rep. 7, 7659.

Rocha, J.C., Passalia, F.J., Matos, F.D., Takahashi, M.B., Maserati Jr., M.P., Alves, M.F., de
Almeida, T.G., Cardoso, B.L., Basso, A.C., Nogueira, M.F.G., 2017. Automatized image
processing of bovine blastocysts produced in vitro for quantitative variable
determination. Sci. Data 4, 170192.

Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A., 2016. Inception-v4, inception-ResNet and
the impact of residual connections on learning. ArXiv e-prints.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2015. Rethinking the inception
architecture for computer vision. ArXiv e-prints.

Thirumalaraju, P., Bormann, C.L., Kanakasabapathy, M.K., Kandula, H., Shafiee, H., 2019.
Deep learning-enabled prediction of fertilization based on oocyte morphological
quality. Fertil. Steril. 112, e275.

Thirumalaraju, P., Hsu, J.Y., Bormann, C.L., Kanakasabapathy, M., Souter, I.,
Dimitriadis, I., Dickinson, K.A., Pooniwala, R., Gupta, R., Yogesh, V., et al., 2019.
Deep learning-enabled blastocyst prediction system for cleavage stage embryo
selection. Fertil. Steril. 111, e29.

Thirumalaraju, P., Kanakasabapathy, M.K., Gupta, R., Pooniwala, R., Kandula, H.,
Souter, I., Dimitriadis, I., Bormann, C.L., Shafiee, H., 2019. Automated quality
assessment of individual embryologists performing ICSI using deep learning-enabled
fertilization and embryo grading technology. Fertil. Steril. 112, e71.

Tommasi, T., Patricia, N., Caputo, B., Tuytelaars, T., 2015. A deeper look at dataset bias.
arXiv e-prints.

Toner, J.P., 2002. Progress we can be proud of: U.S. trends in assisted reproduction over
the first 20 years. Fertil. Steril. 78, 943–950.

Tran, D., Cooke, S., Illingworth, P.J., Gardner, D.K., 2019. Deep learning as a predictive
tool for fetal heart pregnancy following time-lapse incubation and blastocyst transfer.
Hum. Reprod. 34, 1011–1018.

Turchi, P., 2015. Prevalence, definition, and classification of infertility. In: Cavallini, G.,
Beretta, G. (Eds.), Clinical Management of Male Infertility. Springer International
Publishing), Cham, pp. 5–11.

Vaegter, K.K., Lakic, T.G., Olovsson, M., Berglund, L., Brodin, T., Holte, J., 2017. Which
factors are most predictive for live birth after in vitro fertilization and
intracytoplasmic sperm injection (IVF/ICSI) treatments? Analysis of 100
prospectively recorded variables in 8,400 IVF/ICSI single-embryo transfers. Fertil.
Steril. 107, 641–648 e642.

van der Maaten, L., Hinton, G., 2008. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9,
2579–2605.

Wong, C., Chen, A.A., Behr, B., Shen, S., 2013. Time-lapse microscopy and image analysis
in basic and clinical embryo development research. Reprod. Biomed. Online 26,
120–129.

Xie, S., Girshick, R., Doll�ar, P., Tu, Z., He, K., 2016. Aggregated Residual Transformations
for Deep Neural Networks arXiv:1611.05431.

Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V., 2017. Learning Transferable Architectures
for Scalable Image Recognition arXiv:1707.07012.

http://refhub.elsevier.com/S2405-8440(21)00403-5/sref5
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref5
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref5
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref6
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref6
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref6
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref7
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref7
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref7
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref7
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref7
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref7
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref8
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref8
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref8
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref8
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref9
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref9
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref9
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref9
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref10
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref10
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref10
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref10
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref10
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref10
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref11
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref11
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref11
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref11
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref12
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref12
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref12
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref13
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref13
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref13
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref13
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref13
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref14
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref14
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref15
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref15
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref15
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref15
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref15
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref16
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref16
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref16
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref16
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref17
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref17
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref17
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref17
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref17
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref18
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref18
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref18
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref18
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref18
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref19
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref19
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref19
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref19
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref20
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref20
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref20
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref21
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref21
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref21
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref22
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref22
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref22
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref23
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref23
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref23
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref23
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref24
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref24
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref24
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref25
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref25
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref25
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref25
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref26
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref26
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref26
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref26
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref27
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref27
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref27
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref27
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref28
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref28
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref29
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref29
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref30
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref30
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref30
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref31
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref31
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref31
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref31
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref32
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref32
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref32
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref32
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref33
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref33
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref34
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref34
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref34
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref35
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref35
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref35
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref35
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref36
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref36
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref36
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref36
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref37
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref37
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref37
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref37
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref37
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref37
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref38
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref38
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref38
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref39
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref39
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref39
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref39
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref40
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref40
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref40
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref41
http://refhub.elsevier.com/S2405-8440(21)00403-5/sref41

	Evaluation of deep convolutional neural networks in classifying human embryo images based on their morphological quality
	1. Introduction
	2. Materials and methods
	2.1. Data collection and preparation
	2.2. Data organization and hierarchical structuring
	2.3. Non-embryoscope image dataset
	2.4. CNN architectures evaluated in this study
	2.5. Classification at the inference level
	2.6. Xception: the effect of hyperparameters
	2.7. Data visualization techniques

	3. Results
	3.1. Selection of the optimal neural network
	3.2. Day 5 embryo developmental stage classification
	3.3. Model performance on domain shifted data

	4. Discussion and conclusions
	Declarations
	Author contribution statement
	Funding statement
	Data availability statement
	Declaration of interests statement
	Additional information

	Acknowledgements
	References


