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Redefining environmental exposure for disease etiology
Stephen M. Rappaport1

Etiological studies of human exposures to environmental factors typically rely on low-throughput methods that target only a few
hundred chemicals or mixtures. In this Perspectives article, I outline how environmental exposure can be defined by the blood
exposome—the totality of chemicals circulating in blood. The blood exposome consists of chemicals derived from both
endogenous and exogenous sources. Endogenous chemicals are represented by the human proteome and metabolome, which
establish homeostatic networks of functional molecules. Exogenous chemicals arise from diet, vitamins, drugs, pathogens,
microbiota, pollution, and lifestyle factors, and can be measured in blood as subsets of the proteome, metabolome, metals,
macromolecular adducts, and foreign DNA and RNA. To conduct ‘exposome-wide association studies’, blood samples should be
obtained prospectively from subjects—preferably at critical stages of life—and then analyzed in incident disease cases and
matched controls to find discriminating exposures. Results from recent metabolomic investigations of archived blood illustrate our
ability to discover potentially causal exposures with current technologies.
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INTRODUCTION
The publication of the human genome in 2003 led to specula-
tion1–3 that genomic technologies would identify the causes of
major chronic diseases, particularly cancer and cardiovascular
disease, and would lead to personalized strategies for disease
prevention. However, most genome-wide-association studies
(GWAS) have not detected large effects of common genetic
variants on disease incidence.4,5 The small effect sizes identified
from single nucleotide polymorphisms detected by GWAS (for
example Pharoah et al.6 and Dehghan et al.7) are consistent with
studies of monozygotic twins that point to contributions of entire
genotypes toward cancer and cardiovascular disease of 8% and
22%, respectively.8 Thus, in weighing the relative influences of
heritable genetics and environmental exposures on chronic
diseases, the modest effects of heritable genetics suggest that
exposures and/or gene–environment interactions (G × E) are
major causal factors. Indeed, roughly half of the 50 million global
deaths in 2010 were attributed to 18 environmental exposures, led
by tobacco smoking, particulate air pollution and indoor smoke,
high plasma sodium, and alcohol use.9 The clear implication is that
epidemiologists seeking unknown causes of chronic diseases
should employ a balanced strategy that characterizes both
heritable genetics and exposures at high resolution. However,
because the human genome project focused exclusively on the
genome, it did not motivate the discovery of causal exposures.
Indeed, etiological research still focuses on only a few hundred
chemicals or mixtures that are quantified by combinations of
questionnaires, deterministic models and some measurements.10

By continuing to explore such a small universe of exposures, we
limit our chances to discover unknown causes of disease.

Defining exposure via the blood exposome
The conundrum, where scientists use high-throughput genomics
to detect the effects of heritable genetics on disease incidence,

but rely upon low-technology methods to study the effects of
exposures, motivated Christopher Wild to promote the concept of
an ‘exposome’—representing the totality of exposures received by
an individual during life—for etiologic investigations of cancer.11

But unlike the genome, which is largely fixed at birth, the
exposome has input from both exogenous and endogenous
sources that change throughout life. This calls into question the
very nature of ‘exposure’ as a variable in studies of disease
etiology. Certainly environmental exposures can be related to
levels of pollutants in air, water, and food. But do exposures also
include input from nutrients, psycho-social stress, infections, and
lifestyle factors? And do perturbations in levels of endogenous
molecules, such as sterols and hormones, inflammatory proteins,
and metabolites generated by intestinal microbiota constitute
exposures? Based on results from the Global Burden of Disease
Study,10 it is reasonable to speculate that all of these sources
generate exposures that can contribute to disease risks. The
challenge is to find a suitable avenue for investigating these
myriad exposures collectively in etiologic research.
Recognizing that disease processes involve chemicals that alter

normal function inside the body, Martyn Smith and I suggested in
2010 that the exposome could be considered as the totality of
chemicals that can be measured in blood.12 We reasoned that
fundamental processes of life rely on chemical communication via
circulating molecules from both genetic and environmental
sources, and that these chemicals can be interrogated in blood.
Thus the ‘blood exposome’ offers an efficient means to integrate
exposures from all sources.13

As shown in Fig. 1, endogenous chemicals are generated in the
pathway: genome (G), epigenome (GE), transcriptome (R),
proteome (P), and metabolome (M). The genome interacts with
molecules and cells via proteins (for example enzymes, cytokines,
receptors, transcription factors, and post-translational modifica-
tions) and small molecules (for example amino acids, hormones,
lipids, neurotransmitters, human metabolites, and reactive
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oxygen, and carbonyl species) that are distributed throughout the
body by the blood. Indeed, modern medicine relies on
surveillance of genome-related factors in blood to evaluate
disease risks; for example blood levels of C-reactive protein,
fibrinogen, and homocysteine have been used as biomarkers of
heart disease for more than a decade.14 Careful curation of factors
from the genome to the metabolome (Fig. 1) in observational
studies can link circulating molecules with genetic loci and
reinforces the idea that the proteome and metabolome contribute
to the molecular events that underlie disease associations in
GWAS.15–17

The environmental-exposure component (E) in Fig. 1 represents
chemicals from exogenous sources, such as diet, vitamins, drugs,
pathogens, microbiota, pollution, and lifestyle factors12,18 that can
be measured in blood as small molecules,19 metals,20 antigenic
proteins,21 and foreign DNA and RNA.22 Furthermore, after
exogenous chemicals enter the systemic circulation via inhalation,
ingestion, or infection, they generate more chemicals via
metabolism to reactive intermediates and end products that also
enter the blood. Stable adducts of circulating proteins, particularly
hemoglobin and human serum albumin, offer avenues for
studying the distribution of reactive intermediates that cannot
be measured directly in blood.23

To glimpse a portion of the blood exposome, Rappaport et al.13

examined blood concentrations of 1561 small molecules and
inorganic species that had been compiled from healthy indivi-
duals (mostly adults) by the National Health and Nutrition
Examination Survey (NHANES, www.cdc.gov/nchs/nhanes/index.
htm) in samples from the U.S. and the Human Metabolome
Database (HMDB, www.hmdb.ca) in samples from throughout the
world. These molecules and inorganic species comprised more
than 100 chemical classes and displayed an extraordinary 1011-
fold range of blood concentrations (from fM to mM). Distributions
of chemical concentrations derived from food, drugs, and
endogenous sources were very similar, whereas blood concentra-
tions of chemicals that were likely results of exposure to pollutants
were typically 1000-fold lower than those from the other three
sources. Of these 1561 chemicals, 336 had at least one PubMed

citation that associated them with a major chronic disease
(cardiovascular disease, cancer, or respiratory disease).13 Median
numbers of PubMed citations per chemical varied significantly
across sources of exposure (endogenous, food, drugs, and
pollutants) with a typical chemical derived from food being cited
about twice as often as one from another source.

Moving towards exposome-wide-association studies
Untargeted-omics analysis of chemicals in blood samples from
patients with disease and healthy controls allows what have been
termed exposome-wide-association studies,24 which seek to
discover discriminating molecular features that may ultimately
be linked to causal exposures.18,24 Since the proteome, metabo-
lome, and environmental exposures all contribute to the blood
exposome (Fig. 1), examples of this type of analysis include
proteomics (endogenous and foreign proteins),25 metabolomics
(small molecules),19 metallomics (metals),20 adductomics (pro-
ducts of reactive intermediates),26,27 and metagenomics (foreign
DNA and RNA).22 Indeed, it is now feasible to conduct studies that
focus on each of these chemical classes separately in human
blood or other available biofluids, such as urine or saliva.
The functional genome (genome, epigenome, transcriptome,

proteome, and metabolome in Fig. 1) translates genetic informa-
tion into homeostatic networks of proteins and small molecules.
Some of these molecules are causally related to disease
processes28 (‘causal pathway’ in Fig. 1b). But as a disease
progresses, it affects the systems biology in ways that disrupt
normal homeostasis, thereby altering the composition of the
proteome and metabolome (for example Liddy et al.29 and Sekula
et al.30). These feedback loops, where disease processes alter the
functional genome, have been termed ‘reactive pathways’31 (Fig.
1b) and can lead to reverse causality in observed associations.24

That is, when blood is obtained from disease cases after diagnosis,
a protein or small molecule that discriminates between blood
samples from cases and controls could have resulted from a
reactive pathway rather than a causal pathway. One way to
correctly identify the influence of causal environmental exposures
is to conduct exposome-wide-association studies with archived
blood from disease cases and controls that are nested in
prospective cohorts. By using specimens from these cohorts that
were collected prior to diagnosis, causal signals are less affected
by metabolic dysregulation and the interval between blood
collection and diagnosis can be used as a covariate to determine
whether a given association is likely to involve reactive
pathways.32

Metabolomics-based exposome-wide-association studies
Of the various ‘omics’ methods that can be used to discover
environmental exposures associated with disease, metabolomics
has received the greatest attention. The current generation of
high-resolution liquid chromatography-mass spectrometry (LC-
MS) can routinely quantify more than 20,000 small-molecule
features in a few microliters of blood,33 and online databases
facilitate annotation of many analytes.34 Nuclear magnetic
resonance spectroscopy (NMR) can also be used for untargeted
analysis of a much smaller set of abundant small molecules and
lipoproteins.35,36 When coupled with multivariate analyses to find
discriminating small molecules in prediagnostic blood from
disease cases and controls, metabonomics37 can be regarded as
an important subset of exposome-wide-association studies for
disease etiology. Table 1 summarizes results from 13 studies that
measured small molecules in plasma or serum from incident cases
and controls to discover possible causes of cardiovascular
disease,38 diabetes,39–43 and a host of cancers.44–52 Periods of
follow-up ranged from 2 to 9.6 years and 10 of the 14 studies were
performed with LC-MS. Interestingly, only three of the LC-MS
studies employed untargeted designs38,50,51 and thus many did

Fig. 1 a Inputs to the blood exposome from endogenous sources
(G, genome; GE, epigenome; R, transcriptome; P, proteome; M,
metabolome), exogenous exposures (E), post-translational modifica-
tions (PTMs) and gene–environment interactions (G × E). b Pathways
connecting the blood exposome to disease processes (causal
pathways) and subsequent feedback to G, GE, R, and P (via reactive
pathways)
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not take full advantage of the omics capabilities of the analytical
platforms. Nonetheless, these studies demonstrate that metabo-
lomics can readily characterize complex mixtures of small
molecules in a few microliters of archived blood from incident
cases and matched controls. Indeed, most of the studies in Table 1
found significant disease associations with particular molecules. If
exposure-related covariates are available from questionnaires or
environmental measurements, then a ‘meet-in-the-middle’ strat-
egy can be used to connect discriminating features from
untargeted metabolomics with possible exposure sources,46,53,54

and such correlations can assist with annotations.
Although the literature summarized in Table 1 is dominated by

targeted designs, hypothesis-free exposome-wide-association
studies can be performed with untargeted analyses that focus
on those features, whose signatures (for example LC-MS peaks
defined by accurate molecular mass and chromatographic
retention time) differ in abundance between cases and controls.33

After highly associated features from this analysis have been
identified, the molecules can be targeted in follow-up studies to
identify environmental sources or reactive pathways, to establish
exposure–response relationships and other evidence supporting
causality,24 and to direct interventions and predictive modeling.
These follow-up studies can employ high-throughput methods to
quantify selected analytes in thousands of biospecimens using, for
example, triple-quadrupole LC-MS38,55,56 or NMR.35,36

The untargeted exposome-wide association study conducted by
Wang et al.38 (Table 1) is noteworthy because the authors found
18 features (out of more than 2000 detected by LC-MS) that were
associated with cardiac events in plasma samples from only 75
incident cases and matched controls. Three highly discriminating
features were choline (a nutrient) and its metabolites, betaine, and
trimethylamine-N-oxide (TMAO). As TMAO is a product of joint
microbial and human metabolism of choline and carnitine
(another nutrient),55,56 the positive association between plasma
TMAO and cardiac events points to the involvement of dietary
factors combined with the gut microbiota in the etiology of
cardiovascular disease. Indeed, the early associations detected
between plasma TMAO and cardiac events38 spawned an
extensive set of follow-up studies that employed targeted
methods to replicate the findings and to explore contributions
of TMAO and the gut microbiota towards development of
cardiovascular disease.57 It is also interesting that the study by
Bae et al.47 (Table 1) found a positive association between plasma
TMAO and colorectal-cancer incidence, again suggesting involve-
ment of the gut microbiota.

Time-varying exposures
The blood exposome is dynamic with concentrations of chemicals
varying throughout life due to changes in location, physiology,
diet, lifestyle, and other factors.42 Given the impact of cumulative
exposures (‘exposure memory’58) on chronic diseases, it is
important that exposure monitoring begin in early life. Birth
cohorts provide a perfect avenue for obtaining repeated
measurements of the blood exposome—beginning at birth and
continuing through critical stages of life—that can be used to
detect disease associations and windows of susceptibility (for
example Oresic et al.39). However, any cohort with repeated
collection of blood can provide critical information regarding the
timing of disease progression (for example Soininen et al.35).
Neonatal blood spots that are collected at birth to screen for
congenital errors in metabolism could be archived for subsequent
exposome-wide-association studies to find effects of in utero
environmental exposures on pediatric (or later) diseases.59

Temporal variability of individuals’ exposomes leads to
exposure-measurement errors that attenuate case-control com-
parisons of blood levels60 and thereby reduce the power to detect
disease associations. The magnitudes of exposure-measurement

errors depend, in part, on the residence times of omics features in
the body. Small molecules, which tend to have residence times of
less than one day, can have much greater measurement error than
longer-lived biomarkers, such as adducts of human serum albumin
or hemoglobin which reside in the body for 1–2 months.60

However, other factors influence temporal variability in blood
concentrations; for example, levels of small molecules under
homeostatic control can be quite stable over time.61 Cohorts with
repeated collection of blood permit cumulative exposures of
omics features to be estimated with concomitant reduction in
exposure-measurement errors.60,61 Although exposure-
measurement errors tend to bias case-control comparisons
towards the null and thus result in false negatives, associations
detected in exposome-wide association studies with single
biospecimens from each subject are unlikely to be false positives
after adjustment for multiple testing and should be followed up
with validation samples.

CONCLUSIONS
Transformative research generally happens once in a generation.
Over the last quarter of a century, epidemiologists have
emphasized genetic factors as the putative causes of chronic
diseases. Because the human genome project planted the seeds
for genome sequencing and large-scale GWAS, it was inevitable
that these methods would be used to search for disease causes
and, in fact, almost 2000 GWAS have been reported.62 Yet, virtually
all disease-associated variants individually contributed very small
risks.63 This outcome should not be taken to mean that the totality
of genetic risks is trivial. After all, studies of monozygotic twins in
Western Europe point to attributable genetic risks of about 8%
overall for cancer and 22% for coronary heart disease and
accounted for around 250,000 deaths in the year 2000.8 Nor do I
discount the possibility that genes mainly exert their influence
through gene–environment interactions, including epige-
netics.64,65 But, based on current evidence, there can be little
doubt that the next generation of etiological research should
move towards environmental exposures as causes of chronic
diseases, possibly operating in tandem with genetic factors.
In the age of GWAS it is difficult to reconcile the crude state of

knowledge about environmental exposures that has been gleaned
from traditional methods.66 Indeed, a compelling reason for
embracing the blood exposome is the potential to perform
exposome-wide-association studies that comprehensively char-
acterize environmental exposures with biospecimens from nested
case-control studies or from surveillance of individuals’ blood
exposomes via routine screening.33 By heightening awareness of
the enormous diversity of environmental exposures, the blood
exposome should promote the coalescing of etiological research
that has been fractured along lines related to exposure sources,
for example air, water, diet, microbiota, infections, and psychoso-
cial stress.12 To reach their full potential, applications employing
human blood or other biofluids for exposome-wide-association
studies will require standardization of methods and rigorous
multi-step replication in order to find unknown causes of chronic
diseases.
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